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Abstract. The expanding realm of compliant and flexible soft solids is marked by notable advantages, 

offering secure interactions with humans and delicate objects. This study employs advanced numerical 

methodologies to meticulously investigate the propagation of elastic plate waves within a fiber-

reinforced prestretched compressible material, characterized by the Gent hyperelasticity model. The 

formulation encompasses the elastic tensor and underlying wave equations in Lagrangian space, 

integrating the theory of nonlinear elasticity with linearized incremental equations. To compute the 

dispersion characteristics of two fundamental guided wave modes, an extension of the Semi-Analytical 

Finite Element (SAFE) method is introduced. Subsequently, the investigation delves into the intricate 

effects of applied prestretch, reinforced fiber orientation, and material parameters on the dispersion 

characteristics of fundamental Lamb modes. A limiting case of the neo-Hookean material model is 

scrutinized to elucidate implicit dependencies, with a specific emphasis on the strain- stiffening effect 

captured through the Gent material model. The study's findings unveil that the manipulation of material 

anisotropy and fiber direction provides precise control over anti-symmetric and symmetric modes. The 

comprehensive exploration and insights presented in this study significantly contribute to the 

understanding and control of wave propagation in hyperelastic materials, particularly those exhibiting 

Gent- type behavior. 

1 INTRODUCTION 

Recently, there has been growing interest in studying wave propagation through nonlinear hyperelastic 

materials. Hyperelastic materials are a class of nonlinear elastic materials that can undergo large 

reversible deformations with little change in applied stress. Examples of hyperelastic materials include 

rubbers, elastomers, soft polymers, and biological tissues[1, 2]. Guided ultrasonic waves such as Lamb 

modes offer a powerful tool for non-destructively probing the structural health of plate and shell type 

structures [3]. But the propagation of such waves in deformed transversely isotropic hyperelastic media 

remains relatively unexplored, restricting defect detection and health monitoring applications. The 

development of a robust analytical framework can pave the way for novel non-destructive analysis in 

diverse areas ranging from flexible structural components to biological tissues. 

Most existing literature has utilized analytical approaches to study guided wave behaviour in finitely 

stretched materials, primarily on linearly elastic materials, providing limited physical insights. Study of 

small amplitude Rayleigh waves through isotropic, elastic material can be traced back to the articles [4, 

5] in which the theory of superposition of infinitesimal deformations on finite deformations was applied 

to a semi-infinite body with an initial homogeneous deformation. Development of finite 

deformation theory [6] helped in incorporating effects of non-linear elasticity in such studies. 

[7] showed that shear waves can be used to measure the third and fourth order elastic constants 
of incompressible soft solid through their coupling with pre-deformation. In the same article, it is shown 

mailto:akumarpatra@me.iitr.ac.in


Asesh Kumar Patra, Rohan S. Sapru and M. M. Joglekar 

 

 2 

that wave propagation through pre-stretched non linearly elastic plates can be approached in two 

methods. The first method is the theory of exact non-linearity which is applied for finite deformations 

to study elastic wave propagation through highly deformable elastomers and soft solids like human 

tissues which is explained in [8] where incremental small, time dependant displacements are 

superimposed on the finite deformation of a incompressible, isotropic elastic material. Frequencies of 

the different symmetric and anti-symmetric modes of wave in terms of underlying deformation and 

stress were found and frequencies of the different symmetric and anti-symmetric modes of wave in terms 

of underlying deformation and stress were found. The strain energy functions were written in terms of 

first three invariants of Cauchy-Green strain tensor. The dispersion effects of small amplitude waves 

propagating along non-principal direction in a compressible pre-stressed elastic plate was studied in [9, 

10]. The second approach is the theory of weakly non-linear elasticity is usually used in the study of 

small but not infinitesimal deformations. In this approach, the strain energy density function is 

represented in terms of Green-Lagrange strain tensor. The equations of acoustoelasticity for shear waves 

propagating through orthotropic elastic materials with pre-stress are derived in [11]. 

Acoustoelasticity of Lamb waves propagating through bi-axially stressed isotropic material was 

studied in [12] using the technique of superposition of partial bulk waves (SPBW) which is a matrix 

based approach in order to solve the non-linear algebraic for the dispersion plots which was found to 

change anisotropically for most stresses, modes and frequencies although there are some frequency-

mode combinations dispersion is isotropic in nature. SPBW methods rely on complex bidirectional root-

searching algorithms to handle solutions with complex wave numbers, such as damped waveguides. 

However, as shown in  [13], these algorithms can sometimes miss certain solutions entirely. This 

possibility of overlooked solutions is a significant downside to using the SPBW approach for problems 

involving damping. The Semi-Analytical Finite Element (SAFE) method has emerged as a useful 

alternative to the SPBW technique, as it overcomes limitations of SPBW approach. Rather than using a 

complex root-searching process like in SPBW, SAFE solves eigenvalue problems in a stable way to 

produce dispersion characteristics. In terms of implementation, SAFE uses a finite element 

discretization of the waveguide cross-section and presumes the solution varies harmonically in both time 

and the direction of propagation. This lowers the dimensionality of the problem, cutting down 

computational costs [3, 21, 22]. SAFE is used in [14, 15] to model the dispersion characteristics of 

guided waves propagating through materials of arbitrary cross-sections which are subjected to axial 

loads while viscoelastic effects were added in [3] for linearly elastic material. Dispersion curves of Lamb 

waves for a weakly non-linear plate is discussed in [16] where the results were validated by using the 

analytical method of SPBW. Similar study has been performed by [17] where isotropic Gent model was 

taken as the specimen. Different types  of strain energy functions for anisotropic Gent model have been 

discussed in [18, 23, 24]. However, analyzing wave dispersion in such materials under finite deformation 

poses theoretical and computational challenges. This paper aims to develop a numerical framework for 

characterizing guided Lamb waves traveling through a pre-stretched transversely isotropic hyperelastic 

plate based on SAFE approach. 

This paper is structured as follows: Section 2 explains the formulations involved in the problem 

which is divided into sub-sections: Section 2.1 starts with brief discussion on theory of non-linear 

elasticity of pre-stretched transversely isotropic hyperelastic plates and later presents the derivation of 

elastic moduli for the model. In Section 2.2, SAFE formulations are presented for the model which helps 

in the calculation of the phase velocity of different modes of the Lamb waves propagating through the 

plate. Section 3 presents the effects of varying pre-stretches and other material parameters on the 

dispersion behaviour of the model. Finally, conclusions and future prospects are provided in Section 4. 

2 FORMULATIONS OF THE PROBLEM 

For simplicity, the formulation is split into two parts: first, the equations for the elastic moduli are 
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developed for transversely isotropic hyperelastic materials with one family of fibers. Second, the semi-

analytical finite element method is presented to solve the wave propagation problem using the elastic 

moduli. 

2.1 Derivation of elastic moduli 

For the purpose of studying elastic materials exhibiting non-linear mechanical properties, we define 

a strain energy function (W) to represent in terms of energy its mechanical behaviour. A material is 

called elastic when W exists such that the stress can be obtained by differentiating W with respect to the 

strain. Such relations between strain and stress are called constitutive relations which describe the 

macroscopic behaviour of a material. 

For isotropic materials, the stress-strain relation has to be independent of the co-ordinate system used 

since the material has same properties in all directions. Hence, the strain energy function is defined using 

invariants of strain or that of deformation tensor. If undeformed state is used as frame of reference, the 

three invariants of right Cauchy-Green deformation tensor C are given as  

 𝐼1 = tr(𝐂) = 𝜆1
2 + 𝜆2

2 + 𝜆3
2 (1) 

 
𝐼2 =

1

2
[(tr 𝐂)2 − tr(𝐂2)] = 𝜆1

2𝜆2
2 + 𝜆2

2𝜆3
2 + 𝜆3

2𝜆1
2 

(2) 

 

 𝐼3 = det 𝐂 = 𝜆1
2𝜆2

2𝜆3
2 (3) 

where 𝜆1
2, 𝜆2

2, 𝜆3
2 are the eigenvalues of C. From polar decomposition, it can be shown that the 

𝜆1, 𝜆2, and 𝜆3  are eigenvalues of left stretch tensor U, also known as principal stretches. 

 

Let us consider a deformable, compressible transversely isotropic hyperelastic body.  The body is 

considered to be transversely isotropic because of the presence of one family of unidirectional fibers in 

an isotropic matrix. Let us assume that the body is described by the region π0 in the undeformed state 

which is also taken as the reference state while it is described by the region πr in the deformed state 

which is also the current state of the body. The two states are defined using the coordinate systems ξ 

and 𝑥 respectively. 

The body is considered to be a hyperelastic plate with dimensions L, B and H in the reference coordinate 

system (𝜉1, 𝜉2, 𝜉3) as shown in Figure 1. Assume that due to an external uniaxial load in the 𝜉1 direction, 

the body has undergone a finite deformation whose current dimension are now λ1L, λ2B and λ3H in the 

current coordinate system (x1, x2, x3). λ1, λ2 and λ3 are the principal pre-stretches in the reference 

coordinate system. Both the coordinate axes coincide with each other and are attached to mid-plane of 

the plate. 

Using the Lagrangian motion description, current spatial coordinates can be written in terms of the 

reference spatial coordinates as: 

 𝑥1 = 𝜆1𝜉1, 𝑥2 = 𝜆2𝜉2, 𝑥3 = 𝜆3𝜉3 (4) 

Second order tensor deformation gradient is defined in Einstein notation as: 

 
𝐹𝛼𝑗 =

∂𝑥𝛼

∂𝜉𝑗
 (5) 

where α, 𝑗 = 1, 2, 3. In this study, we take lowercase English alphabets to represent directions in the 
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reference state while the current state is represented by Greek alphabets. 

 

 

 

 

 

 

 

 

Figure 1: Schematic of the plate in the deformed state. 

Using (2) we can write the deformation gradient for our problem as, 

 

𝐹𝛼𝑞 = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] (6) 

The right Cauchy-Green deformation tensor and Green strain tensor is defined by equations 7 and 8 

respectively. 

 𝐶𝑖𝑗 = 𝐹𝛾𝑖𝐹𝛾𝑗 (7) 

 
𝐸𝑖𝑗 =

1

2
(𝐶𝑖𝑗 − 𝛿𝑖𝑗) 

(8) 

where 𝛿𝑖𝑗 is Kronecker delta. 

The strain energy density function (W) for compressible transversely isotropic Gent model applied 

in this problem is: 

 
W =

−𝜇𝑗𝑚
2

ln (1 −
𝐼1 − 3

𝑗𝑚
) − 𝜇ln 𝐽 + (

𝜆𝑚

2
−

𝜇

𝑗𝑚
) (𝐽 − 1)2 +

𝜇

2
𝜉(𝐼4 − 1)2 (9) 

where 𝜇 is infinitesimal initial shear modulus, 𝑗𝑚 is a dimensionless parameter called Gent constant 

which is a measure of the strain stiffening effect in the model, J is termed as Jacobian which represents 

ratio of current volume to initial (or reference) volume, 𝜉 is the degree of anisotropy and I4 is the 

additional anisotropic invariant defined as 𝐼4
(𝛼)

= 𝒂0
(𝛼)

⋅ 𝐂 ⋅ 𝒂0
(𝛼)

 ; 

 𝛼  = 1,2…. N, N is the total family of fibers present. 𝒂0
(𝛼)

 is the unit vector representing the 

orientation of fibers with respect to the x1 direction as shown in Figure 2.[18] 
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Figure 2: Schematic of a deformed, anisotropic, hyperelastic membrane 

Different stresses induced at a point inside a body undergoing finite deformation is given by, 

     First Piola–Kirchhoff Stress 

 
𝑃𝛼𝑗 =

∂𝑊

∂𝐹𝛼𝑗
 (10) 

Second Piola-Kirchhoff Stress 

 
𝑆𝑖𝑗 = 2

∂𝜓

∂𝐶𝑖𝑗
 (11) 

Cauchy Stress 

 
 

𝜎𝛼𝛽 = 𝐽−1𝐹𝛼𝑙𝑆𝑙𝑘𝐹𝛽𝑘 = 𝐽−1𝑃𝛼𝑘𝐹𝛽𝑘 
(12) 

First and second Piola-Kirchhoff stresses are calculated based on area of cross-section in reference 

coordinate system while Cauchy stress is defined w.r.t area in the current coordinate system. 

By substituting the (9) in equation (12), the components of the Cauchy stress can be formulated as: 

 
 

𝜎11 =
𝜆1

𝜆2𝜆3
[

𝜇𝑗𝑚

𝑗𝑚 − 𝜆1
2 − 𝜆2

2 + 𝜆3
2 + 3

] + 2 (
𝜆𝑚

2
−

𝜇

𝑗𝑚
) (𝜆1𝜆2𝜆3 − 1) −

𝜇

𝜆1𝜆2𝜆3

+ 2𝜇𝜉 cos2(𝜙) (𝜆1
2 cos2(𝜙) + 𝜆2

2 sin2(𝜙) − 1) 

(13) 

 
 

𝜎22 =
1

𝜆1
[

𝜇𝑗𝑚

𝑗𝑚 − 𝜆1
2 − 𝜆2

2 + 𝜆3
2 + 3

] + 2 (
𝜆𝑚

2
−

𝜇

𝑗𝑚
) (𝜆1𝜆2𝜆3 − 1) −

𝜇

𝜆1𝜆2𝜆3

+ 2𝜇𝜉sin2(𝜙)(𝜆1
2cos2(𝜙) + 𝜆2

2sin2(𝜙) − 1) 

(14) 

 
 

𝜎33 =
1

𝜆1
[

𝜇𝑗𝑚

𝑗𝑚 − 𝜆1
2 − 𝜆2

2 + 𝜆3
2 + 3

] + 2 (
𝜆𝑚

2
−

𝜇

𝑗𝑚
) (𝜆1𝜆2𝜆3 − 1) −

𝜇

𝜆1𝜆2𝜆3
 

(15) 

 
 

𝜎12 = 𝜎21 =
2𝜇𝜉cos(𝜙)sin(𝜙)(𝜆1

2cos2(𝜙) + 𝜆2
2sin2(𝜙) − 1)

𝜆3
𝐹𝛽𝑘 

(16) 

For a known value of 𝜆1 i.e., the pre-stretch in the direction of uniaxial load, using (13) – (16), we 

can calculate the pre-stretches in the other two directions, due to Poisson’s effect,  𝜆2, 𝜆3 as well as the 

tensile stress and shear stress induced in the body due to the load. 
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Using the Lagrangian form of incremental governing equation explained in [19], 

 Div 𝑃
∙
= 𝜌∘𝑣, 𝑡𝑡 (17) 

where 𝑃
∙
 is the nominal stress and 𝑣 is the incremental displacement. 𝜌∘ is the density of the material 

in the reference coordinate system. 

The incremental nominal stress is related to the elastic modulus of the body in the Lagrangian space 

as: 

 �̇�𝛼𝑗 = 𝐵𝛼𝑗𝛾𝑙𝑣𝛾,𝑙 , (18) 

where 𝐵𝛼𝑗𝛾𝑙 represents the elastic moduli of the body and is given by, 

 
𝐵𝛼𝑗𝛾𝑙 = 4𝐹𝛼𝑖𝐹𝛾𝑘

∂2𝑊

∂𝐶𝑖𝑗 ∂𝐶𝑘𝑙
+ 𝑆𝑗𝑙𝛿𝛼𝛾 (19) 

where, 

 
∂2𝑊

∂𝐶𝑖𝑗 ∂𝐶𝑘𝑙
 = 

1

4
[

2𝜇𝑗𝑚
(𝑗𝑚−𝐼1+3)2

𝛿𝑖𝑗𝛿𝑘𝑙 − (2 (
𝜆𝑚

2
−

𝜇

𝑗𝑚
) ∗ (𝐽2 − 𝐽) − 𝜇) (𝐶𝑖𝑘

−1𝐶𝑗𝑙
−1 + 𝐶𝑖𝑙

−1𝐶𝑗𝑘
−1) + 2𝐽(𝐽 −

1) (
𝜆𝑚

2
−

𝜇

𝑗𝑚
) 𝐶𝑖𝑗

−1𝐶𝑘𝑙
−1 + 4𝜇𝜉𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙] 

 

𝑆𝑗𝑙 = 2
∂𝑊

∂𝐶𝑗𝑙
= 

𝜇𝑗𝑚
(𝑗𝑚−𝐼1+3)

𝛿𝑗𝑙 + (2 (
𝜆𝑚

2
−

𝜇

𝑗𝑚
) (𝐽2 − 𝐽) − 𝜇) 𝐶𝑗𝑙

−1 + 2𝜇𝜉(𝐼4 − 1)𝑎𝑗𝑎𝑙 

 

�⃗� = {cos𝜙    sin 𝜙    0}𝑇 

 

Substituting (18) in (19), we get, 

 
 

𝐵𝛼𝑗𝛾𝑙

∂2𝑣𝛾

∂𝜉𝑗 ∂𝜉𝑙
= 𝜌𝑜

∂2𝑣𝛼

∂𝑡2
 

(20) 

2.2 Semi analytical finite element method formulation 

The elastic moduli from Section 2.1 are used in semi analytical finite element method to get the 

dispersion plots of small amplitude guided plate waves propagating through the pre-stretched 

anisotropic hyperelastic plate. It is also assumed that the Lamb wave is propagating in the direction 𝜉1 

and that the attenuation to the wave is negligible. 

To solve the incremental governing equation (20), we have to also consider the boundary conditions. 

i.e., the traction at the upper (𝜉3 = −𝐻/2) and lower (𝜉3 = 𝐻/2)  surfaces of the hyperelastic plate are 

taken to be zero in both reference and current coordinate system which can be written in the Lagrangian 

form as: 

 𝑡𝛼 = 𝑃𝛼𝑗

∙
𝑛𝑗 = 0 (21) 

The weak form of the governing equation is given by, 

 
∫  
𝜋𝑜

𝛿𝑣𝛼𝐵𝛼𝑗𝛾𝑙𝑣𝛾,𝑙𝑗𝑑𝑉 = ∫  
𝜋𝑜

𝛿𝑣𝛼𝜌𝑜𝑣𝛼,𝑡𝑡𝑑𝑉 (22) 
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where 𝛿𝑣𝛼 is the virtual displacement. Applying integration by parts at LHS of (22) and expanding 

we get, 

 
 

∫  
𝜋𝑜

𝛿𝑣𝛼,𝑗𝐵𝛼𝑗𝛾𝑙𝑣𝛾,𝑙𝑑𝑉 + ∫  
𝜋𝑜

𝛿𝑣𝛼𝜌𝑜𝑣𝛼,𝑡𝑡𝑑𝑉 = ∫  
Γ𝑜

𝛿𝑣𝛼𝑡𝛼𝑑𝑆 
(23) 

Γ𝑜is the surface boundary of the domain 𝜋𝑜. RHS of the equation (23) will be zero because of the 

absence of traction at the top and bottom surface. In SAFE framework, the component of displacement 

in the direction of wave propagation will be substituted by the value obtained from analytical method 

which is a harmonic exponential function in this case and components along the cross section 

perpendicular to wave propagation will be approximated by finite element methods. The waves 

propagating through the body are plane waves with wave number k and frequency 𝜔 and is independent 

of the displacement in the direction of 𝜉2 axis. Hence, the problem is simplified to a 1D system with 

thickness of the plate as the domain which is discretized by three node 1D elements. The resulting 

displacement vector becomes: 

 
 

𝑣 = {𝑣1(𝜉1, 𝜉3)𝑣2(𝜉1, 𝜉3)𝑣3(𝜉1, 𝜉3)}
𝑇 

(24) 

 ∂𝑣

∂𝜉
= {

∂𝑣1

∂𝜉1

∂𝑣2

∂𝜉2

∂𝑣3

∂𝜉3

∂𝑣1

∂𝜉2

∂𝑣1

∂𝜉3

∂𝑣2

∂𝜉1

∂𝑣2

∂𝜉3

∂𝑣3

∂𝜉1

∂𝑣3

∂𝜉2
}
𝑇

= {𝐿1

∂

∂𝜉1
+ 𝐿3

∂

∂𝜉3
}

𝑇

𝑣

 

(25) 

 

where   𝐿1 =

[
 
 
 
 
 
 
 
 
1    0    0
0    0    0
0    0    0
0    0    0
0    0    0
0    1    0
0    0    0
0    0    1
0    0    0]

 
 
 
 
 
 
 
 

 and 𝐿3 =

[
 
 
 
 
 
 
 
 
0    0    0
0    0    0
0    0    1
0    0    0
1    0    0
0    0    0
0    1    0
0    0    0
0    0    0]

 
 
 
 
 
 
 
 

 . 

 

The displacement can be expressed as: 

 𝑣 = 𝑁𝑣𝑒𝑒𝑖(𝑘𝜉1−𝜔𝑡) (26) 

 𝑣𝑒 = (𝑣11
𝑒     𝑣22

𝑒     𝑣33
𝑒     𝑣12

𝑒     𝑣13
𝑒     𝑣21

𝑒     𝑣23
𝑒     𝑣31

𝑒     𝑣32
𝑒 )𝑇 (27) 

 
 

 
∫  
𝜋𝑜

𝛿𝑣𝛼,𝑗𝐵𝛼𝑗𝛾𝑙𝑣𝛾,𝑙𝑑𝑉 + ∫  
𝜋𝑜

𝛿𝑣𝛼𝜌𝑜𝑣𝛼,𝑡𝑡𝑑𝑉 = ∫  
Γ𝑜

𝛿𝑣𝛼𝑡𝛼𝑑𝑆  

 

 

(28) 

where 𝑣𝑖𝑗
𝑒   is the nodal displacement of the ith node along the direction of axis j in the reference state. 

N is the shape function matrix with N1, N2 and N3 being the corresponding shape functions of three 
nodes in the element. 



Asesh Kumar Patra, Rohan S. Sapru and M. M. Joglekar 

 

 8 

From (26), 

 
 

∂𝑣

∂𝜉
= [𝐴1 + 𝑖𝑘𝐴2]𝑣

𝑒𝑒𝑖(𝑘𝜉1−𝜔𝑡) 
(29) 

where 𝐴1 = 𝐿3
∂𝑁

∂𝜉3
  and 𝐴2 = 𝐿1𝑁. 

The above expressions can be substituted in the weak form which will give, 

 
 

∫  
𝜋𝑜

𝛿𝑣𝑒𝑇[𝐴1
𝑇 − 𝑖𝑘𝐴2

𝑇][𝐵][𝐴1 + 𝑖𝑘𝐴2]𝑣
𝑒𝑑𝑉 = 𝜌𝑜𝜔2 ∫  

𝜋𝑜

𝛿𝑣𝑒𝑇𝑁𝑇𝑁𝑣𝑒𝑑𝑉 
(30) 

Upon integration using three-point Gauss quadrature method and applying the boundary conditions, 

 
 

[𝐾1
𝑒 + 𝑖𝑘(𝐾2

𝑒) + 𝑘2(𝐾3
𝑒)]𝑣𝑒 = 𝜔2𝑀𝑒𝑣𝑒 

(31) 

where, 𝐾1
𝑒 = ∫  

𝜋𝑜
𝐴1

𝑇𝐵𝐴1𝑑𝑉,     𝐾2
𝑒 = ∫  

𝜋𝑜
(𝐴1

𝑇𝐵𝐴2 − 𝐴2
𝑇𝐵𝐴1)𝑑𝑉 ,  𝐾3

𝑒 = ∫  
𝜋𝑜

𝐴2
𝑇𝐵𝐴2𝑑𝑉 , 

𝑀𝑒 = ∫  
𝜋𝑜

𝜌𝑜𝑁𝑇𝑁𝑑𝑉 

Developing the global equation, 

 
 

[𝐾1 + 𝑖𝑘(𝐾2) + 𝑘2(𝐾3) − 𝜔2𝑀]𝑉 = 0 
(32) 

Where V is the global displacement matrix and 𝐾1 = ⋃  
𝑛
𝑒=1 𝐾1

𝑒, 𝐾2 = ⋃  
𝑛
𝑒=1 𝐾2

𝑒, 𝐾3 = ⋃  
𝑛
𝑒=1 𝐾3

𝑒, 

𝑀 = ⋃  
𝑛
𝑒=1 𝑀𝑒 (n is the number of elements) . In Eq.(32) is a general eigenvalue problem where the 

eigenvalues are represented by wavenumber k and eigenvectors are represented by V. Phase velocity of 

the wave is given by the expression, 

 
 

𝐶𝑝 =
𝜔

𝑘
 

(33) 

 

3 RESULTS AND DISCUSSIONS 

The eigenvalue problem from the SAFE formulation gives both real numbers and complex numbers. 

Complex wave numbers correspond to evanescent wave modes which are non-propagating hence, not 

significant from an application point of view. Hence, the dispersion curves are plotted with the real 

values of wave numbers which are converted to phase velocity using (33) against the product of 

frequency and thickness of the plate. To mitigate the effects of material properties from the dispersion 

curves, we normalize both the phase velocity and frequency-thickness as, 

 

𝐶�̅� = 𝐶𝑝√
𝜌∘

𝜇
 (34) 

 

𝑓𝐻
¯

= 𝑓𝐻√
𝜌∘

𝜇
 

(35) 

For the purpose of analysing the results, we assume wave guide to be made of VHB 4910 with the 
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following material parameters[20]. 

Table 1: Material Properties of VHB 4910 

Parameters Magnitude 

𝜇 85.955kPa 

𝜆𝑚 801.958kPa 

𝜌∘ 960 kg/m3 

𝐻 0.001 m 

 
The complete dispersion plot of the above material is shown in Figure 3 with other parameters like 

fiber orientation, degree of anisotropy, pre-stretch and Gent constant also mentioned in the plot. 

 

Figure 3: Dispersion plot for the VHB 4910 

As seen in Figure 3, the dispersion curve consists of number of modes which are classified as 

symmetric modes and anti-symmetric modes. The fundamental symmetric and anti-symmetric modes 

are called S0 and A0 modes respectively which are marked in the dispersion curve above. In our analysis, 

we will be comparing only S0 and A0 modes since they are the most important from an application point 

of view. 

3.1 Effect of pre-stretch 

In this section, the effect of pre-stretch, given along the ξ1 direction, on dispersive behaviour of the 

waves are studied. Keeping all other parameters constant, the values of λ are changed from 1 to 3 with 

λ = 1 indicating unstretched condition. The S0 and A0 modes are those cases are plotted. 

From Figure 4, it can be seen that the A0 modes are slightly dispersive in the low frequency range 

(𝑓𝐻 < 1) whose dispersive nature decreases as the value of the pre-stretch increases with the unstretched 

case having the most dispersion in the lower frequency regions but over the majority of the frequency-

thickness range it is non dispersive since the 𝐶𝑝 values remain constant over a large range.  

On the other hand, the S0 modes Fig. 5 in are mostly non-dispersive in the lower frequency ranges, 

but are highly dispersive in the medium frequency range (1< 𝑓𝐻 < 2). Also, the dispersion seems to 

increase as the value of pre-stretched is increased. Over the higher frequency ranges even though the 

dispersion is still there, it is very less compared to the medium ranges. 
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Figure 4: Effect of pre-stretch on A0 mode 

 

Figure 5: Effect of pre-stretch on S0 mode

3.2 Effect of strain stiffening 

In this section, the effect of varying Gent constant jm is shown while keeping all other parameters 

constant. jm is a measure of strain stiffening ability of the material.i.e. an increase in jm indicates a 

material with more strain stiffening ability. 

In Figure 6, the dispersive nature of A0 mode is plotted while varying Gent constant. Over the lower 

frequency ranges, the waves are found to be highly dispersive while over the higher frequencies, the 

waves are moderately dispersive.  Lower value of jm have higher phase velocity, while for higher values 

of jm,, the values of phase velocity are very similar. 

In Figure 7, the dispersive nature of S0 mode is plotted while varying Gent constant. Over the lower 

frequency ranges, the waves are found to be only slightly dispersive while over the moderate 

frequencies, the waves are highly dispersive.  Values of jm i.e., strain stiffening effect does not seem to 

affect the phase velocity of the S0 mode. 

 

Figure 6: Effect of jm  on A0 mode 

 

Figure 7: Effect of jm  on A0 mode 

3.3 Effect of fiber orientation 

In this section, the orientation of the fibers are varied from 0o to 900 while keeping all other 

parameters constant.
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Figure 8: Effect of fiber orientation on A0 mode 

    

Figure 9: Effect of fiber orientation on S0 mode 

The variations on the A0 mode produced by changing the fiber orientation are shown in Figure 8. 

The waves are found to be dispersive only at very low frequencies. As 𝜙 is increased, the magnitude of 

the wave velocity decreases. It can also be noted that at higher values of 𝜙, the values of 𝐶�̅� are nearly 

the same. Similarly, the variations for S0 mode are shown in Figure 9. We can observe that the S0 modes 

are dispersive in the moderate frequency ranges while having comparatively less dispersion in the lower 

and higher ranges of frequencies. 

In the both the fundamental modes, the maximum value of phase velocity occurs when the fibers are 

oriented with the wave propagation direction.

4 CONCLUSIONS 

The work presented establishes a robust computational method for studying how pre-stretch and 

material parameters influence Lamb modes in compressible, transversely isotropic hyperelastic plate 

modelled using Gent model. Using the framework of SAFE, in this study, we have been able to study 

the variation of dispersion nature of the fundamental modes of the Lamb waves propagating through the 

plates. Various model parameters such as fiber orientation, degree of anisotropy, Gent constant which 

is a measure of the strain stiffening ability of the material and lastly the pre-stretch applied to the material 

was discussed. 

Going forward, research could extend this SAFE approach to handle wave propagation in anisotropic 

hyperelastic plates with multiple family of fibers as well. Overall, this Semi-Analytical Finite Element 

framework offers a way to numerically simulate the effects that nonlinearity and material stiffness have 

on guided waves in non-linearly elastic structures. 
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