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Summary. Designing automotive components in a resource-efficient way, it is necessary to
know the loads to be expected during operation. At an early stage of development virtual load
generation is needed to derive them efficiently and realistically. Many of these loads depend
on the driven velocities of the vehicle and, therefore, determining characteristic velocity profiles
for different vehicle types and driving manners is essential for reliability-based design in the
automotive industry. In the present work we analyse velocity measurements of different vehicles
and drivers on several routes and investigate the velocity fluctuations with respect to their
statistical properties. We show that the fluctuations can be described by a stochastic process
adapted to the measured properties. This leads to a comprehensive stochastic modeling approach
that can be used to simulate characteristic velocity profiles for a wide-range of types of roads,
drivers and vehicles.

1 Introduction

The established approach to estimate the loads on automotive components is to perform test
drives under certain assumptions of the actual usage of the car by a customer. From these as-
sumptions a test route is derived which is then driven in a specific manner by a test driver. The
loads measured on this route are then extrapolated to the targeted lifetime of the component.
However, due to the high uncertainties associated to the assumptions and the only very limited
number of kilometers driven, this approach can only give a limited view into the loads acting
on the component over its actual lifetime. In addition, existing physical components (e.g. pro-
totypes or components from previous generations) are required on which the measurements can
be carried out. This aspect makes the approach unfeasible for the development of new, innova-
tive components as currently developed for electric and fuel cell electric vehicles. In this case,
load measurements must be “virtualized”, meaning that they are fully generated by simulations.
This requires the modeling of realistic profiles of the speed of the vehicle in driving direction,
referred to in the following as the velocity of the vehicle, along an arbitrary route taking into
account influences such as traffic and driving behavior.

Present approaches to model velocity profiles show deficiencies related to the random com-
ponent of velocities, i.e., the fluctuations around a constant mean velocity. In [1], the authors
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derive a comprehensive approach where the velocity of the vehicle is modelled using a discrete
time series {vti}Ni=0 of random variables vti . In detail, the velocity is described by

vti = v̄dtiXti (1)

using a mean velocity v̄dti at time-dependent position dti and the following logarithmic first
order Auto-Regressive process (or AR(1) process for short),

Xti = exp(Zti −
ω2

2
), (2)

Zti = ηZti−1 + ϵti ,

ϵti ∼ N (0, σϵ).

Here, ω2 = σ2
ϵ

1−η2
is a mean correction ensuring that E[Xti ] = 1.

For a given route the mean velocity v̄dti is determined by a function depending only on the
properties of the road (e.g. traffic lights, speed limit, curvature) at the respective distance

dti = dt0 +
i∑

j=1

vtj∆tj with ∆tj = tj − tj−1, (3)

and on predefined properties of the driver such as tolerated accelerations and adherence to
speed limit, see [1] for more details. This means that along an arbitrary route the velocity is
described by a deterministic series {v̄dti}

N
i=0 of mean values and a probabilistic part given by the

fluctuation series {Xti}Ni=0. These fluctuations are the result of internal and external influences,
such as inattentiveness of the driver, behaviour of surrounding pedestrians, bikes, cars, etc.,
which all cause the velocity to contain a stochastic component (e.g. [2]).

Although this approach allows to cover a wide variety of usage scenarios such as the simulation
of many different combinations of drivers, cars and routes, it is not sufficient to explain the
dynamics of human driving behavior. For example, the evaluation of measured time series of
vehicle velocities reveals that the assumption of white noise in (1) is not suitable as in general
there is remaining correlation in the residuum ϵti , see Fig. 1. The contribution aims to solve
this problem by modeling the vehicle velocity as a dynamical system driven by nonstationary
correlated noise (e.g. [3]). Therefore, in Section 2.1 we replace the white-noise in (2) by red-noise,
leading to a better reproduction of the measured correlation structure. Furthermore, estimating
the statistical properties of the vehicle velocity from various measurements of velocity time
series, we find a significant dependence of the fluctuation Xti on the mean velocity v̄dti . We,
therefore, introduce a coupling of Xti and v̄dti in Section 2.2 developing a novel approach for
the modeling of human driving behavior.

In Section 3, we demonstrate the improved properties of the approach, developed in Section 2,
for the generation of virtual loads. To do so, we evaluate simulated velocity profiles in comparison
to measured velocities and show decisive advantages of the approach in a damage modeling use-
case for automotive components.

2 Modeling of velocity fluctuations

2.1 Stochastic process identification

To derive a comprehensive modelling approach for the simulation of vehicle velocity we extend
the approach described by (1) and consider the following time series {vti}Ni=0 of vehicle velocities
defined by:
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Figure 1: Auto-correlation of residuum ϵti with a white-noise AR(1) processes for a window

vti = v̄dtiXti (4)

with

Xti = exp(Zti −
ω2

2
), (5)

Zti = ηZti−1 + ϵti ,

ϵti ∼ N (0, σϵ)

for η ∈ (0, 1) where the noise term ϵti is itself an AR1-process, i.e.,

ϵti = θϵti−1 + ζti , (6)

ζti ∼ N (0, σζ)

for θ ∈ (0, 1). Here the mean correction is adapted to the additional correlation in the noise

ω2 =

(
1 + ηθ

1− ηθ

)(
σ2
ζ

(1− η2)(1− θ2)

)
(7)

such that E[Xti ] = 1.

2.2 Parameter estimation

For the estimation of the parameters η, θ and σζ we use available measurements of vehicle
velocities as, for instance, depicted in Fig. 2a. To consider the influence of the parameters η,
θ and σζ on the vehicle velocity the series is split into short windows of length twl = 200 s,
see Fig. 2b. For each window we compute the mean velocity v̄ and normalise the velocity in
the respective window with respect to v̄. For each window the parameters are then estimated
following the approach in [3, Section 3] using an unbiased estimator for the parameters θ, η and
σζ . We mention that the procedure depicted in [3, Section 3] is based on the unbiased estimators
for η and θ derived in [4, 5].
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(a) Velocity series of a trip (b) Velocity series of a window

Figure 2: Example of velocity series

The same analysis is now performed on multiple windows taken from multiple trips over a
wide variety of roads with a single driver where for each window i the tuple pi = (ηi, ζi, σζ,i)
as well as the minima and maxima of the window zi, z̄i are estimated. This way we obtain two
families of parameters (pi)i = (ηi, ζi, σζ,i)i and (zi)i = (zi, z̄i)i representing the combination
of parameters and the minima/maxima for each window. The parameter estimates (pi)i of
each window are then binned according to the mean velocity (v̄i)i of the window leading to
a multivariate distribution of the parameters (pi)i = (ηi, ζi, σζ,i)i for each velocity bin. The
distribution for each bin is then described by a multivariate normal distribution

fP |v̄(p|v̄) ∼ N (µ,Σ) (8)

where the vector of mean values µ and the covariance matrix Σ are estimated from the
available parameter values (pi)i within the respective bin. Here, for each pi in the bin we
consider the logarithm log(σζ,i) of the standard deviation instead of the standard deviation
itself such that the conditional distribution of σζ,i with all other parameters fixed will be given
by a one-dimensional lognormal distribution. In Fig. 3, this procedure is illustrated for the
velocity bin including the mean velocities 100 km/h < v̄i < 110 km/h, where the measured
parameter tuples (pi)i for the bin and the projected 1, 2 and 3-sigma ellipses of the fitted
normal distribution are depicted.

As for the parameters (pi)i the minima (zi)i and maxima (z̄i)i of each window are binned
according to the mean velocities (v̄i)i of the windows. From the resulting histograms per bin
of the maxima and minima the 99%-quantile q0.99(z̄i) for (z̄i)i and the 1%-quantile for (zi)i
are determined. These quantiles are used in the further course of the work to adapt proper
bounds to the velocity fluctuation Xti , see the following Section 2.3. Taking quantiles of the
minima and maxima the estimation of the bounds will be less sensitive to outliers. In Fig. 3b
the histogram of the upper limits z̄i and the corresponding 99%-quantile for the mean velocity
range 100 km/h < v̄i < 110 km/h is depicted.

The estimation of the multivariate normal distribution for the parameters η, θ and log(σζ) and
the derivation of the lower q0.01(zi) and upper quantiles q0.99(z̄i) is repeated for all velocity bins.
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Figure 3: Distribution of pi and z̄i for mean velocity bin 100 km/h < v̄i < 110 km/h

Using continuous interpolation of the parameters µ,Σ and the bounds q0.01(zi) and q0.99(z̄i)
along the velocity bins they can be described as a continuous function of the mean velocity v̄.

As mentioned in the introduction a significant trend of each parameter with respect to the
mean velocity can be observed. The mean of the correlation parameters µη and µθ, for instance,
increases with rising mean velocity indicating less random velocity fluctuations which in our
case corresponds to less random and smoother driving behaviour, see Fig. 4a and 4b. This is
sensible as on trips in urban areas random events are usually less predictable and on short term
notice due to the higher interaction with other road users and the worse long distance visibility.
On motorways the velocities show higher correlations, i.e., are smoothed out as the random
events there are usually more predictable, such as cars braking in the distance or upcoming lane
changes and the generally better long distance visibility.

On the other hand the mean of the logarithmic standard deviation µlog(σζ) decreases when the
mean velocity increases, indicating a decreasing amplitude of the velocity fluctuations with in-
creasing velocity in line with the expectation of a smoother driving behaviour at higher velocities
on motorways and vice versa, see Fig. 4c.

2.3 Bounded time-discrete processes

In general, as the AR(1) process in equations (4) and (5) is normally distributed, the log-
arithmic red-noise AR(1) process as described in Section 2.1 follows a log-normal distribution.
The log-normal distribution is supported on Xti ∈ (0,∞), i.e., velocities can theoretically reach
any value in the range from 0 to ∞. This is not only a theoretical problem with a probability
close to zero but can actually lead to unrealistic velocities in practical applications as depicted
in Fig. 5a, which shows 100 samples created around a mean velocity of v̄ = 80 km/h with typical
values for η, θ and σζ . The frequent velocity peaks of up to 140 km/h never occur in the velocity
measurements used to parameterize the stochastic process in this example. Therefore, it is nec-
essary to bound the process in (4) to realistic velocities that are consistent with the velocities
obtained from measurements. To bound the process according to measured vehicle velocities we
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Figure 4: Relationship between µη, µθ, µlog(σζ) and mean velocity v̄

use the bounds z = q0.01(zi) and z̄ = q0.99(z̄i) on Zti derived in Section 2.2.
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Figure 5: 100 samples of velocity fluctuations generated with a bounded and not bounded red-
noise AR(1) process

In [6] the authors derive an approach for a bounded AR process. This approach is based
on a truncation of the noise term ζ to ensure that the process Zti is bounded by a lower limit
z and upper limit z̄ and leads to a sharp bound on the distribution of Zti . An alternative is
to truncate the process by resampling until a feasible solution is found. In practice this could
lead to undesired run-times when the probability of achieving a feasible solution is low. By
decreasing the standard deviation σζ at each resampling iteration until zero a solution within a
specific number of iterations nmax can be guaranteed. In the implemented solution σζ is reduced
in each iteration rp using the function

σζ,rp = σζ,0

(
1− rp

nmax

)a

(9)
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where in the following applications we set a = 10 and nmax = 100. This leads to an almost
unchanged standard deviation σζ,rp for the first approx. 60 iterations during which in most cases
a feasible solution is found. After 60 iterations an increasingly steep decline of the standard
deviation begins, guaranteeing a feasible solution within a maximum of 100 iterations.

Resulting from the resampling algorithm is a distribution of the stochastic process Zti which is
bounded by z and z̄, where the distribution is not cut off at the bounds but is gradually tapered
towards its limits. The gradual tapering is desired for the modeling of velocity fluctuations, as
there are no sharp lower or upper bounds to the velocity fluctuations in reality which would lead
to an unrealistic accumulation of velocities near the bounds.

2.4 Simulation of velocity profiles

To simulate the velocity of the vehicle along an arbitrary route we use a one-dimensional
discretization {dk}Mk=0 of the route distance such that two points dk and dk+1 represent a route
section [dk, dk+1). We specify the series of mean velocities {v̄k}Mk=0 on each route section as the
minimum between the actual speed limit vkl and the traffic-related maximum speed vkmax at the
center point d̄k = (dk + dk+1) /2. Both the speed limit vkl and the maximum speed vkmax are
inferred from available route data by matching the center point d̄k to its corresponding latitude
and longitude coordinates on an existing map. In this framework stop events can be included
setting the speed limit vlk = 0 at specific positions. To generate a time-dependent velocity series
vti the parameters η, θ and σζ are determined by drawing samples from the conditional normal
distribution fP |V̄ (p|v̄) for each route section considering the mean velocity v̄k at d̄k. Moreover,
for every route section the lower and upper limits q0.01(zi) and q0.99(z̄i) are specified according
to Section 2.2.

On every route section a time-dependent velocity series {vti}Ni=0 is generated using equa-
tions (4) and (5) where the parameters η, θ and σζ are fixed on each section. Here, we set the
initial conditions Z0 = 0 and ϵ0 = 0 for the first route section [d0, d1) where for the remaining
sections the initial values are inferred from the respective values at the end of the previous
section. For every route section the resampling is executed according to Section 2.3 ensuring
that the velocity lies within the bounds q0.01(zi) and q0.99(z̄i). The red-noise AR(1) process
in equations (4) and (5) is executed with a constant time step of ∆ti = 1 s which results in
a distance of ∆dti = vti∆ti driven in each iteration. Finally, the resulting series of velocities

{vti}
M(N+1)−1
i=0 along the route is filtered using Gaussian kernel smoothing resulting in a contin-

uously differentiable and instantionary stochastic process describing the vehicle velocity along
the route, see Fig. 6b.

3 Evaluation of the model

In Fig. 6a we illustrate the simulated velocity series using both the model described in [1],
see equation (1), and the method developed in this contribution, see equations (4) and (5).
Moreover, the measured velocity for the respective route section is depicted revealing that the
approach in (4)and (5) can reproduce the correlation structure of the measured velocity much
better. In Fig. 6b we compare the simulated velocity series for a full motorway trip of length
∼ 80 km with a respective measurement, displaying a good replication of the measurement due to
the realistic and constantly changing mean, variance and correlation properties of the simulated
velocity series.
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Figure 6: Comparison of velocity simulation results for a window and a full trip

Moreover, as an important property of the velocity series relevant for load generation we
consider the number and amplitude of rainflow cycles included in the series, see, for instance, [7].
To evaluate the rainflow cycles of the velocity series, we simulate multiple routes driven by the
same driver using the procedure described in Section 2.4 and compare the rainflow histogram
for measured and simulated velocities, see Fig. 7. Comparing the rainflow histograms indicates
that the consideration of correlation in the noise term ϵti in (5) and the coupling of v̄dti and Xti

in (4) leads to velocity profiles that well reproduce the number and amplitude of rainflow cycles
compared to measured velocities. When using the white-noise approach a distinct overestimation
of the number of small velocity cycles becomes visible, a result of the lack of correlation in the
noise term leading to more small fluctuations as visible in Fig. 6a.

Further we depict an exemplary use-case of load generation using simulated velocities. In the
following example the torque load in the drive-train is estimated with a simple system simulation
model calculating the forces acting on the vehicle from the respective velocity simulated with
the model described above, see [8]. This way a time series of the torque acting on drive-train
components of the vehicle is derived. From the torque series the gear damage sum DG, as it
could be used in gear dimensioning according to ISO 6336-6 [9], is calculated. Here, DG is
calculated for windows of length swl = 5000m and with a shift of sws = 500m. As we are
only interested in illustrating the influence of load generation on the damage sum DG without
considering a particular component and its properties, the damage sum per window DG,i is
normalised to the length of the window i and the maximum damage sum per window DG,max

leading to the normalised damage per window defined by

D′
G,i =

DG,i

swlDG,max
. (10)

The distribution of the damage sum D′
G,i over all windows is depicted in Fig. 8 and shows a

good agreement between the damage sums derived from measured loads and those derived from
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Figure 7: Comparison of velocity rainflow histogramms for multiple routes of the same driver

simulated loads using the red-noise approach. With white-noise the number of windows with
small damage sums is underestimated, a result of the overestimation of the number of small
velocity cycles due to the lack in the correlation of the noise in the velocity series, see Fig. 7a.
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Figure 8: Distribution of gear damage sum D′
G,i per window derived from simulated and mea-

sured torque load for multiple routes of the same driver

4 Conclusion

In the first part of this contribution we presented an improvement to the stochastic process
used to model velocity fluctuations within the velocity simulation framework described in [1].
The new approach is based on a red-noise AR(1) process which allows for a better representation
of the correlation structure observed in measured velocities, see Fig. 6a. A method to bound
the stochastic process is developed to ensure that the produced velocity fluctuations remain
within a realistic range. Moreover, the extended stochastic process is coupled with a novel
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approach to model its parameters. The distribution and dependence of the parameters for a
certain mean velocity are described by a multivariate normal distribution. In order to model
the change in velocity fluctuations, e.g., to differentiate between city and motorway driving, the
mean vector and covariance matrix of the distribution depend on the mean velocity. Results
show that the new stochastic process and its parameterization produce realistic velocity series.
This is demonstrated by the close match of the rainflow histogram for measured and simulated
velocities for multiple routes, see Fig. 7b. Moreover, we illustrated the ability of the new model to
generate realistic loads on vehicle components using simulated velocities. This is demonstrated
in a use-case example showing a close match of the gear damage sums between simulated and
measured loads, see Fig. 8b.
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