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Abstract. While linear systems have been extensively studied in the past few decades, systems
with strong nonlinearities are not as widely investigated. One of the reasons why these are
less applied in engineering is due to the fact that solving nonlinear equations usually demands
a steep increase in processing capacity and time when compared to their linear counterparts.
As computers become more powerful, significantly more advanced nonlinear systems can be
studied and analyzed, providing solutions that are more accurate for real-world applications.

When it comes to frequency analysis, it is possible that nonlinear frequency response shows
the phenomena of hardening or softening. In this case, the resonance peaks of the frequency re-
sponse are tilted to the right or left, respectively, in comparison with linear frequency response.
The consequences of these phenomena might prove essential to safety assessment of real-life
structures as the resonance peak might greatly differ from those obtained in a linear analysis.

In this study, the high-order frequency response of the Helmholtz-Duffing oscillator is an-
alyzed in order to evaluate its influence on the system. The oscillator exhibits Duffing non-
linearities represented by cubic springs and Helmholtz nonlinearities represented by quadratic
springs. The high-order harmonic balance method was used to determine the dynamic equation
in the frequency domain. The nonlinearities were numerically integrated based on the coeffi-
cients of the Fourier series. Originally used to find the solution path of nonlinear static structural
analyses, the arc-length method was adapted to determine the nonlinear frequency response.

The equations from the first-order harmonic balance method assume that the nonlinear sys-
tem response, as well as the nonlinear forces, are dominated by the fundamental harmonic. In
this case, high-order harmonics are neglected. When it comes to high-order frequency response,
multiple harmonics are considered in the system response and the equations are derived from the
high-order harmonic balance method. This study shows that the behavior of systems with cubic
stiffness only is usually very accurate with the first-order analysis. However, when quadratic
stiffness is present, multiple harmonics must be taken into consideration in order to accurately
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describe the system behavior. Otherwise, the frequency response is possibly inaccurate and
sometimes chaotic as it is not entirely dominated by its fundamental harmonic.

1 INTRODUCTION

When it comes to mechanical structures, it is often assumed that nonlinear effects are either
negligible or can be linearized to assess the behavior of certain mechanical systems. How-
ever, as the demand for lightweight design grows to achieve slender and thin structures, this
approximation may no longer correctly predict the behavior of highly nonlinear structures.

In this study, the steady-state response of several classical nonlinear oscillators is analyzed.
While systems such as the Duffing oscillator with cubic stiffness can be accurately represented
by its fundamental harmonic, the presence of quadratic stiffness, as seen in the Helmholtz and
Duffing-Helmholtz oscillators, renders first-order analysis inadequate. This issue can be ad-
dressed by introducing high-order harmonics into the system of equations.

The arc-length method, a continuation algorithm created to overcome critical points and
instability zones of nonlinear static structural problems, was initially proposed by Riks [1] and
later improved by Crisfield [2]. The method was then adapted to determine nonlinear frequency
response curves of nonlinear systems [3].

In order to determine the system of equations in the frequency domain, the harmonic balance
method was applied. This method has been widely used in a number of fields, from elctrical
circuits with nonlinear elements [4] to computational fluid dynamics (CFD) models of unsteady
flows [5] or nonlinear beams [6]. An alternative to this method is the describing functions
method, as demonstrated in [7].

The high-order frequency response of the Duffing oscillator was explored in [8]. Other
studies investigated the high-order response of systems such as the Van der Pol oscillator [9]
and the unilateral spring oscillator [10]. The time response analysis of the Duffing-Helmholtz
oscillator was examined in [11].

In this study, when high-order harmonics were considered in systems with quadratic non-
linearity, not only is the fundamental harmonic greatly affected, but high-order harmonics may
present significant contributions to the overall system response at certain frequencies. The Duff-
ing oscillator, with cubic stiffness only, exhibited satisfactory results when only the fundamental
harmonic was considered.

2 THE HARMONIC BALANCE METHOD

The harmonic balance is a method used to compute the steady-state response of nonlinear
systems, commonly applied to nonlinear electrical circuits or, as in this case, nonlinear me-
chanical oscillators. Essentially, it relies on the fact that a periodic solution to the system of
nonlinear differential equations can be represented by a Fourier series, which is a combination
of sinusoids at different frequencies.

The matrix equation of motion of a structure with internal nonlinearities fnl subject to an
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external force vector f e can be written as follows:

Mẍ+Cẋ+Kx+ fnl = f e =
F

2
eiωt +

F ∗

2
e−iωt, (1)

where x is the displacement vector, M is the mass matrix, C is the damping matrix and K is
the stiffness matrix. In this paper, only harmonic external forces are considered. Their excitation
frequency is ω and F represents the complex excitation amplitude vector (and F ∗ its complex
conjugate).

The steady-state solution can be written as a Fourier series [12] as shown in Equation (2).
The s-th harmonic of the complex displacement amplitude vector is represented by X [s].

x =
∞∑

s=−∞

X [s]

2
eisωt, (2)

where X [−s] is the complex conjugate of X [s].

2.1 First-Order Harmonic Balance

The First-Order Harmonic Balance method is used when the nonlinear forces and the system
response are dominated by their fundamental harmonic. In this case, only the first term of the
Fourier series is considered for the nonlinear force and for the response:

fnl =
F

[1]
nl

2
eiωt +

F
[−1]
nl

2
e−iωt, (3)

x =
X [1]

2
eiωt +

X [−1]

2
e−iωt. (4)

Substituting Equations (3) and (4) into Equation (1) and isolating the terms that are followed
by eiωt, the system equation in the frequency domain is obtained:

(−ω2M + iωC +K)X [1] = F − F
[1]
nl (X

[1]). (5)

It is possible to rewrite Equation (5) by defining the complex dynamic stiffness matrix of the
linear terms Z(ω) = −ω2M + iωC +K:

Z(ω)X [1] = F − F
[1]
nl (X

[1]). (6)

2.2 High-Order Harmonic Balance

The High-Order Harmonic Balance method is used when the nonlinear forces and the system
response may not be dominated only by their fundamental harmonic. In this case, other harmon-
ics must be considered in order to accurately describe the system behaviour. The displacement
vector and its derivatives are shown in Equations (7)-(9) considering the first h harmonics of
the Fourier series, along with the static displacement, x0 =

X0

2
, which denotes the value around

which the system oscillates.
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x =
h∑

s=−h

X [s]

2
eisωt, (7)

ẋ =
h∑

s=−h

isω
X [s]

2
eisωt, (8)

ẍ =
h∑

s=−h

−s2ω2X
[s]

2
eisωt. (9)

Similarly, the nonlinear forces can be approximated by the first h harmonics of the Fourier
series:

fnl =
h∑

s=−h

F
[s]
nl

2
eisωt. (10)

The complex nonlinear force amplitude vector is given by the Fourier coefficients:

F
[s]
nl =

ω

π

∫ 2π
ω

0

fnl cos (sωt) dt− i
ω

π

∫ 2π
ω

0

fnl sin (sωt) dt. (11)

Substituting Equations (7)-(10) into Equation (1) and isolating the terms that are followed
by eisωt, the system equation for the s-th harmonic is obtained (s ̸= 1):

(−s2ω2M + isωC +K)X [s] = −F
[s]
nl (X

[0],X [1],X [2], ...,X [h]). (12)

Rewriting Equation (12) with the complex dynamic stiffness matrix of the vibrating system:

Z(sω)X [s] = −F
[s]
nl (X

[0],X [1],X [2], ...,X [h]). (13)

Adapting Equation (6) to take into consideration all harmonics (X [0],X [1],X [2], ...,X [h])
and combining with Equation (13), it is possible to represent the system equation in the fre-
quency domain for all harmonics:
K 0 0 . . . 0
0 Z(ω) 0 . . . 0
0 0 Z(2ω) . . . 0
...

...
...

. . .
...

0 0 0 . . . Z(hω)





X [0]

X [1]

X [2]

...
X [h]


=



0
F
0
...
0


−



F
[0]
nl (X

[0],X [1],X [2], ...,X [h])

F
[1]
nl (X

[0],X [1],X [2], ...,X [h])

F
[2]
nl (X

[0],X [1],X [2], ...,X [h])
...

F
[h]
nl (X

[0],X [1],X [2], ...,X [h])


.

(14)
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3 NONLINEAR FREQUENCY RESPONSE CURVES

The frequency response curves of some nonlinear systems exhibit a phenomenon where the
resonance peak becomes inclined. When the resonance peak tilts to the right, this phenomenon
is called hardening, while if it tilts to the left, the phenomenon is called softening. Figure 1
shows a comparison of two frequency response curves. The first curve is from a single-degree-
of-freedom (SDOF) linear system, while the other is from an SDOF nonlinear system with cubic
stiffness.

|X|

ω≈ ωn

|X|

ω≈ ωn

Figure 1: Comparison between a linear frequency response curve (left) and a nonlinear frequency response curve
(right)

The equation of motion of an SDOF system with cubic stiffness (Duffing oscillator) is given
by:

mẍ+ cẋ+ kx+ βx3 =
F

2
eiωt +

F ∗

2
e−iωt, (15)

where x is the displacement, m the mass, c the damping coefficient and k the linear stiffness. β
represents the nonlinear stiffness.

When it comes to SDOF linear systems with low damping, the peak occurs at approximately
the undamped natural frequency ωn =

√
k/m. However, when nonlinear forces are present,

such as βx3, the undamped natural frequency changes as the oscillation amplitude increases.
This modified undamped natural frequency is given by ωn =

√
keq/m where the equivalent

stiffness is keq = k + βx2. If β > 0, indicating a positive nonlinear coefficient, the undamped
natural frequency shifts towards the right as the equivalent stiffness increases. In this case, the
oscillator exhibits the hardening phenomenon. Conversely, if β < 0, the system becomes less
stiff as the amplitude increases, causing the resonance peak to tilt to the left. In this scenario,
the oscillator shows the softening phenomenon.

4 THE ARC-LENGTH METHOD

The conventional algorithm for determining frequency response curves consists in solving
the system equations in the frequency domain at a specific excitation frequency. Once the
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solution is computed, the excitation frequency is incremented, and the process is repeated until
the entire frequency range of interest is covered. As seen in Figure 1, this method may prove
unsuccessful when the oscillator exhibits the hardening or softening phenomena because, at
some frequencies, at least three solution points are possible.

The arc-length method is a continuation algorithm that introduces an additional constraint
equation to accurately determine curves with inflection points and instability zones. This con-
straint equation may take the form of a circle or ellipse for one-dimensional problems, sphere,
cylinder or ellipsoid for two-dimensional problems, or hypersphere, hypercylinder or hyperel-
lipsoid for problems with more than two dimensions.

|X|

ωω(k+1)

|X|

ω

p(k)

p(k+1)

p(k−1)

ω(k)

p(k)

p(k+1)

p(k+1)

p(k+1)

constraint

Figure 2: Comparison between a conventional algorythm (left) and the arc-length method to determine nonlinear
frequency response curves

Figure 2 illustrates the difference between determining the frequency response curve simply
by incrementing the excitation frequency versus applying the arc-length method. On the left,
the converged solution point is denoted as p(k) at frequency ω(k), and the next solution to be
determined is at ω(k+1). However, at this frequency, there exist three solution points. This
problem can be overcome by adding the constraint equation of the arc-length method. With the
constraint equation centered on the last converged solution point p(k), the next solution point
p(k+1) can be correctly determined.

One drawback of the method is that the constraint equation intercepts the solution curve at
least at two points. The arc-length method is an iterative algorithm divided into two phases: the
first one, the predictor procedure, provides the initial approximation of the next solution point,
determining the general direction of the next solution. If the solution direction is not chosen
accurately, the algorithm may compute an already calculated solution point p(k−1). There are
various criteria to determine the appropriate direction as seen in [13]. In this case, using the sign
of the determinant of the matrix Kt proved effective for all cases considered in this paper, where
Kt plays the same role as the tangent stiffness matrix in nonlinear static structural analysis. The
second phase of the method is the corrector procedure, where the algorithm iterates the solution
until convergence is achieved. When more than two points intercept the curve, it is necessary
to decrease the arc-length radius to prevent the algorithm from failing.
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5 NUMERICAL TESTS

In this section, four examples of nonlinear oscillators were analyzed. The first example is a
Duffing oscillator with cubic stiffness only. The second example is a Helmholtz oscillator with
quadratic stiffness. The final two examples exhibit both cubic and quadratic springs.

The high-order frequency response H
[s]
kl is defined as the ratio of s-th harmonic of the com-

plex displacement amplitude of the k-th degree-of-freedom (DOF), X [s]
k , and the complex ex-

citation amplitude apllied on the l-th DOF, Fl:

H
[s]
kl =

X
[s]
k

Fl

. (16)

The time response of the s-th harmonic of the k-th DOF is x[s]
k :

x
[s]
k =

Xk
[s]

2
eisωt +

Xk
[−s]

2
e−isωt. (17)

5.1 The Duffing oscillator

The first numerical test consists in a single-degree-of-fredom (SDOF) Duffing oscillator.
The equation of motion is given by Equation (15). Table 1 shows the physical parameters
considered.

Table 1: Physical parameters of the Duffing oscillator

DOF
m
(kg)

c
(Ns/m)

k
(N/m)

β
(N/m3)

F
(N)

1 2 1 100 20 100

Figure 3: Frequency response curves for the Duffing oscillator

Figure 3a displays the first-order frequency response curve H
[1]
11 in two different scenarios:

in the first one, only the fundamental harmonic is considered (h = 1) while in the second, ten
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harmonics are considered in the system of equations (h = 10). In this case, considering multiple
harmonics has shown little difference compared to the first-order analysis. Figure 3b shows the
high-order frequency response curves for h = 10, confirming Krack [10], that when it comes
to the Duffing oscillator, the fundamental harmonic prevails over the high-order response. It
is important to note that, in this case, the even frequency responses H

[2]
11 , H [4]

11 , etc. were not
significant, indicating that only the odd frequency responses are relevant.

5.2 The Helmholtz oscillator

The second numerical test consists in an SDOF Helmholtz oscillator. The equation of motion
is given by Equation (18) with α as the quadratic stiffness:

mẍ+ cẋ+ kx+ αx2 =
F

2
eiωt +

F ∗

2
e−iωt. (18)

Table 2 shows the physical parameters considered.

Table 2: Physical parameters of the Helmholtz oscillator

DOF
m
(kg)

c
(Ns/m)

k
(N/m)

α
(N/m2)

F
(N)

1 1 0.3 100 1.5 100

Figure 4: Frequency response curves for the Helmholtz oscillator

Figure 4a displays the first-order frequency response curve H
[1]
11 in three different scenar-

ios: in the first one, only the fundamental harmonic is considered (h = 1) without the static
diplacement x0. In the second, h = 2, two harmonics along with the static displacement, x0, are
considered, and finally, ten harmonics plus the static displacement are considered. In this case,
considering multiple harmonics has shown great difference compared to the first-order analysis.
The first-order frequency response is entirely different when only the fundamental harmonic is
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taken into account. Figure 4b illustrates the high-order frequency response curves for h = 10.
It is crucial to note that not only does considering multiple harmonics drastically change the
fundamental harmonic, but at certain frequencies, the high-order harmonics have an extremely
impactful effect. Figure 5 displays the time domain response of the system at ω = 5.0 rad/s.

Figure 5: Time domain response at ω = 5.0 rad/s

5.3 The Duffing-Helmholtz oscillator

The third numerical test consists in an SDOF Duffing-Helmholtz oscillator with physical
parameters shown in Table 3.

Table 3: Physical parameters of the SDOF Duffing-Helmholtz oscillator

DOF
m
(kg)

c
(Ns/m)

k
(N/m)

α
(N/m2)

β
(N/m3)

F
(N)

1 2 1 1 800 360 20 900

Figure 6: Frequency response curves for the SDOF Duffing-Helmholtz oscillator
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Figure 6a displays the first-order frequency response curve H
[1]
11 in two different scenarios:

in the first one, three harmonic are considered, in the second ten harmonics are considered.
When considering three or fewer harmonics the algoryhtm has failed to correctly compute the
frequency response curves. Only when six or more harmonics where considered the algorythm
was capable of correctly compute the nonlinear forces. Figure 6b illustrates the high-order
frequency response curves for h = 10. Figure 7 displays the time domain response of the
system at ω = 9.3 rad/s.

Figure 7: Time domain response at ω = 9.3 rad/s

The last numerical test consists in a 3DOF Duffing-Helmholtz oscillator with physical pa-
rameters shown in Table 4 and according to Figure 8.

Table 4: Physical parameters of the SDOF Duffing-Helmholtz oscillator

DOF
m
(kg)

c
(Ns/m)

k
(N/m)

α
(N/m2)

β
(N/m3)

F
(N)

1 2 0.40 4 000 200 4.20 1 520
2 1 0.30 3 000 150 5.46 0
3 1.8 0.07 2 800 175 6.30 0

x1

fe1
c1

k1

α1

m1

x2

fe2
c2

k2

α2

m2

x3

fe3
c3

k3

α3

m3

β1 β2 β3

Figure 8: The 3DOF Duffing-Helmholtz oscillator

10



Lucas P. Tanabe and Alberto L. Serpa

Similarly to the SDOF system, Figure 9a displays an inaccurate frequency response curve
when only three harmonics were considered. The algorythm successfully determined the fre-
quency response curves for six or more harmonics. Figure 9b illustrates the high-order fre-
quency response curves for h = 10.

Figure 9: Frequency response curves for the 3DOF Duffing-Helmholtz oscillator

6 CONCLUSIONS

This paper aimed to determine the high-order frequency response curves of nonlinear os-
cillators with cubic and/or quadratic springs. The arc-length method was applied and proved
effective in overcoming instability zones and critical points. The high-order harmonic balance
method accurately described responses at frequencies other than the excitation one.

The Duffin oscillator with only cubic stiffness proved to be well represented when only the
first-order harmonic balance was implemented, showing insignificant results at higher frequen-
cies. However, with the introduction of quadratic stiffness, not only did the determination of
the first-frequency response rely on the higher-order harmonics, but at certain frequencies, the
second and third-order harmonics had a meaningful impact on the system response.
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