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AsstracT: A one-dimensional mathematical model based on finite-
strain theory is developed to solve the problem of seepage-induced
consolidation in sedimented slurries or very soft clays. The direct
solution employs known or assumed material property relationships to
determine the final thickness of a soft sediment subjected to a constant
piezometric head. It is useful for predicting the capacity of a disposal
area and the time-dependent improvement in material properties. Alter-
natively, the inverse solution utilizes final settlement and steady-state
flow data from laboratory or field tests to deduce permeability and
compressibility relationships for soft sediments. This approach is espe-
cially helpful in the case of permeability determinations because it
avoids some of the major problems associated with permeability testing
of such materials. The resulting model shows that the coefficient of
permeability influences both the time to reach the steady-state condition
and the nature of the steady-state condition itself. An illustrative
example is presented wherein data from a series of tests on a kaolinite
slurry are used to establish material property relationships that are then
used to predict the response of other tests on the same soil under
different conditions. '

INTRODUCTION

The disposal of waste slurries from mining operations and various
industrial processes presents an ever-increasing number of challenging
problems to the geotechnical engineering profession. The primary issues
center around predicting the time-dependent capacity of a given disposal
area and the time-rate of improvement of material properties for reclama-
tion purposes. Intrinsic to both issues is the process of consolidation and
the associated material changes (e.g., decrease in volume and increase in
shear strength) that result. Presented herein is a one-dimensional mathe-
matical model that may be solved: (1) Directly to obtain the final or
steady-state thickness of a soft sediment subjected to a constant piezomet-
ric head; or (2) in an inverse fashion to deduce permeability and compress-
ibility relationships for a soft sediment. This latter capability is extremely
useful because it offers a relatively simple method for determining material
relationships that have previously been rather elusive.
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PHysicaL PERSPECTIVE

Briefly stated, the physical problem involves pumping a waste slurry
(solids content is usually on the order of 10-20%) into a diked containment
area, where the solids are allowed to settle, and the unevaporated water is
either decanted or allowed to seep downward into an underlying drainage
blanket. The process of sedimentation prevails at a given point in the
deposit until the solid particles come into contact with each other, at which
time the process of consolidation is initiated and governs the subsequent
behavior of the deposit. It is clear, of course, that these processes
(sedimentation and consolidation) are in different stages of development
throughout the deposit at any point in time, and the deposition is therefore
heterogeneous in the vertical direction. However, for mathematical trac-
tability, it is often assumed that there is some point in time when
sedimentation is complete everywhere in the deposit and self-weight
and/or seepage-induced consolidation has not yet started; this assumption
will be made in this study. ;

Due to the loose nature of the sedimented deposit, the ensuing vertical
settlements are usually extremely large and beyond the range that can be
handled by classical small-strain consolidation theories; accordingly, fi-
nite-deformation models must be developed. The next section contains a
brief background of finite-strain theory and a derivation of the applicable
steady-state seepage-induced consolidation equations, together with per-
tinent boundary conditions (constant piezometric head and fully drained
case). This is followed by a statement of the direct problem and a
description of a numerical algorithm that is used to compute the solution to
the governing field equation, given the initial and boundary conditions and
the material property relationships. Next is an explanation of the inverse
problem, whereby the solution to the direct problem and appropriate
experimental data (final height of deposit and seepage velocity) are utilized
to deduce the constants in the compressibility and permeability relation-
ships.

THEORETICAL CONSIDERATIONS

When the results of seepage-induced consolidation are analyzed, the
complete time-dependent problem is usually solved for every boundary
condition. This requires the numerical solution of several nonlinear partial
differential equations which takes a considerable amount of computer time
and introduces a number of truncation errors. It is suggested here that in
many cases it is sufficient to study only the steady-state consolidation
conditions. The theory presented here is patterned after the early work by
Gibson et al. (1967), adaptations and modifications of which have been
described by Monte and Krizek (1976), Somogyi (1979), Schiffman (1980),
Gibson et al. (1981), Krizek and Somogyi (1984), and others.

One-Dimensional Initial Boundary Value Problem

Two standard formulations for the consolidation equation are employed
in nonlinear finite-strain theory, depending upon whether the void ratio or
the pore pressure is selected as the unknown in the problem. The approach
adopted here is based on the large-strain formulation originally developed
by Gibson et al. (1967), and excess (i.e., greater than hydrostatic)



pore-water pressure is used as the dependent variable. Appropriate
manipulation of the basic equations that need to be satisfied (namely,
continuity of particle flow, continuity of fluid flow, equilibrium, and
Darcy’s law) yield the following expression describing the one-dimensional
consolidation process:
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in which the material coordinate (height of solids) z is given by

where g = the initial vertical (Lagrangian) coordinate; ¢ = the void ratio;
¢y = the initial void ratio; ¢ = time; k = the coefficient of permeability; v,,
= the unit weight of water; and u = the excess pore-water pressure; the
surface of the solids corresponds to z = 0.

The solution of Eq. 1 requires the specification of appropriate boundary
conditions and relationships between the void ratio and the effective stress
and between the coefficient of permeability and the void ratio. Several
specific types of equations have been proposed for these two relationships
[see review by Krizek and Somogyi (1984)], but the method presented here
is independent of their explicit form. For illustrative purposes, the follow-
ing power relationships employed by Somogyi (1979) are used:

where ¢ = the effective stress; and A, B, C, and D = empirical constants,
typical values for which have been suggested by Carrier et al. (1983). It
should be noted that B is negative, but usually greater than —0.5, and D is
greater than 2.

If the soil deposit remains submerged, the effective stress is related to
the excess pore water pressure by

@) =(Gs— Uz —u(@) +60) ... e (5)

where G, = the specific gravity of the solids; and (G, — 1) v,z = the
buoyant stress at any depth. Although the effective stress at the surface of
the solids is usually assumed to be zero, this assumption, when utilized in
Eq. 3, implies that the void ratio at the surface is infinity. To avoid this
problem without changing the compressibility relationship, 5(0) is chosen
equal to (ey/A)"2 ; the validity of this assumption will be discussed later.
Note, however, that Eq. 5 indicates an upper bound for the excess
pore-water pressure, namely, the effective stress at the surface of the
solids plus both the effective and buoyant stress at the depth considered.

Two problems will be studied, both of which have the following common
boundary condition at the surface of the solids:
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FIG. 1. Initial Conditions: (a) Fully Drained Case; (b) Piezometric Head Case

The problems are distinguished by their boundary condition at the bottom
(i.e., z = zy, where z, = the depth of the deposit in material coordinates),
which are respectively given by

i(zg) =0 (fully drained) . e e e (Ta)

u(zg) = up (piezometrichead) ................. ... ... .... (7b)

where u, = the difference between the lower and upper water tables. Fig.
1 shows these two cases at 1 = 0. Thus, the two boundary value problems
considered here are defined by Egs. 1-7, with either Eq. 7a or Eq. 7b
designating the condition at the lower boundary.

Scaled Steady-State Problems
The dimensionless variables used in this analysis are defined by
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where u, = (y, — v.) 2o (i-e., the buoyant stress at the bottom of the
deposit); and F,, = the effective stress at the surface &(0) divided by u, ;
note that F + F, is the dimensionless effective stress and that Eq. 8¢ comes
from Eq. 5. The incorporation of these dimensionless variables into Eqs.
1-7 gives
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UL)=Up .o e (11b)

where Uy = uy/u, and T = w'~Pr,73IBl/Cu, . The steady-state problem is
obtained by setting the right-hand side of Eq. 9 equal to zero and
integrating with respect to Z from zero to one; the result thus obtained can
be simplified to

Uz
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where
HF) = [1 + w(F + Fp)P]
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U, = dU/3Z, and ¢, = an unknown constant of integration, Based on the
limits for B and D, the limit of H(F) is zero as F goes to —Fy:

The two different problems corresponding to one or the other of Egs. 11
will now be considered. The fully drained case (Eq. 11a) has only the
trivial solution; this is seen by first combining Eqgs. 8¢ and 12 to obtain

Fr+coHF) =1 o e e e i (14a)
The boundary conditions

FlO) =0 (14b)
and

F(1) =1 . (14¢)

are obtained by inserting Eqgs. 10 and 114 into Eq. 8c. Integrating Eq. 14a
yields

F(1) — F(0) + ¢, f 1 HE)AZ =1 oo (14d)

0

Inserting the boundary conditions given by Eq. 145 into Eq. 14d and noting
that H(F) is positive between zero and one proves that c, is zero. Referring
to Eq. 12, it follows that U, is zero and U is a constant, which must be zero
according to Eq. 11a. Even if the bottom boundary were undrained [i.e.,
U,(1) = 0], the same trivial solution would be found. Both of these
situations correspond to self-weight consolidation (with single and double
drainage), and this solution will be used to compute the final height of the
deposit.

The second and most interesting case, which corresponds to the seepage
problem, requires the solution of Eq. 14a with the boundary conditions



which are obtained by inserting Eqs. 10 and 115 into Eq. 8c. Since Eq. 14a
is a first-order differential equation and Eq. 15 gives two boundary
conditions, it may seem that the existence of a solution is not guaranteed;
however, the problem is not ‘‘ill-posed’’ because ¢, is unknown. This
problem is solved in the following sequence. First, Eq. 14 is solved with
the first-condition of Eq. 15 to formulate a new problem:

(bz + C()H(d)) = e e e e e ' (160)
B0, C0) = 0 v et (16b)

For every value of ¢;, a solution ¢ to Eqs. 16 may be found. However,
there is only one value, c¢&, that will imply F(Z) = &(Z, c{), where F(Z) is
the solution sought. Requiring &(Z, ¢,) to satisfy the second part of Eq. 15
yields the following highly nonlinear equation for determining c:

Fled=d(, ) F Up=1=0 « oot e (17

If ¢ is the root of this equation, then F(Z) = ®(Z, ¢{) is the solution to Eq.
14a. One standard technique for finding the root of an equation such as Eq.
17 is Newton’s method:
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where ¢g = the initial estimate; and f”(c,) = the derivative of f with respect
to ¢g. From Eq. 17 we get

¢*zf'(c0)=ﬂ’% e e (19)
and, by differentiating Eqs. 16 with respect to ¢, , it follows that * satisfies
PE+cH' (@) D*= —H(D) ...t . (20a)
D0, Co) =0 o e et e e .. (20b)

Every iteration in ¢, requires the solution of Eqgs. 16 and 20, but both
problems can be easily handled by using the Runge-Kutta method in a
simple and efficient numerical code.

Direct PrRoOBLEM

Solving the direct problem for steady-state seepage consolidation re-
quires as input the initial height of the homogeneous slurry, the initial void
ratio, the unit weights of water and solids, the compressibility and
permeability constants, and the piezometric head. For Newton’s method
to converge, a ‘‘good”’ initial estimate for ¢, is needed. Since it was proven
that ¢ = 0 for the fully draihed case, this known solution is used as a
starting point, and at every new increment for the boundary condition U, ,
the initial estimate for ¢§ is approximated by the solution found in the
preceding increment. In the examples studied, increments of one in U,
required less than four Newton iterations to converge with 107* accuracy.
This incremental procedure naturally follows that employed in a typical



laboratory seepage consolidation test, wherein the sample is first consol-
idated under its own weight (U, = 0), and then incrementally increasing
water heads are applied.

After Eq. 18 converges for the desired boundary condition, U(Z), F(Z),
and ¢, are computed. Thus, the variations with depth of excess pore-water
pressure, effective stress, void ratio, and permeability are known, and the
final height of the solids is computed from

which, by substituting the compressibility relation given by Eq. 3 and the
dimensionless variables defined by Egs. 8, becomes

1
£0 = 2 f [+ wWE+FOBIAZ oo 22)
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The flow rate through the deposit is related to ¢, and may be deduced by
combining Darcy’s law

k ou

q= m 5} ....................................... (23)
and the dimensionless variables given by Eqs. 8 to obtain
l U.
D {p VA (24)

O o 3 o e e e e e e
17 Nz HEF)
Finally, with the use of Eq. 12 and the definition of u, , Eq. 23 becomes
g=colGs— 1) CP o e (25)

This method was used to analyze the behavior of a kaolinite slurry with
an initial height of 31.5 c¢m, an initial void ratio of 12.35, and compress-
ibility and permeability parameters as follows: compressibility A = 27 (¢ in
Pa) and B = —0.29; permeability C = 2 x 107% cm/s and D = 4. The results
plotted in Fig. 2 show the void ratio, permeability, and effective stress as
a function of Eulerian depth for the case of no induced seepage and the
case of a constant piezometric head loss of —10 cm of water across the
sample. At the surface of the solids, neither the permeability constant nor
the void ratio vary with u, because of the effective stress boundary
condition. At the bottom of the sample, however, both parameters
decrease with decreasing piezometric head loss. Fig. 2(c¢) shows, as
expected, that the variation of effective stress with depth is not linear for
u, different from zero.

To check the validity of the hypothesis that & at the surface of the solids,
&(0), can be approximated by (e,/A)"? , 5(0) was divided by an arbitrary
factor as high as five. Variations of less than 5% were determined for the
final height, flow rate, and distributions of effective stress and void ratio
with depth. The influence on the coefficient of permeability was also less
than 5% in most of the sample. However, due to the extremely high
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FIG. 2. Variations of Permeability, Void Ratio, and Vertical Effective Stress with
Depth for Two Piezometric Heads

variations of permeability with depth in the upper zone of the deposit [see
Fig. 2(a)], the relative error was greater, even though the distance between
the respective response curves is small.

Fig. 3 shows the variations of the final height and Darcy’s velomty with
the piezometric head. The classical cases of a singly and doubly drained
deposit correspond to 1, = 0. When water flows downward (i.e., 1, is
negative), the induced seepage stresses are added to the buoyant self-
weight stresses to decrease the final height. However, when the flow is
upward, the seepage stresses decrease the buoyant self-weight stress,
which, in turn, increases the final height. Note that, if u, is equal to the
buoyant self-weight stress at the bottom (i.e., U, = 1), the final height will
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be equal to the initial height because the upward seepage stresses will
equal the downward buoyant self-weight stresses throughout the deposit.
Thus, the effective stress everywhere will be equal to the effective stress at
the surface, and no seepage-induced consolidation will occur.. If g is
increased beyond this value, a ‘‘quick’” condition will result, the deposit
will loosen (i.e., decrease in density) physically, and an asymptotically
unbounded mathematical solution will result (i.e., the height of the deposit
will go to infinity as ug approaches the limit of u,,,,). This limiting value
for u, is defined by Eq. 5 as the value that makes the effective stress equal
to zero, It is given by

€ /B
tomas = (Gs = Dyzo+ | )+ (26)
or
UOmax =1+ F() ........................................ (27)

There are admittedly reasonable doubts regarding the accuracy of this
model for values of uy approaching ug,,,. . since the concept of effective
stress becomes less and less valid. No solution exists at this limit because
of the inconsistency associated with the fact that U, = 0 from Egs. 12 and
13 and the boundary conditions are U(0) = 0[see Eq. 10] and U(1) = U,,,,4,
(see Egs. 11b and 27) with U,,,,,, different from zero.

INVERSE PROBLEM

Of all the material properties affecting the consolidation process, per-
meability is perhaps the most important; unfortunately, it is also one of the
most difficult properties to quantify (Pane et al. 1983; Carrier et al. 1983)
for soft or sedimented clays due in large measure to the consolidation
induced by seepage forces. The technique described here offers a proce-
dure for utilizing experimental data and steady-state results to determine
the permeability relationship for a soft deposit undergoing seepage-
induced consolidation.

Eqgs. 8c, 13, 14, and 22 show that the final height of the deposit is a
function of the compressibility parameters A and B, the permeability
parameter D, and other material and initial conditions, but it is not
dependent on C; this may be expressed as

0= (A, B, D, ... e e (28)
and Eq. 25 can be rewritten as
G=Cg(A, B, D, ...} .o e 29

where the dots represent initial and boundary conditions or material
properties not related to the permeability or compressibility equations.
The dependence of the final height on the permeability parameter D is
suggested mathematically by the influence of D on F (associated with the
effective stress) through Eq. 13 and the definition of H(F). Physically, this
dependence can be explained by the following argument. Although the
final void ratio throughout the deposit is usually considered to be indepen-



dent of the permeability and a function of only the excess pore-water
pressure at the bottom, this situation does not exist in the case of
secpage-induced consolidation, except at the bottom of the deposit,
because an increase in D enhances the tendency for a ‘‘cake’’ to form at
the bottom and, consequently, for the hydraulic gradient in this zone to
increase. This, in turn, changes the hydraulic gradient and therefore the
resulting void ratio in the rest of the deposit. Thus, sediments with a large
value of D will have, at a given material coordinate (except very near the
bottom where the cake is formed), a higher void ratio than materials with
a small value of D; this is due to the lower gradient and therefore lower
seepage forces throughout most of the deposit. The opposite situation
would prevail for upward flow (i.e., the final thickness decreases as D
increases).

In the case of self-weight consolidation, the integration of Eq. 22 is
straightforward, because, as shown earlier, F is equal to Z and indepen-
dent of D. Replacing F by Z in Eq. 21 and integrating gives

( (1+ F)Ptl—FE+1
€0 = o 1+p, B+1 ....................... (30)

which shows that the final height is independent of the permeability. Once
self-weight consolidation is attained, Eq. 30 gives an approximate relation
between the compressibility parameters A and B. The dimensionless
effective stress at the surface of the solids F, may be taken equal to zero
or between 2-6% if the approximation that ¢(0) is a function of the initial
void ratio is used. Egs. 28 and 29 suggest that an inverse problem can be
posed, whereby seepage-induced consolidation data, &, and g, can be used
to back-calculate the coefficients in the permeability and compressibility
relations; C can be deduced from Eq. 29 once A, B, and D are known.

The proposed procedure for deducing the material coefficients is as
follows. Let U be the given piezometric head (or excess pore-water
pressure) at the bottom of the sample in the ith experiment, let &f; be the
measured final height, and let g, be the final height obtained from Eq. 22
and the solution to the steady-state problem in the preceding section using
U}, as the boundary condition and assumed values of A, B, and D. If the
error function is defined as

where N = the number of tests, we have

E=EA, B.D, ..) o o (32)

and the scheme is to minimize E by choosing approximate values for A, B,
and D. However, as clearly shown in Fig. 4, the final height of the deposit
is not a unique function of the compressibility parameters A and B.
Therefore, any mathematical minimization procedure for E is ill-condi-
tioned unless more information is given to distinguish between the different
solutions, Knowing the void ratio at the bottom of the sample when
steady-state conditions are attained would resolve this problem, since the
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effective stress at the bottom is defined by the pore-water pressure
boundary condition, and Eq. 3 gives another relationship between A and B.

The primary concern here is to enhance the accuracy in determining the
permeability constants C and D, and this can best be accomplished by
fixing one or both of the compressibility constants A and B, since they are
better known. If reported values for both A and B are assumed (Carrier et
al. 1983), the error function depends only on the permeability constant D,
Once D is chosen to minimize E, C can be obtained from Eq. 29. The
scheme is then to use the ith experimental value for £§; and estimate a value
for D to compute the final height e,; from Eq. 21 and the solution to the
time-independent problem, Once this is done for each test, and the data
incorporated into Eq. 31, D is incremented by a standard optimization
routine to minimize E. This technique can also be used with no computa-
tional difficulty to obtain values for A, D, and C if only B is fixed, and this
approach is physically appealing because B is almost constant for clays
sedimented from a slurry (Carrier et al. 1983; Carrier and Beckman 1984).

To illustrate an application of this method, data reported by Belhomme
(1985) were used to determine A, C, and D; B was chosen equal to —0.286,
as recommended by Carrier et al. (1983). Belhomme (1985) conducted nine
seepage-induced consolidation tests on kaolinite slurries, using all possible
combinations of three initial void ratios (12.35, 16.47, and 24.7) and three
initial thicknesses of slurry (31.5 cm, 21.0 ¢m, and 10.5 cm). Each sample
was consolidated, first under its self-weight, and then under an incremen-
tally increasing piezometric head. After steady-state conditions were
essentially reached under a given piezometric head, the head was in-
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creased by 2.5 cm of water and held constant until steady-state was again
attained; this procedure was repeated until the head was 10 cm of water or
until side flow was obvious. The reported experimental data for the final
height and flow rate are plotted in Fig. 5. ‘

Only data from the most extreme test (initial void ratio at 12.35 and
initial thickness of 31.5 cm) were used as input for the inverse problem,
and A, C, and D were computed. These parameters, as listed previously,
were then used in the direct scheme to predict the response for the other
eight tests. The results are shown as solid curves in Fig. 5. The relative and
absolute errors in the final height are 4% and 0.41 cm, respectively,
whereas the experimental data are good to within +0.10 cm. The relative
and absolute errors for the flow rate are 28% and 0.48 x 107° cm/s,
respectively. In a normal engineering situation, the inverse problem would
have been solved for all of the tests, and the average values for A, C, and
D would be used. The values obtained here for A, C, and D are similar to
those determined by Belhomme (1985); in the latter case the settlement-
time plots were curve-fit by eye, and the incomplete time-dependent
problem was solved numerically for each trial.




CoNCLUSIONS

Based on the results described in this study of seepage-induced consol-
idation of a sedimented slurry, the following conclusions can be advanced:

1. The steady-state solution is most useful when the final conditions are
of primary interest; the proposed numerical computation scheme is more
efficient than the time-step analysis normally used in such cases.

2. In seepage-induced consolidation, the coefficient of permeability
influences not only the required time for reaching a steady-state condition,
but also the steady-state itself (i.e., the final height of the consolidated
deposit depends on the variation of permeability with void ratio).

3. The compressibility and permeability parameters (for the empirical
relations studied here) can be back-calculated from the results of seepage-
induced consolidation tests and a measure of the final void ratio at the
bottom of the solids; this provides a very important means for quantifying
material property relationships that have been elusive to date.

4. From the point of view of permeability testing, this method accounts
for both seepage and consolidation; high gradients can be avoided, thereby
reducing deviations from Darcy’s law and some potential testing problems
(such as side flow). Since measurements of the height and flow rate are
required only during the final stages of consolidation, the test procedure is
simple, and sophisticated measuring equipment is not needed. Further-
more, the problem of preparing ‘‘identical’’ specimens is avoided because
a single sample can be tested under increasing piezometric heads.
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