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Abstract.  
Segregation is likely to occur during blast furnace charging since the iron ore mixture contains 
particles differing simultaneously in size, shape and density. However, predicting how the 
mixture components will be distributed is particularly difficult due to the combined effect of 
these differences. Although the Discrete Element Method has been used extensively to gain 
understanding of segregation during blast furnace charging, most research has focused on 
simple mixtures in which particles differ only in size. In this work, we investigate how size, 
shape and density differences simultaneously affect mixture segregation in radial and vertical 
directions of a charged layer using the response surface methodology. We found that size and 
density difference between the mixture components significantly affect both radial and vertical 
segregation while shape differences, especially the aspect ratio, are relatively less important.  
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1 INTRODUCTION 
A blast furnace is a counter-current reactor which produces liquid iron through a series of 
chemical reactions occurring between ascending reduction gases and a descending material bed 
which comprises alternating layers of coke and an ore mixture. The layered arrangement is 
achieved by sequentially charging the materials using a series of bulk handling equipment from 
the stock house until the rotating chute at the furnace top. It is well-known that segregation 
occurs during transportation through the charging apparatus, and an uneven distribution of the 
materials within the layers at the furnace top is therefore anticipated [1]. Layer segregation 
occurs in both radial and vertical directions, both of which can have a detrimental effect on the 
furnace permeability [1] and, consequently, the furnace efficiency.  

Unlike the coke layers, the ore layers consist of particles differing simultaneously in 
size, shape and density. The complex interplay of these distinct property differences makes it 
difficult to predict the final ore layer homogeneity. For many years, the Discrete Element 
Method (DEM) has been used extensively to gain understanding of the segregation mechanisms 
during charging and the resulting material distribution [1]. However, most research in this 
regard is mostly focused on size segregation [2,3,4,5,6,7] while the effect of density difference 
has hardly been studied [8], and the effect of particle shape has not yet been considered. While 
a few studies have focused on mixtures of particles differing in both size and density [9,10,11], 
a comprehensive analysis involving size, density, and shape is currently lacking in the blast 
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furnace context. Moreover, segregation is typically analysed only in radial direction, so an 
analysis involving different layer directions is required.  

In this work, we investigate how differences in size, shape and density affect segregation 
during binary mixture charging. We consider segregation in radial and vertical directions of the 
charged layer and determine which factors have the most significant effect on both responses 
using the response surface methodology (RSM). The novelty of this work is that, for the first 
time, we investigate the importance of all three material properties as well as their interactions 
on mixture segregation in multiple directions.  

 
2 DEFINITION OF BINARY MXTURE PARAMETERS 
Consider a mixture of two components (referred to as “particle type-1” and “particle type-2”) 
differing simultaneously in size, density and shape. Given that both components are mono-
sized, we define the size ratio of the mixture as 

𝑑̃𝑑 =
𝑑𝑑2
𝑑𝑑1

 
(1) 

where 𝑑𝑑1 and 𝑑𝑑2 are the (equivalent) spherical diameters of particle type-1 and type-2, 
respectively. Similarly, we define the density ratio of the components as 

𝜌𝜌� =
𝜌𝜌2
𝜌𝜌1

 (2) 

Unlike particle size and density, particle shape cannot be defined by a single parameter. In order 
to systematically vary the particle shape, we use super-quadrics which are implicitly defined by 
[12] 
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where 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 are the semi-major axis lengths along 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 directions, respectively, 
and 𝑒𝑒1 and 𝑒𝑒2 determine the particle roundness and sharpness of the particle edges. For 
simplicity, we consider only super-quadrics with 𝐴𝐴 = 𝐵𝐵 and 𝑒𝑒1 = 𝑒𝑒2 = 𝑒𝑒. The aspect ratio (𝐴𝐴𝐴𝐴) 
is then defined as  

𝐴𝐴𝐴𝐴 =
𝐴𝐴
𝐶𝐶

=
𝐵𝐵
𝐶𝐶

 (4) 

Given these parameters, the difference in shape between particle type-1 and type-2 is captured 
by 

𝐴𝐴𝐴𝐴� =
𝐴𝐴𝐴𝐴2
𝐴𝐴𝐴𝐴1

 (5) 

and 

𝑒̃𝑒 =
𝑒𝑒2
𝑒𝑒1

 (6) 
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3 METHODS 
DEM is used to simulate charging of binary mixtures of particles differing simultaneously in 
size, density and shape to a blast furnace with the same dimensions as the real industrial 
application. Next, RSM is used to investigate how 𝑑̃𝑑, 𝜌𝜌�, 𝐴𝐴𝐴𝐴�  and 𝑒̃𝑒 (the factors) affect the degree 
of segregation in terms of a segregation index (the response).  

3.1 DEM Simulation 
The basic principle of DEM can be expressed as follows: if all the forces and torques acting on 
a particle are known at each time step of the simulation, then its trajectory can be predicted in 
time using Newton’s second law through numerical integration. Given the coarse, cohesionless 
nature of the raw materials during furnace charging, the total force acting on each particle is the 
sum of the gravitational force and interaction forces arising from the particle’s contacts with 
surrounding objects. In this work, the Hertz-Mindlin no-slip contact model [13] is used to 
quantify the interaction forces. The material properties and contact model parameters for the 
binary mixture are summarized in Table 1. Since 𝑑̃𝑑, 𝜌𝜌�, 𝐴𝐴𝐴𝐴�  and 𝑒̃𝑒 are the factors in this 
investigation, the parameters of particle type-1 were kept constant and particle-type 2 was 
created based on the values of 𝑑̃𝑑, 𝜌𝜌�, 𝐴𝐴𝐴𝐴�  and 𝑒̃𝑒 in each simulation. The values of 𝐴𝐴𝐴𝐴�  and 𝑒̃𝑒 
outlined in experimental matrix (cf. Table 4) reveal that there were 9 distinct non-spherical 
shapes in this investigation, each in different sizes. To create these non-spherical particles with 
the required sizes in EDEM, we first generated shape templates (.stl files) in Matlab satisfying 
the values of 𝑑̃𝑑, 𝜌𝜌�, 𝐴𝐴𝐴𝐴�  and 𝑒̃𝑒 and subsequently fitted spheres to the templates in EDEM to form 
non-spherical clumps. The nine different shapes and fitted clumps are shown in Table 2.  
 
Table 1. Model parameters used in this work. Abbreviations: P-P = particle-particle, P-W = particle-wall.  
 

Parameter (symbol)  Particle-type 1  Particle-type 2 
(Equivalent) spherical diameter (𝑑𝑑)  0.014 m  variable 
Aspect ratio (𝐴𝐴𝐴𝐴)  1  variable 
Roundness/sharpness parameter (𝑒𝑒)  1  variable 
Particle density (𝜌𝜌)  3015 kg/m3  variable 
Poisson’s ratio (𝜗𝜗)  0.25 
Young’s modulus (𝐸𝐸)  2.5×107 Pa 
Restitution coefficient (𝑒𝑒) P-P 0.30 
 P-W 0.30 
Static friction coefficient (𝜇𝜇𝑠𝑠) P-P 0.25 
 P-W 0.25 

 
Table 2. Shape templates and corresponding fitted clumps generated in EDEM. 
 

Run 1-4 Run 5-8 Run 9-12 Run 13-
16 

Run 17-20 
& Run 25 Run 21 Run 22 Run 23 Run 24 
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The software package Altair EDEM 2022.2 was used on the DelftBlue high-performance 
cluster [14] with a single GPU (NVIDIA Tesla V100S-PCIE-32GB) to run simulations using 
the described models. A simplified charging setup (cf. Figure 1a) with true furnace dimensions 
was used, where charging starts at the chute inlet rather than from the hoppers. Two overlapping 
dynamic factories were used to generate the materials at a specific mass flowrate and velocity 
which are representative of actual blast furnace operation. Starting with an empty container, the 
mixture is distributed in rings as the chute rotates from the furnace walls towards the centre 
according to the actual charging programme used at TATA Steel Europe. At the end of the 
simulation, only particles in the analysis domain (cf. Figure 1b) are used for segregation 
analyses.  
 

 

 

(a) (b) 
Figure 1: Illustration of (a) the simplified simulation setup showing the overlapping dynamic factories (blue) and 

virtual analysis domain (red); (b) screenshot of the material bed inside the virtual analysis domain. 
   

3.2 RSM experimental design 
Factors and levels 
The RSM is a statistical approach for determining the direct and interactive effects of process 
variables on the response parameters. Before applying RSM, it is necessary to choose an 
experimental design that will define which experiments should be carried out. In this work, we 
used RSM combined with a Central Composite Design (CCD) [15] to analyse the relationships 
between factors and responses. In the CCD, each variable is assigned five coded as −𝛼𝛼, −1, 0, 
+1 and +𝛼𝛼, where 𝛼𝛼 = 2 when using 4 factors. The factors and corresponding levels are 
summarized in Table 3.  
 
Table 3. Factors and levels used in the Central Composite Design.  
 

Parameter (Unit) Coded 
variable 

Range and levels 
-2 -1 0 1 2 

𝑑̃𝑑 (-) 𝑋𝑋1 1.4 1.7 2.0 2.3 2.6 
𝜌𝜌� (-) 𝑋𝑋2 0.3 0.4 0.5 0.6 0.7 
𝐴𝐴𝐴𝐴�  (-) 𝑋𝑋3 0.7 0.9 1.1 1.3 1.5 
𝑒̃𝑒 (-) 𝑋𝑋4 0.7 0.9 1.1 1.3 1.5 
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Responses 
At the end of each simulation, the positions and volumes of type-1 and type-2 particles within 
the 45 degree analysis domain were extracted and subsequently imported to Matlab for 
segregation analyses. As we are dealing with a binary mixture, we used a segregation index 
based on tracer distribution [16]. First, the analysis domain was divided into a number of sub-
domains (cells) and the mass fraction of particle type-1 (the tracer), 𝑥𝑥1, in each cell was 
recorded. The segregation index was then calculated as the relative standard deviation of 𝑥𝑥1: 

𝑆𝑆𝑆𝑆 =  �
∑ �𝑥𝑥1𝑖𝑖 − 𝑥𝑥1����

2𝑁𝑁
𝑖𝑖=1

𝑁𝑁 − 1
  (7) 

 
where 𝑁𝑁 is the number of sub-domains, 𝑥𝑥1��� is the average mass fraction of all cells, determined 
by 

𝑥𝑥1��� =
𝑥𝑥11 + ⋯+  𝑥𝑥1𝑁𝑁

𝑁𝑁
  (8) 

 
and 𝑥𝑥1𝑖𝑖  is the mass fraction of the tracer in the 𝑖𝑖-th cell determined by 

𝑥𝑥1𝑖𝑖 =
𝑚𝑚1
𝑖𝑖

�𝑚𝑚1
𝑖𝑖 + 𝑚𝑚2

𝑖𝑖 �
  (9) 

 
where 𝑚𝑚1

𝑖𝑖  and 𝑚𝑚2
𝑖𝑖  are the mass of type-1 and type-2 particles in bin 𝑖𝑖, respectively. We  

quantified segregation in radial and vertical directions by dividing the analysis domain into 
equal-volume cells in the corresponding direction (cf. Figure 2), and subsequently calculating 
the segregation index (denoted as 𝑆𝑆𝑆𝑆𝑟𝑟 and 𝑆𝑆𝑆𝑆𝑣𝑣 for radial and vertical segregation, respectively). 
The 𝑆𝑆𝐼𝐼 values can range from 0.0 to 1.0, where 0.0 represents a perfectly mixed state and 1.0 
represents a fully segregated state. 
 

 
Figure 2: Illustration of domain decomposition into three equal-volume cells in radial and vertical directions. 

 
Regression modelling and effects analysis 
After running all simulations from the experimental matrix and calculating the responses, we 
used RStudio [17] to establish suitable regression models for 𝑆𝑆𝑆𝑆𝑟𝑟 and 𝑆𝑆𝑆𝑆𝑣𝑣. Starting with a linear 
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model and sequentially adding second-order interactions, we determined the best fitting 
regression model using analysis of variance (ANOVA) of model coefficients. The ANOVA 
results were used to examine the importance of the factors and their interactions on 𝑆𝑆𝑆𝑆𝑟𝑟 and 𝑆𝑆𝑆𝑆𝑣𝑣 
and contour plots were used to interpret effects. 
 

4 RESULTS 

4.1 Establishing response surface models 
The results of the CCD are shown in Table 4 for radial and vertical segregation using 8 cells in 
radial direction and 4 cells in vertical direction. The reported 𝑆𝑆𝑆𝑆 values are the average of five 
replications for each run. The number of replications was selected by determining when the 
standard deviation of each run was below 10% of the average 𝑆𝑆𝑆𝑆 value.   
 
Table 4. Results of the CCD where the reported 𝑆𝑆𝑆𝑆-values are the average of three repetitions. 
 

Run Factors Responses 
𝑿𝑿𝟏𝟏 𝑿𝑿𝟐𝟐 𝑿𝑿𝟑𝟑 𝑿𝑿𝟒𝟒 𝑺𝑺𝑺𝑺𝒓𝒓 𝑺𝑺𝑺𝑺𝒗𝒗 

1 -1 -1 -1 -1 0.021334 0.15811 
2 +1 -1 -1 -1 0.027468 0.251526 
3 -1 +1 -1 -1 0.019612 0.120574 
4 +1 +1 -1 -1 0.026218 0.19901 
5 -1 -1 +1 -1 0.020991 0.142938 
6 +1 -1 +1 -1 0.027701 0.224824 
7 -1 +1 +1 -1 0.014171 0.10299 
8 +1 +1 +1 -1 0.021779 0.177688 
9 -1 -1 -1 +1 0.029163 0.164868 

10 +1 -1 -1 +1 0.037278 0.247862 
11 -1 +1 -1 +1 0.016518 0.125226 
12 +1 +1 -1 +1 0.019994 0.199684 
13 -1 -1 +1 +1 0.030447 0.159084 
14 +1 -1 +1 +1 0.036447 0.246568 
15 -1 +1 +1 +1 0.016275 0.118826 
16 +1 +1 +1 +1 0.019599 0.197216 
17 -2 0 0 0 0.019267 0.102463 
18 +2 0 0 0 0.027496 0.28185 
19 0 -2 0 0 0.047823 0.207434 
20 0 +2 0 0 0.024095 0.171552 
21 0 0 -2 0 0.021173 0.167346 
22 0 0 +2 0 0.020099 0.186633 
23 0 0 0 -2 0.021132 0.168997 
24 0 0 0 +2 0.026232 0.127473 
25 0 0 0 0 0.023669 0.201732 
26 0 0 0 0 0.024149 0.211928 

 
Table 5 shows that, initially, full quadratic polynomial models best fit the data of Table 4 since 
they yield the best combination of 𝑅𝑅2 and 𝑝𝑝-values. However, in both cases, the lack-of-fit 
value is below the recommended value. The insignificant terms of the full quadratic model were 
removed and, as shown in Table 5, the models were improved. The reduced quadratic models 
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for radial and vertical segregation are given by, respectively 

𝑆𝑆𝑆𝑆𝑟𝑟 = 0.0227 + 0.0027𝑋𝑋1 − 0.0052𝑋𝑋2 − 0.0005𝑋𝑋3 + 0.0015𝑋𝑋4 − 0.0028𝑋𝑋2𝑋𝑋4 + 0.003𝑋𝑋2
2

−0.0009𝑋𝑋3
2 

(10) 

 
and 

𝑆𝑆𝑆𝑆𝑣𝑣 =0.19 + 0.042𝑋𝑋1 − 0.0178𝑋𝑋2 − 0.000057𝑋𝑋4 − 0.0109𝑋𝑋4
2 (11) 

 
 
Table 5. Summary of fit for different models: linear, two-factor interactions (2FI) and quadratic. 
 

Source Sequential 

𝒑𝒑-value 1) 
Lack of Fit 

𝒑𝒑-value 2) 
Multiple 

𝑹𝑹𝟐𝟐 
Adjusted 

𝑹𝑹𝟐𝟐  Remark 

Radial segregation 
Linear 7.574e-05 0.0083 0.6513 0.5879  

2FI 0.002125 0.0084 0.7596 0.6093  
Full Quadratic 7.941e-07 0.0452 0.9683 0.9313 Suggested 

Reduced Quadratic 1.324e-10 0.137 0.9522 0.9336 Improved 
Vertical segregation 

Linear 4.063e-09 0.06222 0.8605 0.8352  
2FI 2.966e-05 0.0460 0.8668 0.7836  

Full Quadratic 1.362e-05 0.08327 0.9482 0.8877 Suggested 
Reduced Quadratic 2.458e-11 0.316 0.9221 0.9072 Improved 

Guidelines [15]: 1) 𝑝𝑝 < 0.05, 2) 𝑝𝑝 > 0.10 
 

4.2 Validation of response surface models 
As a final validation step, we tested the developed regression models by conducting additional 
simulations which are within the design space but not included in the experimental matrix. As 
shown in Table 6, we performed two runs in which 𝜌𝜌� was varied (𝑋𝑋2 = [−1 1]) while keeping 
the remaining factors at zero coded level. It can be seen that there are relatively large differences 
between DEM and RSM predicted 𝑆𝑆𝑆𝑆 values. However, it must be noted that the DEM runs 
were not replicated. As we mentioned earlier in sec. 4.1, multiple replications are required in 
order to obtain a small confidence interval. Hence, for a more objective comparison, the DEM 
runs should be replicated and the RSM predicted 𝑆𝑆𝑆𝑆 values should be compared to a 𝑆𝑆𝑆𝑆 interval 
determined from DEM simulations.   
 
Table 6. Comparison of DEM model and RSM model predictions for the degree of segregation as a function of 
the density ratio (𝜌𝜌�). 
 

Run Factor levels Response: 𝑺𝑺𝑺𝑺𝒓𝒓 Response: 𝑺𝑺𝑺𝑺𝒗𝒗 
𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 𝑋𝑋4 DEM RSM Diff. DEM RSM Diff. 

1 0 -1 0 0 0.0346 0.0309 13.00% 0.255531 0.208384 18.5% 
2 0 1 0 0 0.0198 0.0206 0.2% 0.157724 0.172856 9.6% 
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4.3 Effects analysis 
Figure 3 shows the Pareto plots for standardized coefficients in the regression models. The plots 
provide insights into the relative importance of the different model predictors on 𝑆𝑆𝑆𝑆𝑟𝑟 and 𝑆𝑆𝑆𝑆𝑣𝑣. 
The predictors with larger absolute standardized coefficients are more influential and the bars 
are coloured according to the direction of the relationship (positive/negative). The points on the 
cumulative proportion lines indicate how much of the total impact on the response variable is 
accounted for by including predictors in order of their importance. The plots indicate that 𝑋𝑋2 
(𝜌𝜌�) and 𝑋𝑋1 (𝑑̃𝑑) have the most significant effect on radial and vertical segregation, respectively. 
The shape factor 𝑋𝑋3 (𝐴𝐴𝐴𝐴� ) is of relatively less importance for 𝑆𝑆𝑆𝑆𝑟𝑟, since the cumulative 
proportion line gradually levels off after the 𝑋𝑋4 (𝑒̃𝑒) predictor. Similarly, 𝑋𝑋4 is much less 
important for 𝑆𝑆𝑆𝑆𝑣𝑣.  

Figure 4 and Figure 5 show the response surface plots for 𝑆𝑆𝑆𝑆𝑟𝑟 and 𝑆𝑆𝑆𝑆𝑣𝑣, respectively. 
Figure 5a indicates that for a fixed shape (𝑋𝑋3 = 𝑋𝑋4 = 0, which is nearly spherical) segregation 
in radial and vertical directions is reduced for lower values of 𝑋𝑋1 and higher values of 𝑋𝑋2. 
Considering the values of the factors in Table 3, this means that a reduction of segregation is 
achieved when the particles in the mixture have similar volumes (sizes) and densities. Xu et al. 
[8] found a similar result in their study of binary mixture charging. They considered a mixture 
of small and large (spherical) particles and kept the density of the small particles fixed at 2800 
kg/m3. They varied the density of the large particles from 1400 to 4200 kg/m3 and found that 
radial segregation decreased as the density was reduced. This relationship is also observed for 
vertical segregation in Figure 6a. The symmetric nature of the surface plots in Figure 5b, d and 
f demonstrate the weak interaction of 𝑋𝑋3 with other factors. The same can be seen for 𝑋𝑋4 in 
Figure 6b and c. Radial segregation is always reduced for high and low values of 𝑋𝑋3, so when 
the non-spherical particle is either flat or elongated. Vertical segregation is always reduced for 
low and high values of 𝑋𝑋4, so when the particle shape deviates from significantly from 
spherical. The latter does not hold for radial segregation due the 𝑋𝑋2 − 𝑋𝑋4 interaction. 
 
 

  
(a) (b) 

Figure 3: Pareto plots for standardized coefficients in the regression models for (a) 𝑆𝑆𝑆𝑆𝑟𝑟  and (b) 𝑆𝑆𝑆𝑆𝑣𝑣 . 
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Figure 4: Response surface plots for 𝑆𝑆𝑆𝑆𝑟𝑟. 

 
 
 

 

 
Figure 5: Response surface plots for 𝑆𝑆𝑆𝑆𝑣𝑣 . 
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5 CONCLUSION 
The goal of this work was to investigate how size, density and shape differences between 
particles in a binary mixture simultaneously affect blast furnace segregation using the response 
surface methodology. The main findings of this work are as follows: 
 Size and density differences are the most significant factors for both radial and vertical 

segregation, while shape differences have relatively less effect.  
 Segregation in both radial and vertical directions decreases as the binary mixture 

components have equal volumes and densities. The non-spherical particle should be 
either flat or elongated to reduce radial segregation and the shape should differ 
significantly from a sphere to reduce vertical segregation. 

In the future this work can be extended by including a factor which describes the particle size 
distribution of each of the components, making the results more applicable to actual industrial 
mixtures.  
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