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Summary. High-pressure transcritical turbulent flow regimes enhance the mixing and heat
transfer rates with respect to atmospheric pressure conditions. The two characteristic states
of supercritical fluids, gas- and liquid-like, are differentiated across the pseudoboiling line. In
this regard, their thermophysical properties in the vicinity of the pseudoboiling region can
be leveraged to significantly increase the Reynolds numbers and destabilize the flow. The
underlying physical mechanism responsible for this destabilization is the presence of a baroclinic
torque, which is formed by the combination of large localized density gradients across the
pseudoboiling region (wall-normal direction) and the force driving the flow. As a result, the
enstrophy levels are enhanced by approximately 100× compared to equivalent low-pressure
cases, and the flow physics behaviour deviates from standard wall-bounded flows. In this work,
the nature of this instability is broadly analyzed by means of linear stability theory. It is
found that, in isothermal wall-bounded transcritical conditions, the non-linear thermodynamics
exhibited near the pseudoboiling region accelerates the turbulence transition with respect to
super- and sub-critical states. This transition is further anticipated for non-isothermal flows
even at low Brinkman numbers. These effects are here extensively characterized for Poiseuille
flows using linear stability analysis. In particular, neutral curve sensitivity to Brinkman numbers
and perturbation profiles of dynamic and thermodynamic unstable modes, which trigger the
early flow destabilization, are reported in the paper.

1 INTRODUCTION

High-pressure transcritical fluids operate within thermodynamic spaces in which supercritical
gas-like and liquid-like states can be differentiated across the pseudoboiling line [1, 2]. As studied
by Bernades & Jofre [3], the thermophysical properties of these two regimes in the vicinity of
the pseudoboiling region can be leveraged to significantly increase the Reynolds numbers with
respect to atmospheric conditions. Among other fields, this result is notably important in
microfluidics as it may enable the achievement of microconfined turbulence to obtain enhanced
mixing and heat transfer rates. In this regard, the recent direct numerical simulations (DNS)
performed by Bernades et al. [4, 5] demonstrated the feasibility of achieving microconfined
turbulence by means of utilizing high-pressure transcritical fluids. The resulting flow physics
differs significantly from the typical behavior of turbulent wall-bounded flows, due to the presence
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of localized baroclinic torques that are responsible for remarkably increasing flow rotation. As
a result, the flow becomes unstable and rotation is transformed into a wide range of scales
(i.e., turbulent flow motions) through vortex stretching mechanisms. However, the phenomena
responsible for destabilizing the flow are still not fully characterized. To this end, this work
aims to conduct linear stability analysis of wall-bounded flows at high-pressure transcritical
fluid conditions to carefully identify and quantify the underlying flow mechanisms.

Historically, the study of hydrodynamic stability in wall-bounded configurations was first es-
tablished with incompressible parallel shear flows. In this context, linear stability theory (LST)
gave rise to the well-known Orr-Sommerfeld equation [6, 7] and related classical modal results,
such as the critical Reynolds number Rec = 5772.22 for plane Poiseuille flow [8, 9] and alternative
energy stability-based formulations yielding Rec = 49.2 [10, 11]. Research on the instability of
ideal-gas compressible flows started later. Malik et al. [12] introduced LST selecting ρ and T as
state variables along with the velocity vector presenting the Jacobian matrices for compressible
flows. They characterized the Y-shape spectrum (the so-called branches [13]) and the even and
odd modes. Recently, variable viscosity studies such as stratified and Poiseuille flows with tem-
perature dependency have been developed [14, 15] based on a modified set of Orr-Sommerfeld
equations, but ignoring the perturbations from temperature and viscosity. Next, Wall [16] in-
vestigated the stability effects caused by viscosity. For compressible plane Couette flow, Malik
et al. [17] demonstrated that the flow is more stable with viscosity stratification, which was later
confirmed by Saikia et al. [18]. Nonetheless, these studies are limited to either incompressible
flow or ideal-gas thermodynamics and temperature-dependant transport properties. To this ex-
tent, Ren et al. [19] introduced a LST framework for Poiseuille flows for non-ideal fluids. The
effects of the dominant dimensionless numbers that characterize the flow, the wall temperature
and bulk pressure were analyzed. Results showed that for low Eckert and Prandtl numbers
the flow was isothermal, hence a good collapse to incompressible references was observed. In-
stead, at larger Prandtl and Eckert numbers, the strong gradients of the thermodynamic and
transport properties driven by viscous heating became important. In particular, the sub-/trans-
/supercritical conditions were compared with respect to ideal-gas scenarios. As a result, the base
flow was modally more unstable in the subcritical regime, inviscid unstable in the transcritical
regime and significantly more stable in the supercritical regime. To that end, Ren et al. [20]
extended these analysis to compressible boundary layers over adiabatic walls with fluids at su-
percritical pressure. A second co-existing mode was found causing flow destabilization when
crossing the pseudoboiling line for two-dimensional perturbations.

The paper is organized as follows. First, in Section 2, the flow physics modeling is presented.
Next, the linear stability theory and the linearized equations of supercritical fluids are described.
Then, the flow cases are introduced and the linear stability analysis results are presented and
discussed in Section 4 for (i) isothermal limit verification, (ii) isothermal and (iii) non-isothermal
cases. Finally, Section 5 reports concluding remarks and future directions.
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2 FLOW PHYSICS MODELING

The flow motion of supercritical fluids is described by the following set of dimensionless
conservation equations of mass, momentum, and total energy

D⋆ρ⋆

D⋆t⋆
= 0, (1)

ρ⋆
D⋆u⋆

D⋆t⋆
= −∇⋆P ⋆ +

1

Re
∇⋆ · τ ⋆ + F ⋆, (2)

ρ⋆
D⋆E⋆

D⋆t⋆
= −∇⋆ · (P ⋆u⋆)− 1

ReBr
∇⋆ · q⋆ +

1

Re
∇⋆ · (τ ⋆ · u⋆) + F ⋆ · u⋆, (3)

where superscript (·)⋆ denotes dimensionless quantities, ρ is the density, u is the velocity vector,
P is the pressure, τ ⋆ = µ⋆(∇⋆u⋆ +∇⋆u⋆T ) − 2/3µ⋆(∇⋆ · u⋆)I is the viscous stress tensor, E is
the total energy, q⋆ = −κ⋆∇⋆T ⋆ is the Fourier heat flux, and F ⋆ is the normalized body force
added to move the fluid.

The resulting set of scaled equations includes two dimensionless numbers: (i) the Reynolds
number Re = ρbUrδ/µb, where the subscript b refers to bulk quantities and Ur is the reference
streamwise velocity corresponding to its maximum value (i.e., centerline velocity for isothermal
conditions), characterizing the ratio between inertial and viscous forces; and (ii) the Brinkman
number Br = µbU

2
r /(κTb) = PrEc, where κ is the thermal conductivity, quantifying the ratio of

viscous heat generation to external heating through the walls (viz. larger Br values correspond
to smaller heat conduction from viscous dissipation resulting in temperature increase). The
Brinkman number can also be expressed as the combination of Prandtl number Pr = µbcP b/κb,
where cP is the isobaric heat capacity, expressing the ratio between momentum and thermal
diffusivity, and Eckert number Ec = U2

r /(cP bTb), which accounts for the ratio between advective
mass transfer and heat dissipation potential. In this work, the Froude number, which represents
the ratio between inertial and gravitational forces, is assumed to be large, and consequently
buoyancy effects are not considered. The derivation of these dimensionless equations is based
on the following set of inertial-based scalings [21, 22]

x⋆ =
x

δ
, u⋆ =

u

Ur
, ρ⋆ =

ρ

ρb
, T ⋆ =

T

Tb
, P ⋆ =

P

ρbU2
r

,

E⋆ =
E

U2
r

, µ⋆ =
µ

µb
, κ⋆ =

κ

κb
, F ⋆ =

FUrρb
2

δ
, (4)

where x is position and Dh = 2δ is the hydraulic diameter, with δ the channel half-height.
The base flow is obtained by solving the Navier-Stokes equations, assuming that the flow

is fully developed in a steady laminar state and independent of the streamwise and spanwise
directions, i.e., ∂(·)/∂x = ∂(·)/∂z = 0, ∂(·)/∂t = 0, v = w = 0. To this extent, the dimensionless
compressible equations of fluid motion (Eqs. 1- 3) are simplified to

d

dy⋆

(
µ⋆du

⋆

dy⋆

)
= −ReF ⋆ = −F̂ , (5)

dP ⋆

dy⋆
= 0, (6)

d

dy⋆

(
κ⋆

Br

dT ⋆

dy⋆
+ µ⋆u⋆du

⋆

dy⋆

)
= −ReF ⋆u⋆ = −F̂ u⋆, (7)
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where density is decoupled from the continuity equation, and therefore depends only on the
equation of state. The base flow is fully determined by T , Br and F̂ . At the isothermal limit
(Br −→ 0), by selecting Ur to be the centerline velocity, results in F̂ = 2. Thus, the flow is
simply governed by d2u⋆/dy⋆2 = −F̂ , and consequently u⋆ = y⋆(2− y⋆) is only a function of the
distance from the walls. Therefore, without loss of generality, the body force is kept constant,
yielding a base flow dependent only on T and Br.

2.1 High-pressure thermophysical properties

The Peng-Robinson equation of state is typically selected to close the thermodynamic state,
together with the corresponding thermodynamic potentials based on departure functions [2].
However, this model does not provide the exact reference values from NIST [23], and conse-
quently the CoolProp library [24] is utilized instead. For completeness, the general dimensionless
real-gas equation of state can be rewritten as a function of the compressibility factor Z as

P ⋆ =
Zρ⋆T ⋆

γ̂Ma2
, (8)

where γ̂ ≈ Z(cP/cV )[(Z + T (∂Z/∂T )ρ)/(Z + T (∂Z/∂T )P )] is an approximated real-gas heat
capacity ratio with cV the isochoric heat capacity. As it can be noted, the dimensionless bulk
Mach number Ma = Ur/cb appears, where cb is the bulk speed of sound, which represents the
ratio of flow velocity to the local speed of sound. Finally, the transport coefficients at high-
pressure transcritical conditions are also obtained from the CoolProp library [24].

3 LINEAR STABILITY THEORY

The following subsections describe the linearized stability equations resulting from the base
flow model presented above, and the corresponding discretization method utilized to solve them.

3.1 Linearized stability equations

The flow field f can be decomposed into a base flow plus a perturbation (hereafter denoted,
respectively, with subscript (·)0 and superscript (·)′) yielding the expression f = f0 + f ′. The
resulting system of equations is composed of 5 variables described by the perturbation vector
q = (ρ′, u′, v′, w′, T ′)T . In this regard, the linear stability equations are derived as a function of
the perturbation vector q substituted in the dimensionless equations of fluid motion (Eqs. 1- 3).
The detailed formulae of the resulting linearized equations for real-gas compressible flow can be
found in Ren et al. [19]. Particularly, in linear modal stability analysis, the perturbation can be
expressed in normal-mode form as

q(x, y, z, t) = q̂(y) exp(iαx+ iβz − iωt) + c.c., (9)

where α and β are the prescribed streamwise and spanwise wavenumber, respectively, ω is the
frequency, and c.c. stands for complex conjugate. In particular, Poiseuille flows are inherently
dependant on the wall-normal direction and only two-dimensional pertrubations are considered,
viz. spanwise wavenumber β = 0. Consequently, the real and imaginary parts of the eigenvalue ω
correspond, respectively, to the wall-normal angular frequency and its local growth rate. Finally,
the objective eigenvalue problem is defined based on the temporal operator matrices AT and
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Table 1: Base flow cases studied utilizing linear stability theory. The first group of cases
corresponds to symmetric Poiseuille flows with isothermal walls, whereas the second group
considers non-isothermal cases with different cold (cw) and hot (hw) wall temperatures.

Flow case Regime Label Tcw/Tc Thw/Tc Pb/Pc Br Ma

Verification Superheated steam V-1 0.95 0.95 1.08 10−5 4 · 10−3

Isothermal
High-pressure liquid-like I-1 0.75 0.75 1.5 ≤ 5 · 10−1 ≤ 0.45
High-pressure transcritical I-2 0.95 0.95 1.5 ≤ 5 · 10−1 ≤ 1.37

High-pressure gas-like I-3 1.5 1.5 1.5 ≤ 5 · 10−1 ≤ 1.35

Non-isothermal

High-pressure transcritical NI-1 0.75 1.5 1.5 ≤ 10−1 ≤ 0.33
High-pressure transcritical NI-2 0.75 1.5 5 ≤ 10−1 ≤ 0.24
High-pressure transcritical NI-3 0.9 1.1 1.5 ≤ 10−1 ≤ 0.44

Superheated steam NI-4 0.75 1.5 0.03 ≤ 10−1 ≤ 0.58

BT obtained by inspection of expression [19]

ATq̂ = ωBTq̂. (10)

3.2 Discretization method

The discretization of the linearized equations is based on Chevyshev [25] collocation with a
domain constrained between 0 ≤ y/δ ≤ 2, where y is the wall-normal direction of the position
vector x defined as

yj = δ

(
1− cos

πj

N

)
, j = 0, 1, . . . , N − 1, N, (11)

where N corresponds to the total number of collocation points. Thus, the Chevyshev differentia-
tion matrices are used to obtain the discretization equations and define the LST eigenvalue prob-
lem operators. The mesh size selected for this work is N = 200, which provides grid-independent
results; for brevity, the corresponding grid-convergence results are not shown in this paper. At
larger grid sizes, higher order viscous modes are captured, but the S-shaped Mack branches do
not change. Moreover, the system of equations is subjected to u′ = v′ = w′ = T ′ = 0 boundary
conditions for both walls.

4 RESULTS

This section describes the flow scenarios studied, and presents and discusses the corresponding
results for the isothermal limit verification, isothermal and non-isothermal cases.

4.1 Flow cases studied

The Poiseuille flow considered in this work is set at two different base configurations: (i)
isothermal conditions, whose base flow is controlled by the Brinkman number, which governs
the sub-, trans- and supercritical regimes [19]; and (ii) non-isothermal conditions, where a
temperature difference is imposed between the upper and lower walls; in this case, the flow
operates within a transcritical regime regardless of the Brinkman number. Consequently, as
described in detail in Section 3, the perturbations are solved as an eigenvalue problem (Re−α)
for the different base flows (Br − T ) summarized in Table 1.
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(a) (b)

Figure 1: (a) Eigenspectrum at Re = 10000 and wavenumber α = 1, and (b) corresponding
neutral curve. Real-gas framework with CoolProp thermophysical properties (RG), ideal-gas
model based on power laws (IG), and incompressible framework (IC). In plot (a), the red
highlighted eigenvalue corresponds to an unstable mode (ω = 0.2375 + 0.0037i), and the dark-
yellow one to a stable mode (ω = 0.4164−0.1382i) whose perturbations are depicted in Figure 2.

4.2 Isothermal-limit verification case

The overall approach is preliminarily verified with respect to an incompressible reference so-
lution from Trefethen et al. [26, 25]. To this end, the base flow is obtained from the stability
equations at the isothermal limit using CoolProp’s real-gas and transport coefficients framework
and the ideal-gas model. It is important to note that the perturbations match the results pre-
sented by Ren et al. [19] utilizing the REFPROP NIST library [23]. For this comparison, a
wall-scaling approach has been used with CO2 as operating fluid to match the Poiseuille flow
conditions from previous verification results [19] at Tcw = Thw = 290K and P = 8MPa. The
spectrum is computed at Re = 10000 and wavenumber α = 1, and solved for two-dimensional
perturbations, i.e., β = 0. Figure 1 depicts the corresponding (a) eigenspectrum and (b) neu-
tral curve. It can be observed that Mack branches [13], the so-called A-, P- and S-branches,
are properly reproduced by the incompressible flow case. At the isothermal limit, the ideal-gas
model collapses to these branches. However, the real-gas framework solution introduces addi-
tional modes due to thermophysical effects, i.e., modes driven by thermophysical phenomena
(density and temperature perturbations). Nonetheless, the same unstable mode is captured
by the frameworks considered as it is a dynamic mode independent of thermodynamic effects.
Moreover, the neutral curve shows good agreement between the different models considered, and
in particular they all yield the classical result Rec = 5772. Finally, Figure 2 contains the per-
turbations of (a) the unstable mode and (b) the stable mode [dark-yellow eigenvalue in Figure 1
(a)]. It has been verified that, while the unstable modes between real- and ideal-gas frameworks
are identical, small differences emerge for the stable mode, which correspond to compressibility
effects related to the density perturbation, and are only captured by real-gas thermodynamics
as shown in the inset of Figure 2(b).
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(a) (b)

Figure 2: Perturbation profiles of (a) unstable (ω = 0.2375 + 0.0037i) and (b) stable (ω =
0.4164−0.1382i) modes normalized by |u′ |. Real-gas framework with CoolProp thermophysical
properties (RG) (solid lines), and ideal-gas model with power laws (IG) (markers).

4.3 Isothermal cases

Figure 3 depicts the neutral curves for the isothermal cases (labeled I-1, I-2 and I-3 in Table 1).
It is known that the larger Br the larger the base flow centerline velocity and temperature. First,
the I-1 subcritical regime case (centerline temperature below Tc) yields a reduced stability region
with respect to the isothermal limit when Br increases. In particular, the neutral curve expands
to lower Re for a wider range of wavenumbers, and becomes unstable at Rec ≈ 1000 (refer to
Table 2) at 1.0 ≲ α ≲ 1.2. Next, the I-2 base flow undergoes a transcritical trajectory across
the pseudoboiling region, and as a result both velocity and temperature become inflectional at
Br ≳ 0.35. This results in a lower Rec ≈ 500 (refer to Table 2) and a significantly wider range
of wavenumbers, 1.2 ≲ α ≲ 1.7, where early laminar to turbulent transition can occur. Third,
the I-3 case operates at supercritical conditions behaving similarly as the ideal-gas solution [19],
in which increasing Br enhances the stability region. In particular, for Br > 0.05 the flow is
stable for the Re− α parameter space analyzed.

To this extent, Figure 4 shows the perturbations of the most unstable region, i.e., Re = 104

and α = 1. The subcritical regimes are dominated by density and temperature perturbations
(thermophysical-driven mode), unlike for the isothermal limit. Its effect is, however, diminished
at larger Br. At transcritical conditions, velocity perturbations dominate towards the walls
along with temperature and density with lower magnitude. The vertical velocity governs the
flow instability at the center. Instead, supercritical flow destabilization is only dominated by
streamwise velocity (dynamic-driven mode).

4.4 Non-isothermal cases

Figure 5 depicts the neutral curves for the non-isothermal cases. It is noted that in this case
the the fluid is forced to cross the pseudoboiling line for all Br. Consequently, this yields lower
velocities. In fact, the Br top-end is limited so that temperature remains below the hot wall
temperature, which corresponds toBr ≤ 0.1. While NI-1 and NI-3 are crossing the pseudoboiling
region, NI-2 is pressurized much beyond the critical pressure and consequently it operates at

7
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(a) (b) (c)

Figure 3: Neutral curves for various Br at (a) sub-, (b) trans- and (c) supercritical regimes.
Dashed-dotted line represents the isothermal limit (Br −→ 0), and the vertical dashed line
denotes Rec = 5772.

(a) (b) (c)

Figure 4: Perturbation profiles of the most unstable mode at Re = 10000, α = 1 along the wall-
normal direction for various Br numbers at (a) sub-, (b) trans- and (c) supercritical regimes.

(a) (b) (c)

Figure 5: Neutral curves for various Br for (a) NI − 1, (b) NI − 2, and (c) NI − 3 cases.
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(a) (b) (c)

Figure 6: Perturbation profiles of the most unstable mode at Re = 10000 along the wall-normal
direction for various Br: (a) NI − 1 (α = 0.8), (b) NI − 2 (α = 1), (c) NI − 3 (α = 0.8) cases.

(a) (b) (c)

Figure 7: Perturbation profiles of the most unstable mode for (a) NI − 1 at Re = 4000 and
α = 0.8, (b) NI − 2 at Re = 4000 and α = 1, and (c) NI − 3 at Re = 8000 and α = 0.8.

supercritical conditions. The neutral curves of NI-1 are similar for all Br, where the instability
is biased towards lower Re; especially compared to low Br numbers from the isothermal cases.
In addition, the wavenumber of Rec falls ∼ 20%. Nevertheless, NI-3 results in larger Rec, even
beyond the isothermal limit transition when Br < 0.05. Therefore, by constraining the cold
and hot temperatures closer to the critical point, the stability region is enhanced with respect
to wider operating temperature windows, as in NI-1. Finally, when increasing the pressure of
the system, the neutral curves display similar envelopes as in the subcritical isothermal case.

Analogously, Figure 6 presents the perturbation profile of the most unstable modes at the
largest analyzed Re. The perturbations are dominated by density and temperature near the
pseudoboiling region, but velocity is significantly high near the hot wall. The cold wall ther-
modynamics and streamwise velocity have similar magnitudes, although they are 50% lower
than at the hot wall. This behaviour is similar for both transcritical cases, NI-1 and NI-3, with
small differences among Br numbers. Instead, NI-2 is mainly dominated by streamwise velocity
near the walls and vertical velocity at the center. Although at large Br the cold wall density
and temperature perturbations become greater than the streamwise velocity. Additionally, the
perturbations near the Rec value are depicted in Figure 7. NI-1 perturbations are similar to
larger Re. However, for NI-2 are dominated by thermodynamics at y/δ ∼ 0.75 and y/δ ∼ 1.75
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by a factor 3× with respect to velocity perturbation, whereas NI-3 is clearly dominated by
thermodynamic modes at both peak locations. Finally, the NI-4 case operates at low-pressure
conditions and stability results collapse to the ideal-gas solution. Nonetheless, although it oper-
ates at different temperatures, the system is stable for all Reynolds numbers and wavenumbers
considered.

4.5 Laminar-to-turbulent transition summary

The critical Reynolds numbers of each case from the neutral curves are summarized in Table 2.

Table 2: Critical Reynolds numbers for the flow cases described in Section 4.1.

Br V-1 I-1 I-2 I-3 NI-1 NI-2 NI-3 NI-4

Br −→ 0 5844 5875 − − − −
0.01 5631 5610 6056 2240 3510 7190 > 104

0.05 5013 4910 7468 1975 3069 5833 > 104

0.10 − 4080 3927 > 104 1618 2486 5019 > 104

0.25 2096 1842 > 104 − − − −
0.50 990 441 > 104 − − − −

5 CONCLUSIONS

A high-pressure real-gas flow framework for linear stability analysis of plane Poiseuille flows
has been presented. The approach has been verified at the isothermal limit and shown to recover
the reference results from incompressible Poiseuille flow. The exploratory analysis presented in
this work focused on streamwise perturbations for iso- and non-isothermal cases for various
Brinkman numbers. The results showed that, for isothermal cases, the destabilization occurs at
lower Re when Br increases for sub- and transcritical flows. In particular, under transcritical
conditions, the transition from laminar to turbulence occurs at lower Re than for subcritical
flows. Instead, the supercritical cases result in stability enhancement when Br increases, simi-
larly to ideal-gas cases. Alternatively, non-isothermal conditions were assessed by enforcing the
fluid to operate across the pseudoboiling region. Therefore, transcritical conditions are achieved
at lower Br than isothermal cases. Consequently, destabilization effects are observed at rela-
tively lower Br, with small differences among the Br base flows. To this end, the asymmetric
setups are attractive to accelerate turbulence transition at lower bulk velocities.

In detail, for the isothermal transcritical case, the Rec is 5× lower than for the isothermal limit
case for a wide range of wavenumbers. Instead, for the same Br number at subcritical conditions,
the neutral curve is shifted 2× with respect to the transcritical regime. In fact, density and
temperature perturbations are mostly responsible for such destabilization for both regimes.
However, supercritical regimes enhance the stability if Br increases and the perturbations are
driven by streamwise velocity. Furthermore, non-isothermal setups result in flow destabilisation
at lower Br and 20% wavenumber reduction than the isothermal cases. It is important to note
that, by increasing the pressure of the system by 5×, the critical point recovers similar neutral
curves as in the isothermal subcritical case, but still at lower Rec. However, if the asymmetric
temperature difference is reduced, the laminar to turbulent transition becomes limited and
comparable Rec values as in the isothermal subcritical case are obtained. The perturbations are

10
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dominated by the thermodynamic modes, especially near the pseudoboiling region.
As future work, extension of the analysis of the non-isothermal cases will be further character-

ized, in particular, the energy budgets and growth rates comparing both iso- and non-isothermal
setups. Consequently, the unstable modes with 2D perturbations will also be investigated to
evaluate the presence of additional modes for the transcritical case, which are non-existing in
subcritical and supercritical regimes. In addition, DNS baseflow will be computed and destabi-
lized by superimposing the most unstable modes to validate the LST results.
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