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Summary. Linear and weakly nonlinear instability of a convective flow in a tall vertical annulus
is considered in the paper. The base flow has two components: (a) the vertical component
generated by nonlinear heat sources and (b) the azimuthal component generated by rotation of
the inner boundary. The properties of the nonlinear boundary value problem for the temperature
distribution are analyzed in detail. It is proved, in particular, that there are two solutions of
the boundary value problem for the base flow temperature distribution for a certain range of
the Frank-Kamenetskii parameter. Linear stability problem is solved numerically. Calculations
show destabilizing effect of rotation. Weakly nonlinear theory is used to construct the amplitude
evolution equation for the most unstable mode. It is shown that the amplitude evolution equation
is the complex Ginzburg-Landau equation.

1 INTRODUCTION

Biomass thermal conversion is one of the promising methods for green energy production [1].
Different factors such as convection, external electric field or degree of swirling may affect the
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efficiency of the conversion process [2], [3]. Mathematical modeling (in addition to experimental
investigations) is an efficient tool for the analysis of complex multiphysics problems [4]. Stability
theory can also be used (in combination with experimental and numerical analysis) in order to
describe how and when a particular flow may become unstable [5]. In the context of biomass
thermal conversion problem instability is desirable since it can lead to more intensive mixing
and, as a result, to more efficient energy conversion.

In the present paper we analyze the combined effect of internal heat sources due to chemical
reaction that takes place in the fluid, and rotation of the boundaries on the stability of a con-
vective flow in a vertical annulus. Heat equation in this case has a nonlinear term so that the
corresponding boundary value problem for the determination of the base flow temperature is
nonlinear. Theoretical analysis of the nonlinear boundary value problem leads to the conclusion
that in the region of interest in the parameter space for stability analysis there are two solu-
tions of the corresponding boundary value problem. This fact is proved in the paper using the
Krasnosels’kĭı-Guo fixed point theorem (see [6]). The solution with the smallest norm should be
chosen as the base flow temperature distribution since the other solution is unstable and cannot
be observed in experiments. Linear stability of the base flow is performed numerically. It is
shown that rotation of the boundaries destabilizes the flow. Assuming that the parameters of
the problem are chosen in a small neighborhood of the critical point where the flow is linearly
unstable with very small growth rate, we derive the amplitude evolution equation for the most
unstable mode using the method of multiple scales. It is shown that the corresponding amplitude
evolution equation is the complex Ginzburg-Landau equation.

2 MATHEMATICAL FORMULATION OF THE PROBLEM

Consider the flow of a viscous incompressible fluid in the domain D = {R1 < r̃ < R2, 0 ≤
φ < 2π,−∞ < z̃ < +∞} between two infinitely long concentric cylinders with radii R1 and R2,
respectively (R1 < R2). The walls of the cylinders are maintained at constant equal temperatures
θ̃0. It is also assumed that the inner cylinder is rotating with constant angular velocity ω while
the outer cylinder is at rest. We use the system of cylindrical polar coordinates (r̃, φ, z̃) with
the origin at the axes of the cylinders. The flow is described by the system of the Navier-Stokes
equations under the Boussinesq approximation [7] written in dimensionless form as follows:

∂v

∂t
+Gr(v · ∇)v = −∇p+∆v + Tek, (1)

∂T

∂t
+Grv · ∇T =

1

Pr
∆T +

Q

Pr
, (2)

∇ · v = 0, (3)

where v is the velocity, T is the temperature, p is the pressure, Q is the density of the internal
heat sources, and ek = (0, 0, 1). The flow is characterized by two dimensionless parameters,
namely, the Prandtl number Pr and the Grashof number Gr (see [8] for details). Different
forms of the function Q are considered in the literature: (a) the case Q = const corresponds to
Joule heating of an electrolyte, (b) the case Q = Q0 exp (az) corresponds to the situation where
a light beam is passing through the fluid in such a way that the intensity of light is decreasing
exponentially (Bouguer-Beer-Lambert law, [9]), (c) the case

Q = Q̃0 exp [−E/(R0T̃ )], (4)
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corresponds to the Arrhenius’ law where E is the activation energy, R0 is the universal gas
constant and T̃ is the absolute temperature. Formula 4 is used to describe the thermal effect of
a chemical reaction that takes place in the fluid. The following convention is used throughout
the paper: all the variables with tildes are dimensional while the variables without tildes are
dimensionless.

There exists a steady solution of 1–3 of the following form:

v0 = (0, V0(r),W0(r)), T = T0(r), p = p0(z). (5)

Substituting (5) into (1)–(3) we obtain the following system of ordinary differential equations

W
′′
0 +

W
′
0

r
+ T0 = C, (6)

V
′′
0 +

V
′
0

r
− V0

r2
= 0, (7)

T
′′
0 +

T
′
0

r
+ FeT0 = 0, (8)

where C = dp0/dz. Note that the Frank-Kamenetskii transformation is used in order to simplify
the source term in (2) and (4). The idea is rather simple: to expand the exponent in (4) in a
Taylor series and keep only the linear terms of the series. The result is mathematically more
convenient term to work with (see [10]). The accuracy of the transformation is analyzed in [10]
and [11] where it is shown that it is rather accurate in a wide range of the parameters of interest.

The boundary conditions are

V0(R) = S, V0(1) = 0, (9)

W0(R) = 0, W0(1) = 0, (10)

T0(R) = 0, T0(1) = 0, (11)

where R = R1/R2 and S = ωR1/u0 (the scaling parameter u0 is defined in [13]). The annulus is
assumed to be closed (at infinity) so that the total fluid flux through the cross-section is equal
to zero: ∫ 1

R
W0(r)r dr = 0. (12)

It follows from (7), (9) that the boundary value problem for the function V0(r) can be solved
separately. The solution has the form

V0(r) = − SR

1−R2
r +

SR

r(1−R2)
. (13)

The boundary value problem for the function T0(r) also can be solved separately (in addition,
only this problem has a nonlinear term). The analysis of the number of solutions of the boundary
value problem (8), (11) is performed in the next section.
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3 NONLINEAR BOUNDARY VALUE PROBLEM

We consider a generalization of (8), (11) in the form

x′′ +
1− α

r
x′ + Fex = 0, x(R) = 0 = x(1), (14)

where α ∈ R, F ∈ R+, 0 < R < 1. It can be shown (see [8]) that a nonzero α in (14)
corresponds to the radial Reynolds number for the case where there is a radial inflow (α < 0)
or outflow (α > 0) through the permeable walls of the cylinders. We observed the solvability
and multiplicity of positive solutions x(r) of (14) simultaneously. If x(r) is a positive solution
of (14), then x′(R) > 0 and x′(1) < 0. The approach is the same as in work [16], based on
application of the Krasnosels’kĭı-Guo fixed point theorem of cone expansion and compression of
norm type.
For all values of α, the linear homogeneous problem

x′′ +
1− α

r
x′ = 0, x(R) = 0 = x(1) (15)

has only the trivial solution and thus there exists a unique Green’s function, G(r, s), related to
(15).

If α = 0, then G1(r, s) =


s ln r(lnR− ln s)

lnR
, if R ≤ s ≤ r ≤ 1,

s ln s(lnR− ln r)

lnR
, if R ≤ r < s ≤ 1.

(16)

If α ̸= 0, then G2(r, s) =


(rα − 1)(sα −Rα)

αsα−1(1−Rα)
, if R ≤ s ≤ r ≤ 1,

(sα − 1)(rα −Rα)

αsα−1(1−Rα)
, if R ≤ r < s ≤ 1.

(17)

Gi(r, s), (i ∈ {1, 2}) is defined in the square Ω :=
{
(r, s) ∈ R2 : R ≤ r ≤ 1, R ≤ s ≤ 1

}
. Denote

by
◦
Ω and ∂Ω the interior and the boundary of Ω, respectively. Let us introduce the function

ki : Ω → Ω, i ∈ {1, 2}
ki(r, s) := −Gi(r, s), (r, s) ∈ Ω,

and the function Φi : [R, 1] → [R, 1], i ∈ {1, 2}

Φi(s) := ki(s, s), s ∈ [R, 1].

If α = 0, then we have

Φ1(s) :=
s ln s(ln s− lnR)

lnR
. (18)

If α ̸= 0, then we obtain

Φ2(s) :=
(1− sα)(sα −Rα)

αsα−1(1−Rα)
. (19)

Remark. The function Φ2(s) is symmetric with respect to α. Φ2(s;−α) = Φ2(s;α).
Proposition 1. The functions ki and Φi have the following properties.
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� ki(r, s) > 0 for every (r, s) ∈
◦
Ω and ki(r, s) = 0 for every (r, s) ∈ ∂Ω.

� Φi(s) > 0 for every s ∈ (R, 1) and Φi(R) = 0 = Φi(1).

� Φi(s) ≥ ki(r, s) for every r, s ∈ [R, 1].

� Let a and b be two positive numbers such that R < a < b < 1.
Let ci := min{ci,1; ci,2}, i ∈ {1, 2}, where

c1,1 :=
ln b

lnR
, c1,2 := 1− ln a

lnR
, if α = 0; (20)

c2,1 :=
1− bα

1−Rα
, c2,2 :=

aα −Rα

1−Rα
, if α ̸= 0. (21)

Then, ci ∈ (0, 1) and ciΦi(s) ≤ ki(r, s) for ∀r ∈ [a, b] and ∀s ∈ [R, 1].

Proof. The assertions of Proposition 1 are valid by straightforward calculations.□

We consider the Banach space C[R,1] with the norm ∥x∥ := max
R≤r≤1

∣∣x(r)∣∣. Define an integral

operator T : C[R,1] → C[R,1],

Tx(r) := F

∫ 1

R
k(r, s)ex(s)ds, x ∈ C[R,1], r ∈ [R, 1], (22)

where k(r, s) = k1(r, s), if α = 0, or k(r, s) = k2(r, s), if α ̸= 0.
A function x(r) is a solution of the boundary value problem (14) if and only if x(r) is a solution
of the integral equation

x(r) = F

∫ 1

R
k(r, s)ex(s)ds, r ∈ [R, 1], (23)

thereby the fixed points of T coincide with the solutions of (14).
Let a and b be two real numbers such that R < a < b < 1. Let c be constant defined by (20),
(21). Just like in paper [16] we consider the cones in the Banach space C[R,1]

P :=
{
x ∈ C[R,1] : x(r) ≥ 0, r ∈ [R, 1]

}
,

K :=
{
x ∈ P : min

r∈[a,b]
x(r) ≥ c ∥x∥

}
,

and prove the following properties of the integral operator T .
Proposition 2.The operator T defined by (22) has the following properties.

� For every x ∈ C[R,1], Tx(r) > 0 for all r ∈ (R, 1) and Tx(R) = 0 = Tx(1).

� T
(
C[R,1]

)
⊂ K.

� T (P ) ⊂ P and the operator T : P → P is completely continuous.

� T (K) ⊂ K and the operator T : K → K is completely continuous.
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We use the Krasnosels’kĭı-Guo theorem; see ([6], Theorem 2.3.4), ([12], Theorem 1.0.3).
Theorem 1. Let E be a Banach space and let M be a cone in E. Let T : M → M be a

completely continuous operator. Assume that there exist two positive constants ρ, ρ with ρ < ρ
such that one of the following conditions:

(H1) ∥Tx∥ ≤ ∥x∥ for every x ∈ M with ∥x∥ = ρ and ∥Tx∥ ≥ ∥x∥ for every x ∈ M with ∥x∥ = ρ,

(H2) ∥Tx∥ ≥ ∥x∥ for every x ∈ M with ∥x∥ = ρ and ∥Tx∥ ≤ ∥x∥ for every x ∈ M with ∥x∥ = ρ,

is satisfied. Then T has a fixed point x in M such that ρ ≤ ∥x∥ ≤ ρ.

Let ρ be a positive number. Let a and b be two real numbers such that R < a < b < 1. Let
c be the constant defined by (20) or (21). Let us introduce two functions:

F ∗(ρ) :=
ρ

eρ
∫ 1
R Φ(s)ds

; (24)

F∗(ρ) :=
ρ

cecρ
∫ b
a Φ(s)ds

, (25)

where Φ(s) is defined by (18) or (19).
Lemma 1. The following assertions are fulfilled.

1. The function F ∗ : (0,+∞) → R+ defined in (24) has the following properties

� lim
ρ→0+

F ∗(ρ) = 0 = lim
ρ→+∞

F ∗(ρ);

� strictly increases in (0, 1], strictly decreases in [1,+∞), and has a unique global
maximum point ρ = 1;

2. The function F∗ : (0,+∞) → R+ defined in (25) has the following properties

� lim
ρ→0+

F∗(ρ) = 0 = lim
ρ→+∞

F∗(ρ);

� strictly increases in (0, 1/c], strictly decreases in [1/c,+∞), and has a unique global
maximum point ρ = 1/c;

3. F ∗(ρ) < F∗(ρ) for every positive ρ.

Proof. Lemma 1 can be proved by elementary calculus.□
Lemma 2. If F ≤ F ∗(ρ), then ∥Tx∥ ≤ ∥x∥ for every x ∈ P with ∥x∥ = ρ.
Proof. By Proposition 1, we have

∫ 1
R Φ(s)ds > 0. Namely, taking into account (18) and (19),

we have

if α = 0, then

∫ 1

R
Φ(s)ds =

R2 + 1

4
+

1−R2

4 lnR
; (26)

if α ̸= 0, α ̸= ±2 then

∫ 1

R
Φ(s)ds =

2(R2 + 1)(1−Rα)− α(Rα + 1)(1−R2)

2(4− α2)(1−Rα)
; (27)

6
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if α = ±2, then

∫ 1

R
Φ(s)ds =

R2 lnR

2(1−R2)
+

R2 + 1

8
. (28)

Therefore, F ∗(ρ) in (24) is well-defined.
Let x be an element of P such that ∥x∥ = ρ. We see that x(s) ≤ ρ for every s ∈ [R, 1] and

thus ex(s) ≤ eρ for every s ∈ [R, 1]. For an arbitrary r ∈ [R, 1], we have

Tx(r) ≤ Feρ
∫ 1

R
Φ(s)ds ≤ ρ = ∥x∥.

In view of Proposition 2, we obtain ∥Tx∥ ≤ ∥x∥.□
Lemma 3. If F ≥ F∗(ρ), then ∥Tx∥ ≥ ∥x∥ for every x ∈ K with ∥x∥ = ρ.

Proof. By Proposition 1, F∗(ρ) in (25) is well-defined since
∫ b
a Φ(s)ds > 0. Let x be an element

of K such that ∥x∥ = ρ. Hence, x(s) ≥ min
s∈[a,b]

x(s) ≥ c∥x∥ = cρ for every s ∈ [a, b] and thus

ex(s) ≥ ecρ for every s ∈ [a, b]. For an arbitrary r ∈ [a, b], we have

Tx(r) ≥ Fc

∫ 1

R
Φ(s)ex(s)ds ≥ Fc

∫ b

a
Φ(s)ex(s)ds ≥ Fcecρ

∫ b

a
Φ(s)ds ≥ ρ = ∥x∥.

Therefore, max
r∈[R,1]

Tx(r) ≥ ∥x∥. In view of Proposition 2, we obtain ∥Tx∥ ≥ ∥x∥. □

Theorem 2.(Main result) Suppose that α is a real number and R ∈ (0, 1). If a positive F
satisfies F < F ∗(1), then the problem (14) has two positive solutions x1 and x2 such that
∥x1∥ < 1 < ∥x2∥.
Proof. Let c be the constant defined by (20) or (21).

(1) It follows from Lemma 1 that there exists a unique ρ1 in the interval (0, 1) such that
F = F ∗(ρ1). On account of Lemma 2, ∥Tx∥ ≤ ∥x∥ for every x ∈ K with ∥x∥ = ρ1. By
Proposition 1 and Lemma 1, we have 1 < 1/c and F ∗(1) < F∗(1) < F∗(1/c). It follows from
Lemma 1 that there exists a unique ρ1 in the interval (0, 1) such that F = F∗(ρ1). On account of
Lemma 3, ∥Tx∥ ≥ ∥x∥ for every x ∈ K with ∥x∥ = ρ1. In view of Lemma 1, ρ1 < ρ1. Thereby,
by Theorem 1(H2), the operator T has a fixed point x1 in K such that ρ1 ≤ ∥x∥ ≤ ρ1.

(2) It follows from Lemma 1 that there exists a unique ρ2 in the interval (1,+∞) such
that F = F ∗(ρ2). On account of Lemma 2, ∥Tx∥ ≤ ∥x∥ for every x ∈ K with ∥x∥ = ρ2. Since
F ∗(1) < F∗(1/c), it follows from Lemma 1 that there exists a unique ρ2 in the interval (1/c,+∞)
such that F = F∗(ρ2). On account of Lemma 3, ∥Tx∥ ≥ ∥x∥ for every x ∈ K with ∥x∥ = ρ2. In
view of Lemma 1, ρ2 < ρ2. Thereby, by Theorem 1(H1), the operator T has a fixed point x2 in
K such that ρ2 ≤ ∥x2∥ ≤ ρ2.

We note that ρ1 < 1 < ρ2. The fixed points of T coincide with the positive solutions of (14)
and thus it follows from (1) and (2) that (14) has two positive solutions x1 and x2 such that
∥x1∥ < 1 < ∥x2∥.□

4 LINEAR STABILITY ANALYSIS

Consider a perturbed flow of the form

v = v0 + v′, T = T0 + T ′, p = p0 + p′, (29)

7
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where v′, T ′, p′ are small unsteady perturbations, which are assumed in the form of normal
modes

v′(r, z, t) = u(r) e−λt+ikz,

T ′(r, z, t) = θ(r) e−λt+ikz, (30)

p′(r, z, t) = q(r) eλt+ikz,

where u(r) = (u(r), v(r), w(r)), k is the wave number and λ = λr + iλi is a complex eigenvalue.
Note that only axisymmetric perturbations are considered in the paper. The reason is our choice
of R. It is known from [14] that asymmetric perturbations are the most unstable for wide gaps
(R ≤ 0.3) while for R = 0.7 the axisymmetric perturbations are the most unstable.

As it follows from the results of the previous section, there are two solutions of the boundary-
value problem (6)–(11) in the interval 0 < F < F ∗(1). The solution with the smallest norm
should be chosen since the other solution is unstable with respect to small perturbations (and,
therefore, cannot be observed in experiments). The base flow velocity and temperature distri-
butions (corresponding to the temperature distribution with the smallest norm) are obtained
numerically using (6), (8), (10), (11, and (12). The corresponding graphs are shown in Figures
1 and 2.
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Figure 1: Vertical component of the base flow
velocity distribution for three values of F .
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Figure 2: Base flow temperature distribution for
three values of F .

Substituting (30) into (1)–(3) and linearizing the resulting equations in the neighborhood
of the base flow we obtain the system of ordinary differential equations (with zero boundary
conditions) which is solved numerically using the collocation method (the details of the numerical
procedure are described in [8]). Marginal stability curves for F = 0.1 and three values of S,
namely, S = 0.5, 0.9 and 1.6 are shown in Figure 3. As can be seen from the figure, rotation of
the inner boundary destabilizes the flow (the flow is linearly stable below the marginal stability
curve and linearly unstable above it).

Figure 4 plots the critical Grashof numbers versus S for one value of the parameter F , namely,
for F = 0.1. Destabilizing effect of rotation is clearly seen from Figure 4.
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Figure 3: Marginal stability curves for three values of S and F = 0.1.

5 WEAKLY NONLINEAR ANALYSIS

In order to analyze the behavior of the most unstable mode in the neighborhood of the
critical point (assuming that the Grashof number is slightly above the critical value, namely,
Gr = Grc(1 + ε2)) weakly nonlinear theory can be applied. In this section we briefly describe
the procedure based on the weakly nonlinear approach. Let h = (u, v, w, T, p)T be the vector
containing the unknown functions. We expand h in a power series in ε:

h = h0 + εh1 + ε2h2 + ε3h3 + ... (31)

We introduce ”slow” variables ξ = ε(z − cgt) and τ = ε2t (where cg is the group velocity).
Substituting (31) into (1)–(3) we obtain the system of equations at orders ε, ε2 and ε3 of the
form

Lh1 = 0, (32)

Lh2 = f1, (33)

Lh3 = f2, (34)

9
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Figure 4: Critical values of the Grashof number versus S for F = 0.1.

where the operator L is defined by (1)–(3) with the corresponding zero boundary conditions.
Using the method of normal modes we assume perturbations of the form

h = g1(r) exp ik(z − ct), (35)

where g1(r) is the eigenvector representing the amplitudes of the normal perturbations, k is the
wave number and c is the wave speed of the perturbation. Note that in accordance with the
linear stability theory the eigenvector cannot be uniquely defined. Thus, we modify (35) and
introduce the amplitude function A = A(ξ, τ) so that the perturbations are assumed of the form

h1 = A(ξ, τ)g1(r) exp ik(z − ct) + c.c., (36)

where the abbreviation c.c. means ”complex conjugate”. Substituting (36) into (32)–(34) we
obtain

L1g1 = 0, (37)

L1g2 = s1, (38)

L1g3 = s2. (39)

10
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The function f1 in (33) contains the terms proportional to AA∗, Aξ and A2. Thus, the solution
to (33) can be represented in the form

h2 = AA∗g2
(0)(r) +Aξg2

(1)(r) eik(z−ct) +A2g2
(2)(r) e2ik(z−ct) + c.c. (40)

The functions g2(r)
(i), i = 0, 1, 2 can be found from the solutions of three boundary value

problems that are obtained by substituting (40) into (33). It can be shown that the solution
to (38) exists if and only if the function s1 in (38) is orthogonal to all eigenfunctions of the
corresponding adjoint problem (see [15]). This solvability condition follows from the Fredholm’s
Alternative and allows one to determine the group velocity cg. Next, we substitute (36) and (40)
into (34) and apply the Fredholm’s Alternative to (39). The result is the complex Ginzburg-
Landau equation of the form

Aτ = σA+ δAξξ − µ|A|2A. (41)

The coefficients of the equations are obtained in terms of integrals containing the eigenfunction
of the linear stability problem, the eigenfunction of the corresponding adjoint problem, and the
functions g2(r)

(i), i = 0, 1, 2.

6 CONCLUSIONS

In the present paper we analyze linear and weakly nonlinear instability of a convective flow
in a tall vertical annulus. The base flow component in the vertical direction is generated due to
nonlinear heat sources (heat is released in the fluid as a result of a chemical reaction). It is as-
sumed that the inner cylinder is rotating with constant angular velocity while the outer cylinder
is at rest. The nonlinear boundary value problem for the base flow temperature distribution is
analyzed in detail. It is proved in the paper that for a certain range of the Frank-Kamenetskii
parameter F there exist two solutions of the corresponding boundary value problem such that
the norm of one solution is smaller than one and the norm of the other solution is larger than
one. The solution with the smallest norm is chosen for linear stability analysis since the other
solution is unstable. Linear stability calculations show destabilizing effect of rotation. Multi-
ple scale expansion in the neighborhood of the critical point results in evolution equation for
the amplitude of the most unstable mode. It is shown that the corresponding equation is the
complex Ginzburg-Landau equation.
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