
The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024

3–7 June 2024, Lisboa, Portugal

MACHINE LEARNING-BASED SURROGATES FOR
UNCERTAINTY QUANTIFICATION AND DESIGN UNDER

UNCERTAINTIES

VARVARA G. ASOUTI1,2, MARINA G. KONTOU2 AND
KYRIAKOS C. GIANNAKOGLOU2

1 FOSS: Flow & Optimization, Software & Services, 18531 Piraeus, Greece
e-mail: vasouti@fossgp.com

2 Parallel CFD & Optimization Unit, School of Mechanical Engineering
National Technical University of Athens, 15772 Athens, Greece

e-mail: mkontou@mail.ntua.gr, kgianna@mail.ntua.gr

Key words: Machine Learning, Uncertainty Quantification, Design Under Uncertainties

Summary. By means of three external aerodynamics cases, two isolated airfoils and one
wing, this paper presents an assessment of the use of Machine Learning (ML) based models
in Uncertainty Quantification (UQ) and Design under Uncertainties. Deep Neural Networks
(DNNs) are used as surrogates to CFD codes to support UQ which is performed using the
otherwise prohibitively expensive Monte-Carlo as well as the non-intrusive, Gauss Quadrature
and regression-based, Polynomial Chaos Expansion methods. In all cases, UQ is performed and
comparisons are made; in one of them, the UQ algorithm is incorporated into an aerodynamic
shape optimization under uncertainties, via a gradient-free method. In the examined appli-
cations, uncertainties are associated with the constants of the γ − R̃eθt transition model, the
surface roughness, geometric imperfections and/or flow conditions. Regarding the ML models
themselves, fully-connected DNNs and the λ−DNN developed by the group of authors are used
and compared. The comparison is fair since, before being used for UQ, the hyperparameters of
both networks are optimized using an evolutionary algorithm.

1 INTRODUCTION

Aerodynamic Computational Fluid Dynamics (CFD)-based analyses and/or optimizations
commonly consider uncertainties associated with the boundary conditions, the flow model con-
stants, geometric imperfections, etc. To account for them, Usncertainty Quantification (UQ) of
the flow system responses, a.k.a. Quantities of Interest (QoI), is necessary.

Monte Carlo (MC) methods perform an exhaustive sampling which makes them non-affordable
when it comes to UQ in problems with computationally expensive tools such as a CFD s/w.
More efficient approaches, such as (the non-intrusive variant of) the Polynomial Chaos Expan-
sion (PCE), [1], are usually preferred in engineering problems. Even in this case, though, the
number of simulations required by the UQ increases exponentially with the number of uncertain
variables. Thus, in the literature, efficient UQ methods for aerodynamic problems with many
uncertain variables, is still an open question.
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On the other hand, during the last years, Machine Learning (ML) has become very popular
across various engineering fields, [2, 3, 4]. It can also be used to support the UQ by deriving
dependable ML-based surrogates to computationally expensive CFD tools, [5].

This paper investigates the use of Deep Neural Networks (DNNs) as a means to support the
CFD s/w and supporting either the MC or the PCE-based UQ methods. This is can be seen
as extension of the work presented in [6] (from the group of authors, also) that used Radial
Basis Function (RBF) networks, for the same purpose. Herein, both “standard” fully connected
and λ−DNN architectures are used and compared. DNNs’ configurations are optimized (instead
of being arbitrarily defined by the user or determined through a trial-and-error process) using
an Evolutionary Algorithm (EA) for minimum prediction error. The so-trained DNNs along
with the aforementioned UQ methods are used to quantify uncertainties associated with the
transition model constants and/or aerodynamic flow conditions and/or geometric imperfections
(modeled through the Karhunen–Loève, KL, expansion) and/or the surface roughness, for flows
around isolated airfoils and wings.

2 METHODS AND TOOLS

2.1 The CFD Tool

The CFD tool used in this paper is the in-house GPU-accelerated code PUMA, [7], which
solves the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flows of compressible
fluids. In 3D, the mean-flow equations read

∂Un
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nk

∂xk
− ∂fvis

nk
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with n ∈ [1, 5] and k ∈ [1, 3]. Eqs. 1, are solved for the conservative flow variables U =
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E = p

γ−1 + 1
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and turbulent viscosity µt is computed as µt =ρν̃fv1. All other terms and constants are defined in
[8]. To predict laminar-to-turbulent transition, the intermittency γ and transition momentum-
thickness Reynolds number R̃eθt fields are additionally computed by solving the two PDEs of
the γ−R̃eθt transition model, [9], which read
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In the transition model equations, the production and destruction terms, are
Pγ = ρcα1FlengthFonset [ϕ−300 (Ω, Ωthres)] √

γ (1 − cϵ1γ) (5)
Eγ = ρcα2Fturb [ϕ−300 (Ω, Ωthres)] γ (cϵ2γ − 1)
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where ϕq (α, β) is a smooth min. /max. surrogate function for two variables α, β (with q <0 for
the min. and q > 0 for the max. function), Ω the vorticity and Ωthres a limiting function based
on freestream quantities. Surface roughness hrms is present into the ReSCF term which reads
ReSCF =−35.088 ln (hrms/θt)+319.51+f(DHCF +)−f(DHCF −). The expressions of other terms
can be found in [9], where the values of the model constants are: cα1 = 2, cα2 = 0.06, cϵ1 = 1,
cϵ2 =50, cθ,t =0.03, ccrossflow =0.6, σθ,t =2 and σf =1. The γ field computed by solving Eq. 3,
affects the production term of the Spalart-Allmaras model equation which becomes P̃ν̃ =γρcb1S̃ν̃.

2.2 Uncertainty Quantification Methods

The MC method and two non-intrusive variants of the PCE are used to quantify the effect of
uncertainties on the QoI. Let c⃗∈RM be the vector of uncertain variables where each ci, i ∈ [1, M ]
has its own probability density function. The MC method requires a very large number of
evaluations to compute the statistical moments of any QoI, J(c⃗). On the other hand, the
truncated PCE of J yields

J(c⃗) =
Q∑

i=0
JiHi(c⃗) (7)

where Hi(c⃗) are multivariate orthogonal polynomials, selected once the probability distribution
of each uncertain variable is known. The number Q+1= (M+K)!

M !K! of expansion terms depends on
the number of uncertain variables M and the user-defined maximum degree K of the polynomi-
als, a.k.a. chaos order. After computing the (Q + 1) coefficients Ji, the mean (µJ) and standard
deviation (σJ) of J are given by, [1],

µJ = J0 , σJ =
( Q∑

i=1
J2

i

)1/2

(8)

A way to compute Ji is by performing Galerkin projections of J to Hi(c⃗) and, then, computing
the resulting integrals using the Gauss Quadrature (GQ) rules; a full-grid integration asks for
(K + 1)M calls to the s/w computing J . This stands for the GQ-based PCE (abbreviated to
gPCE).

Alternatively, the Ji can be computed using regression (rPCE). J is computed at S value-
sets of c⃗ (by sampling the uncertain space through, for instance, the Latin Hypercube Sampling
method; LHS). Then, once Eq. 7 is valid for all samples, leading to the following system of S
equations 

H0(c⃗1) . . . HQ(c⃗1)
... . . . ...

H0(c⃗S) . . . HQ(c⃗S)




J0
...

JQ

 =


J(c⃗1)

...
J(c⃗S)

 (9)

with (Q+1) unknowns, can be written. S should exceed Q+1, in which case Eq. 9 stands for a
least-squares problem. In this work, oversampling by 6 is used, i.e. S ≃6(Q + 1).
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2.3 Machine Learning Tools

This work makes use of both the “standard” fully connected network (fc-DNN) and the two-
branch λ−DNN architecture proposed in [10] by the group of authors. The latter is named after
its two-branch shape which looks like the Greek letter λ, see Fig. 1. It includes two separate
input branches merged into the main (output) one. Each branch first processes data through
its fully-connected layers; then, the main branch further processes merged signals through its
own fully-connected layers and concludes to the network output(s). The two branches allow the
separate processing of input data of different nature such as geometric and flow data. Thus,
different features from each branch are extracted, before merging them.

The hyperparameters of both networks are optimized for minimum prediction error. In the
fc-DNN, this helps deciding the optimal combination of the numbers of layers and neurons per
layer as well as the type of activation functions. Numbers of neurons are always in powers of
2 and the activation functions are selected among the Rectified Linear Unit (ReLU), Gaussian
Error Linear Unit (GELU), hyperbolic tangent (tanh) and sigmoid. In the λ−DNN, for each
one of the left/right input and the output branches, the numbers of layers and neurons per layer
are similarly optimized, over and above to the activation functions. An additional variable is
used/to define the (common) number of neurons at the last layer of the left and right branches
in order to ensure that these can merge to form the output branch.

Figure 1: The λ−DNN architecture. Each layer (indi-
cated with a few filled circles) on each branch comprises
a number of neurons.

Figure 2: ONERA M6 Wing - Skin friction
coefficient (Cf ) over the wing suction side, as
computed using the CFD tool.

2.4 Optimization Method - The Dual Role of Evolutionary Algorithms

This paper involves two different optimizations, for a different purpose each, namely to:
(i) determine the optimal DNN configuration for each QoI, and
(ii) find the best performing aerodynamic shape, by considering uncertainties.

Both optimizations are based on a (µ, λ) EA with µ parents and λ offspring, namely the NTUA
in-house EASY s/w, [11]. During the search of the optimal solution, EASY uses on-line trained
“personalized” surrogate models or metamodels replacing the evaluation s/w (even if this is a
quite fast DNN), giving rise to the so–called Metamodel-Assisted EA (MAEA). The metamodels
built in EASY are standard RBF networks and should be distinguished from the DNN-based sur-
rogates. The RBF-based metamodels start being used after having evaluated (on the user-defined
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evaluation tool) and stored (in the EA-database) at least T MM (user-defined) individuals during
the previous generations. Then, for each newly generated offspring, a “personalized” metamodel
is trained on the “closest” individuals found in the EA-database used to approximately evaluate
it; only a few potentially most promising individuals (λe ≪λ; λe is also user-defined) in the
current offspring population are re-evaluated on the user-defined evaluation tool.

To reduce the turnaround time, during the optimization of a DNN configuration, its training
is limited to a few epochs. Therefore, once the MAEA finds the best configuration, this should
adequately be trained using as many epochs as necessary.

2.5 Geometric Uncertainties Modeling

Geometric uncertainties are modeled using the KL expansion technique, according to which
stochastic perturbations are superimposed onto the nominal airfoil geometry, in the normal
to the wall direction; the suction and pressure side of the airfoil are separately perturbed.
Perturbations are generated as

Mmod∑
i=1

√
λiϕi(s)ci (10)

where s is the curvilinear coordinate along each airfoil side and λi and ϕi are the eigenvalues
and eigenfunctions, respectively, of the selected covariance kernel (Gaussian kernel with zero
mean value). For known standard deviations of ci, both λi and ϕi are given by closed-form
expressions, [12]. Herein, the number of terms Mmod is selected so as

∑Mmod
i=1 λi ≳ 0.95

∑∞
i=1 λi.

3 APPLICATIONS

In all cases, one Time Unit (1 TU) is the (average) cost of performing a CFD simulation
(using the tool of Sec. 2.1) in this particular case, on the generated computational grid. It is
also assumed that CFD simulations on modified geometries with the same grid size have the
same cost. It is obvious that TU is different in each presented case.

3.1 The ONERA M6 Wing Case

The first case deals with the transitional flow around the ONERA M6 wing, [13] at M∞ =
0.262, Rec = 3.5 · 106, zero angle of attack and yaw angle and turbulence intensity Tu = 0.2%.
Surface roughness is hrms = 5µm. The γ − R̃eθt transition model is used. The skin friction
coefficient (Cf ) field on the wing suction side computed using the CFD tool is illustrated in Fig.
2. White areas indicate the part of the wing surface along which the flow is laminar.

The transition model includes many constants calibrated against experimental data on dif-
ferent cases that the one studie here. So, these model constants can be non-perfectly suited
to this particular problem. Additionally, measurements of surface roughness (hrms) are usually
characterized by uncertainties. Having these in mind, this case is used to quantify uncertainties
in the drag coefficient (CD) caused by changes in the values of four γ −R̃eθt model constants
(cα1 , cα2 , cϵ2 , cθ,t) and the surface roughness (hrms) in Eqs. 5-6. This makes M = 5 uncertain
variables in total, which are all assumed to follow normal distributions as:

cα1 ∼N (2.0, 0.2), cα2 ∼N (0.06, 0.006)
cϵ2 ∼N (50.0, 5.0), cθ,t ∼N (0.03, 0.003), hrms ∼N (5 · 10−6, 1.6 · 10−6)µm

5
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Performing UQ using the gPCE on the CFD tool with K = 2 requires 243 (= 35) CFD runs
(at a cost of 243 TUs), for the 243 Gauss nodes determined by the GQ rules, see Sec. 2.2.
On the other hand, 120 samples in the uncertain variables’ space are generated using the LHS
method and used to train the DNNs predicting the QoI. Both fc-DNNs and λ−DNNs are trained
and compared. For the λ−DNN, the transition model constants and the surface roughness are
presented to the left and right input branches, respectively.

As described in Sec. 2.3, both DNN configurations result from a MAEA-based optimization
using the tool described in Sec. 2.4. DNNs are separately configured for the 120 samples from
the LHS and the 243 Gauss nodes, as training data; in total, two λ−DNNs and two fc-DNNs
are optimized. The MAEA-based optimization of any DNN takes no more than 1 TU, including
its final training. Table 1 summarizes the optimized DNN architectures.
Table 1: ONERA M6 Wing - Optimized configurations of the fc-DNN and λ−DNN architectures using
the 120 samples from the LHS (top) and the 243 Gauss nodes (bottom) as training data.

Layers Neurons/Layer Act. Functions
Trained on 120 samples
λ−DNN
Left input branch (cα1 , cα2 , cϵ2 , cθ,t) 5 1024, 64, 32, 128, 4096 ReLU
Right input branch (hrms) 3 128, 256, 4096 ReLU
Output branch 1 64 sigmoid
fc-DNN (cα1 , cα2 , cϵ2 , cθ,t, hrms) 3 128, 2048, 32 ReLU/tanh
Trained on 243 Gauss nodes
λ−DNN
Left input branch (cα1 , cα2 , cϵ2 , cθ,t) 2 128, 64 ReLU
Right input branch (hrms) 4 1024, 2048, 128, 64 ReLU
Output branch 3 64, 64, 32 tanh
fc-DNN (cα1 , cα2 , cϵ2 , cθ,t, hrms) 5 256, 4096, 32, 256, 32 ReLU/sigmoid

Error metrics, such as the percentage Mean Absolute Error (MAE %) and the Root Mean
Square Error (RMSE), of DNNs trained on data of different size, are compared in Fig. 3. Overall,
both networks perform very well due to their optimized architectures. Using 120 training data,
the λ−DNN outperforms the fc-DNN. The fc-DNN reaches the accuracy of the λ−DNN by
increasing the number of training data to 243.

Figure 3: ONERA M6 Wing - MAE % (left) and RMSE (right) error metrics of λ−DNNs and fc-DNNs.
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The so-trained DNNs are then used to support the UQ using gPCE and MC methods. Results
are, also, compared with those of the gPCE and rPCE supported by the CFD tool (denoted
as gPCECFD and rPCECFD respectively; hereafter, the name of each method is indexed by
the evaluation tool used to support it), and are summarized in Table 2. Column labeled as
“Samples” indicates the number of data processed for UQ, while column “TUs” stands for the
computational cost to perform the CFD evaluations and train the DNNs (in case these are used).
The outcome of gPCECFD (using the 243 Gauss nodes) and rPCECFD (with the 120 samples)
is presented in Table 2, top. The statistical moments computed by the rPCECFD are in good
agreement with those from gPCECFD, considered to yield reference results. The computed mean
values are practically identical with small differences (∼ 2.3%) in standard deviation.

As an extra test, DNNs trained on the 120 samples are also used to predict the QoI values
at the 243 Gauss nodes (ignoring, on purpose, the available CFD results) and, then, perform a
gPCE UQ. The outcome of this try is given in Table 2, center. The mean value computed using
either network is in very good agreement with the gPCECFD. Regarding the standard deviation,
the use of the λ−DNN yields by far better results, i.e. with error less than 0.1% compared to
the ∼1% error of the fc-DNN. This reconfirms the very good prediction accuracy of the λ−DNN
when trained on 120 samples.

Finally, the outcome of the MC method implementing DNNs trained on both the 120 samples
and the 243 Gauss nodes is also given in Table 2, bottom. In any MC run, 5×106 replicates
are generated and predicted. The MCλ−DNN and MCfc-DNN yield practically the same µCD

; the
percentage error, compared to the outcome of gPCECFD, is less than 0.15% when trained on 120
samples and becomes even smaller by increasing the number of training data. The σCD

values
computed by MCλ−DNN are quite closer to those of the gPCECFD, irrespective of the number
of training data. For the MCfc-DNN to reach the same level of accuracy, more training patterns
are required.

To further explore the potential of the λ−DNN, thiss was additionally trained using only 60
samples (randomly selected among the 120 ones generated using the LHS) and used to support
MC. The outcome of this study is also included in Table 2. Overall, it is shown that a λ−DNN
may to support the MC method with acceptable accuracy (compared to the gPCECFD) even
when trained with less data compared to the fc-DNN. These results are achieved with up to
∼75% reduction in the computational cost.

3.2 The NACA16-103 Airfoil Case

The second case is dealing with the flow around a NACA16-103 profile airfoil which represents
an open rotor blade design, provided by SAFRAN, in the framework of the NEXTAIR project
(see acknowledgement). The flow conditions correspond to cruise at an altitude of 37000ft;
a∞ = 1o, u∞ = 252.28m/s, Rec = 3.6 · 106 and static temperature T∞ = 216.65K. At these
conditions, a shock wave appears half-chord on the suction side, Fig. 4.

Both operational and geometric uncertainties are considered. The far-field temperature and
velocity vary stochastically; the differences δu∞ and δT∞ from reference values u∞ and T∞
follow a Beta distribution as:

δu∞ ∼Beta(4.0, 4.0, −1.0, 1.0), δT∞ ∼Beta(4.0, 4.0, −2.0, 2.0)

where the first two terms in the parentheses are the beta distribution parameters (α, β) whereas
the last two the bounds of the distribution. Next to them, geometric uncertainties are modeled
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Table 2: ONERA M6 Wing - Statistical moments of the CD. Comparison of UQ methods supported
either by the CFD or the DNNs trained on the 234 Gauss nodes, the 120 and 60 samples.

UQ methodTool Samples TUs µCD
σCD

gPCECFD 243 243 0.0079933 0.00026906
rPCECFD 120 120 0.0079928 0.00027554

gPCEλ−DNN 243 121 0.0080045 0.00026882
gPCEfc-DNN 243 121 0.0080060 0.00026629
MCλ−DNN 5 × 106 244 0.0079860 0.00026862
MCfc-DNN 5 × 106 244 0.0079927 0.00027036
MCλ−DNN 5 × 106 121 0.0080047 0.00026815
MCfc-DNN 5 × 106 121 0.0080058 0.00026293
MCλ−DNN 5 × 106 61 0.0080005 0.00026784

Figure 4: NACA16-103 Airfoil - Mach number field computed by the CFD tool.

as is Sec. 2.5; 10 uncertain variables (5 per airfoil side) following a normal distribution with
zero mean value and unit standard deviation (i.e. N (0.0, 1.0)) are considered. Thus, the total
number of uncertain variables is M =12. The QoIs are the lift (CL) and drag (CD) coefficients.

Initially, 300 samples in the ci space were generated using LHS and simulated on the CFD
tool. This set was further enriched (the criterion being the reduction of the variance in the drag
prediction by a surrogate developed by SAFRAN) to 600 samples, evaluated on the CFD tool.
Using the 600 samples, the fc-DNN configuration was optimized using MAEA. For the λ−DNN,
the 300 initial samples proved to be enough and there was no need to resort to the 600 training
patterns. The λ−DNN architecture utilizes the 10 geometric uncertainties as inputs to the left
whereas the two flow conditions are presented to the right branch. The optimized configurations
are given in Table 3. The cost for finding and training the best DNN configuration is no more
than 2 TUs. The trained DNNs are used to evaluate 50 × 106 random samples, to be used by
the MC method. Given the huge number of MC samples, the I/O and prediction cost is not
negligible at all; for M =12 uncertain variables and 50 × 106 samples this amounts to 1.25 TUs.
Thus, the overall cost for training and using any of the two networks to support MC is 4.5 TUs
which should be added either to the 300 or 600 TUs spent for evaluating the samples used to
train the λ−DNN and the fc-DNN, respectively.

Results from the MCλ−DNN and MCfc-DNN are summarised in Table 4 and compared to

8
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the outcome of the rPCECFD (with both 300 and 600 samples). Given that, for chaos order
K = 2, (Q + 1) = 91 Ji coefficients must be computed, the use of either 300 or 600 samples
ensures an oversampling ratio more than 3 and ∼ 7, respectively. The two rPCECFD UQ runs
lead to small differences in the statistical moments of CD. A working hypothesis is made that
the rPCECFD, using 600 samples, computes reference statistical moments. It can be seen that
the MCλ−DNN yields more accurate predictions than the MCfc-DNN, especially for σCD

. The
MCλ−DNN predictions are also in very good agreement with the rPCECFD results on the 600
samples. Overall, the MCλ−DNN, compared either with the MCfc-DNN or the rPCECFD, provides
accurate predictions at half of the computational cost.

Table 3: NACA16-103 Airfoil - Configuration of the fc-DNN and λ−DNN architectures predicting the
two QoIs (CD and CL).

Layers Neurons/Layer Act. Functions
λ−DNN for CD

Left input branch (10 geometric vars) 3 4096, 512, 512 ReLU
Right input branch (2 flow conditions) 5 4096, 32, 256, 32, 512 ReLU
Output branch 2 1024, 4096 GELU

λ−DNN for CL

Left input branch (10 geometric vars) 2 2048, 64 ReLU
Right input branch (2 flow conditions) 2 2048, 64 ReLU
Output Branch 3 512, 256, 64 sigmoid
fc-DNN for CD 7 2048, 64, 2048, 512, 1024, 128, 512 GELU/tanh
fc-DNN for CL 4 64, 32, 64, 64 ReLU/GELU

Table 4: NACA16-103 Airfoil - Statistical moments of the QoIs. Comparison of different UQ methods
supported either by the CFD or the fc-DNN and λ−DNN, trained on 600 and 300 samples, respectively.

UQ methodTool Samples TUs µCD
σCD

µCL
σCL

rPCECFD 600 600 0.00839345 0.00021952 0.412822 0.012137
rPCECFD 300 300 0.00837136 0.00021607 0.412770 0.012146
MCλ−DNN 50 × 106 304.5 0.00839195 0.00021930 0.411961 0.011923
MCfc-DNN 50 × 106 604.5 0.00839201 0.00023098 0.412425 0.012242

3.3 Optimization under Uncertainties of the S8052 Airfoil Case

The flow around the S8052 isolated airfoil at flow conditions: M∞ = 0.1, α∞ = 3o, Rec =
5.05 · 106 and Tu = 1.28% is studied. For the simulations, the nominal values of the γ −R̃eθt

transition model are used, see Sec. 2.1.
Herein, the airfoil shape is optimized by considering geometric uncertainties. For the opti-

mization, the unperturbed airfoil shape is parameterized using a 13×9 NURBS control lattice,
as in Fig. 5. The 15 red control points can be displaced in the normal-to-the-chord direction,
giving rise to N =15 design variables, in total. Geometric uncertainties are modeled as in Sec.
2.5; M =18 uncertain variables (9 per airfoil side) following a normal distribution (N (0.0, 0.3))
are considered. The drag-to-lift ratio is selected as the QoI, i.e. J = CD/CL and the objective
function to be minimized during the shape optimization is F =µJ +σJ .
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Figure 5: S8052 Airfoil - NURBS control lattice used to parameterize the airfoil shape. Only control
points marked in red can be displaced.

Since, in the previous cases, the λ−DNN provided more accurate predictions even when
trained on less data, only the λ−DNN architecture is used below. In specific, two λ−DNNs are
trained to predict the CD and CL values; their ratio (J) as well as its statistical moments are,
then, computed. To train the networks, the design space is sampled (based on the ranges of
control points in red, Fig. 5) using the LHS method; 200 different airfoil geometries are generated
and evaluated on the CFD tool.

The design variables vector and the 198 airfoil nodal coordinates (of the unperturbed shape)
are used as inputs to the two branches of the λ−DNN. This selection allows for the network to
accurately predict CL and CD, not only in the case of a new airfoil geometry resulting during
the optimization for different value-sets of the design variables, but also in case of geometric
imperfections (the effect of which is much smaller). The cost for evaluating the training patterns
is 200 TUs. The additional cost for finding the optimal λ−DNN architecture and training the
network for both CL and CD is rounded up to 12 TUs.

The λ−DNN is used to support both the MC method and rPCE for the computation of µJ

and σJ . For 18 uncertain variables, the UQ for each candidate airfoil geometry with the MC
method would require the generation of, at least, 106 perturbed geometries; in this case, the
computational cost of UQ is ∼1 TU. On the other hand, generating 1000 perturbed geometries
is adequate to support the rPCE (for chaos order 2, in which case 190 coefficients must be
computed) and the overall computational cost of the UQ is 0.125 TUs. During the shape
optimization run, the rPCEλ−DNN is used as the evaluation tool. The latter predicts J for the
baseline geometry with ∼ 2.5% error.

A termination criterion of 400 TUs is set for the shape optimization run. Given that the
212 TUs were spent for evaluating the samples and setting up the optimal λ−DNN, the shape
optimization should not exceed 1500 evaluations (1500 × 0.125 ≃ 188 TUs to reach the termi-
nation criterion). The optimization is carried out by means of a (10, 30) MAEA. The use of the
RBF metamodels in the MAEA starts after having evaluated (on the rPCEλ−DNN) T MM=300
airfoils and only λe= 5 members in each generation are re-evaluated on the rPCEλ−DNN . The
optimization convergence history is shown in Fig. 6.

The optimized shape is re-evaluated on the CFD tool and the objective function value as well
as the statistical moments of the QoI are given in Table 5. It can be seen that the optimized
geometry is better than the baseline one, with ∼17% reduction in F which is mainly attributed
to the reduction in µJ .
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Figure 6: S8052 Airfoil - Convergence history (purple line) of the shape optimization run under geometric
uncertainties; the vertical axis corresponds to values of F predicted by the rPCEλ−DNN model. The red
line (first part) corresponds to the cost of evaluating the samples while the (small) black line (in the
middle) to the optimization of the λ−DNN configuration including network training.

Table 5: Comparison of the objective function F = µJ + σJ and statistical moments of J = CD/CL of
the baseline and the optimized geometries; the latter after being (re)-evaluated on the CFD tool.

Geometry F µJ σJ

Baseline 0.0172095 0.01694 0.0002695
Optimized 0.0143655 0.01391 0.0004555

4 CONCLUSIONS

This paper contributes to the assessment of the use of ML-based tools, as surrogates to CFD
analysis codes, in UQ and aerodynamic shape optimization under uncertainties. In specific,
standard fully connected and λ−DNN, are used to predict the QoIs in the framework of the
Monte-Carlo and regression PCE UQ methods. The two UQ studies related to the flows around
a wing and the NACA16-103 airfoil, demonstrated that the DNNs may efficiently support the
MC method as they reduce the overall computational cost by even 75%, compared to the same
UQ method relying exclusively on the CFD tool. It was also shown that the error in predicting
the first statistical moments of the lift and drag coefficients is smaller if an appropriately op-
timized λ−DNN architecture, instead of standard fc-DNN, is used. For a fair comparison, an
MAEA was used to find the optimal configuration of both the λ−DNN and the fc-DNN. Then,
an optimized λ−DNN was used to support the regression PCE UQ in CFD-based optimization
under geometric uncertainties. DNNs’ optimization was based on a metamodel-assisted evolu-
tionary algorithm. Since, for each candidate solution (each new geometry generated during the
evolution), hundreds of perturbed geometries must be evaluated, the QoI was computed using
the λ−DNN and rPCE, at a much lower cost. This is faster than the MC with λ−DNN by eight
times and faster than the use of the CFD tool by orders of magnitude.
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