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Abstract. Polymers have become increasingly essential to cope with modern engineering challenges. To
better understand their microstructure’s influence, multi-scale approaches that couple molecular dynam-
ics and continuum mechanics are emerging progressively. However, these simulation techniques require
detailed knowledge of the material behavior, which is commonly derived from molecular dynamics sim-
ulations. Reducing the degrees of freedom by coarse graining enables the investigation of sufficiently
large samples and thus we focus on coarse-grained (CG) polystyrene as a model material.

The goal of this contribution is two-fold: Firstly, we identify the minimum sample size necessary to
analyze the mechanical properties. Secondly, we quantify the influence of chain length on the material
behavior of polystyrene. To this end, we investigate density, end-to-end distance, stress-strain behavior,
Young’s modulus, and Poisson’s ratio. In conclusion, we were able to verify that we can use significantly
smaller samples for our investigations without affecting their structure or mechanical behavior. The chain
length has a drastic influence on the mechanical properties, with a loss of stiffness in the range of 15 %
for very short-chain specimens.

1 INTRODUCTION

Amorphous polymers, e.g., polystyrene, are used in various applications, but there are still aspects of
their mechanical behavior that we do not understand well from an engineering perspective. Phenomena
such as the fracture of polymers or polymer composites require a profound knowledge of the underly-
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ing microstructure and its impact on the material’s overall properties. Since these effects usually occur
on the nano-scale, experiments are often either very demanding or simply impossible. Unfortunately,
established numerical methods of different disciplines are not able to solve this problem either: On the
one hand, classical continuum approaches rely on a precise constitutive model that cannot fully cap-
ture molecular mechanisms. On the other hand, particle-based simulation methods are computationally
expensive and limited to examining microscopic specimens insufficient to address engineering problems.

Therefore we combine the advantages of particle-based and continuum methods in a concurrent mul-
tiscale approach called the Capriccio method, which is specifically designed to model and investigate
amorphous polymers and nanocomposites. The method was introduced by Pfaller et al. [1, 2, 3] and has
been optimized and extended since then [4, 5]. The Capriccio method has been successfully employed
to gain insights into mechanical interphases in polymeric nanocomposites [6, 7]. It is a partitioned do-
main approach that couples an atomistic region described by Molecular Dynamics (MD) to a continuum
discretized by Finite Elements (FE). In the overlapping region, denoted as the bridging domain (BD),
virtual anchor points (APs) are introduced. Each of them is tethered to a specific MD particle via a
harmonic spring, and follows the continuum deformation, and thus enables an information transfer be-
tween the two domains. The system is solved in the staggered fashion depicted in Fig. 1: A load is
applied to the undeformed configuration via the continuum domain resulting in new AP positions. A
subsequent equilibration of the particle domain yields anchor point forces due to the connection via har-
monic springs. These serve as additional Neumann boundary conditions in the following FE run. These
MDFE-iterations are repeated until the deformed system has reached an overall equilibrium.

Since periodic boundary conditions cannot be used in the above setup, the Capriccio method relies on
stochastic boundary conditions (SBC) [8] instead. Here, dissipative particle dynamics (DPD) are super-
imposed to the outermost layer of particles to serve as a thermostat for the enclosed atoms. The chosen
DPD approach uses the same forces fields as the pure MD region employing classical Newtonian dy-
namics. Thus, the impact on the mechanical properties is kept to a minimum. To avoid atom leakage,
the APs have the additional function of confining the particle domain, exerting pressure, and thus acting
as a barostat. The APs’ density increases exponentially towards the border so as to smoothly bridge the
scales. All molecules protruding into the pure continuum are removed, resulting in a severe shortening
of the polymer chains at the boundary (cf. Fig. 2) and thus causing an unphysical change in the mi-
crostructure. While spatially small, this local change could affect the whole method’s performance since
the mechanical properties of polymers are known to depend mainly on the molecular structure of the
material.

Therefore, in the following, we investigate the extent to which the chain length influences mechanical
properties of our polystyrene sample system.

2 SAMPLE PREPARATION & UNIAXIAL TENSION SETUP

In this study, atactic polystyrene serves as a model system and is simulated at a coarse-grained resolution
to increase the computational efficiency allowing us to investigate larger systems. Ghanbari et al. [9]
used Iterative Boltzmann Inversion [10] to derive appropriate coarse-grained force fields by substituting
every styrene monomer with a so-called superatom [11]. The resulting model has already proven its ca-
pability and reliability in the following applications: Farah et al. investigated the polymer chain growth
[12], Riccardi et al. locally derived the Poisson’s ratio [13], Rahimi et al. developed a correlation between
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Figure 1: Spatial setup of the Capriccio method:
Simulation domain partitioned into continuum, par-
ticle region and bridging domain where both de-
scriptions overlap. The coupled solution is obtained
in a staggered fashion by carrying out MDFE itera-
tions until an overall equilibrium is reached.
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Figure 2: Length of the chains plotted over their
center of gravity: The initial chain length of 200
monomers reduces drastically in the bridging do-
main (BD) due to the cutting of protruding chains
required in SBC.

Young’s moduli at atomistic and coarse-grained resolution based on the associated glass transition tem-
peratures [16], and Munao et al. carried out a study of nanoparticles in polymer melt [14]. Furthermore,
we performed mechanical deformation simulations [17, 18] and, on this basis, developed a sophisticated
inelastic constitutive law [19].

The polystyrene samples are generated with a self-avoiding random walk algorithm [9], initialized at
590 K and cooled down to 100 K below the glass-transition temperature. Since coarse-graining always
induces an implicit speed-up of the system’s dynamics due to the reduced complexity, these temperatures
differ from their atomistic equivalents [15]. We carry out the cooldown and equilibration procedure
described in more detail in [17] with the parameters listed in Tab. 1. Two sets of samples are generated:
The first set is intended to show whether the results are independent of the system size. Therefore, the
sample volume is adjusted by the number of polymer chains while the chain length remains constant,
as shown in Tab. 3. The second set aims to investigate the effect of the polymer chain length on the
mechanical properties and contains samples of the same size but with varying chain lengths (cf. Tab. 4).
To obtain statistically reliable results, ten randomized variants of each sample type are created and hence
all quantities presented hereafter are the corresponding averages.

The uniaxial tension tests are performed analogously to [17]: We deform the samples by mimicking a
canonical ensemble in the x-direction, enabling us to set a new box length lx. In y- and z-directions,
the atmospheric pressure patm is predefined like in an isothermal–isobaric ensemble, allowing for a free
lateral contraction, cf. Fig 3. We investigate an overall deformation of 8 % strain, applied in load steps
of ∆εxx = 0.1% where ∆n = 40000 time steps are evaluated in each of these steps. In order to achieve
strain rates ε̇xx of 0.1 %ns−1,1 %ns−1, and 20 %ns−1 the time step is adjusted according to

∆t =
∆εxx

∆n ε̇xx
(1)

and listed together with the remaining parameters in Tab. 2.
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Table 1: MD parameters for the cooldown simula-
tions.

time step 5 fs
temperature coupling time 200 fs
pressure coupling time 500 fs
isothermal compressibility 1×10−6 kPa
atmospheric pressure 101.3 kPa
cooling rate 5 Kns−1

Table 2: MD parameters for the uniaxial tension
tests.

maximum strain 8 %
strain increment 0.1 %
strain rates 0.1, 1, 20 %ns−1

time steps per load step 40000
time step 25, 2.5, 0.125 fs
temperature 100 K
isothermal compressibility 1×10−6 kPa
atmospheric pressure 101.3 kPa
temperature coupling time 200 fs
pressure coupling time 5000 fs

All simulations are carried out with the MD software IBIsCO specifically developed for coarse-grained
force fields [15].

Table 3: Set of samples to identify size effect.

num. of chains chain length tot. num. of atoms

50 200 10000
100 200 20000
150 200 30000
200 200 40000
250 200 50000
300 200 60000
450 200 90000
600 200 120000

Table 4: Set of samples to investigate effect of
chain length.

num. of chains chain length tot. num. of atoms

100 100 10000
200 50 10000
400 25 10000
1000 10 10000
2000 5 10000
3333 3 9999

3 SAMPLE SIZE

Since the necessary computing time of our MD simulations scales linearly with the number of atoms, we
strive to identify the minimum sample size to reduce the computational costs. Therefore, we compare
structural quantities such as density and end-to-end distance and mechanical quantities such as stress,
Young’s modulus, and Poisson’s ratio over a wide range of sample sizes (cf. Tab. 3).

After the cooldown, the resulting densities, averaged over the ten variations mentioned above, are de-
picted in Fig. 4. Samples with fewer than 40000 atoms are marginally denser, but the deviation relative to
the largest system is as small as 0.2 % and is therefore considered insignificant. In contrast, the smallest
sample’s standard deviation is more than twice that of the largest, which can be attributed to the com-
paratively larger impact of local anomalies. This becomes visible by comparing the density distributions
of two individual systems as shown in Fig. 6: While the large sample features a nearly homogeneous
distribution, the small system exhibits local spots of significantly higher or lower density.

Another essential characteristic of thermoplastics’ structure is the end-to-end distance of the individual
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Figure 3: MD setup for uniaxial deformation in x-direction: Deformation applied via canonical ensemble in tensile
direction and atmospheric pressure patm imposed with isothermal-isobaric ensemble in lateral directions.

polymer chains, which is shown in Fig. 5 for different system sizes. In the same vein as the density,
the end-to-end distance remains at the same level, but a significantly higher standard deviation can be
observed for smaller systems.
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Figure 4: Resulting mass density after cooldown
and equilibration for varying sample size with chain
length of 200, averaged over 10 samples, standard
deviation indicated by error bars.
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Figure 5: Resulting end-to-end distance after
cooldown and equilibration for varying sample size
with chain length of 200, averaged over 10 samples,
standard deviation indicated by error bars.

Next, we want to clarify whether the system size influences the mechanical properties of the polymer. For
this purpose, we perform uniaxial tension tests under various constant strain rates. We evaluate the virial
stress tensor as introduced by Thompson et. al [20]. Since the deformation is applied in discrete load
steps, the stress obtained is averaged over the last fifth of each load step as suggested in [17]. In this way,
stress peaks that arise inevitably due to the non-continuous loading are filtered out. From the resulting
stress-strain relations for different sample sizes shown in Fig. 7 two observations can be made: First,
higher strain rates lead to higher stresses which is coherent with previous investigations [17]. Second,
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Figure 6: Density distribution computed voxel-wise and plotted for highlighted mid-plane for smallest and largest
sample, both with chain length of 200.

the stress seems to be mostly independent of the number of atoms considered since all curves overlap.
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Figure 7: Resulting stress-strain relation for various sample sizes and 200 monomers per chain evaluated at strain
rates of (a) 0.1 %ns−1, (b) 1 %ns−1, and (c) 20 %ns−1.

To investigate this further, we calculate the effective Young’s modulus as the slope of the secant of the
stress between εxx = 0% and 1 %. The result is given in Fig. 8 and underlines the previous statements.
The polystyrene tested here behaves stiffer under higher strain rates, but the associated Young’s moduli
seem to be independent of the system size. However, the standard deviation increases significantly with
decreasing sample size, most likely due to the more pronounced variations in the initial configurations
discussed above (cf. Fig. 4 and Fig. 5). The derived Young’s moduli are in good agreement with previous
studies [16, 17], but are significantly smaller than observed in experiments due to the coarse-graining [3].

Since the polymer behaves isotropic (εyy u εzz) we calculate the Poisson’s ratio as ν = − εyy
εxx

visualized
in Fig. 9. Due to the system’s inertia, the ν starts close to 0 and steeply rises until it transitions to a
linear increase at about 2 % strain. Higher strain rates cause lower Poisson’s ratio as well as significantly
fewer fluctuations and thus smoother curves. Although the variously sized systems’ results differ, no
clear trend can be derived, but smaller systems are in general subject to larger fluctuations.

In summary, the effect of the sample size on the structure (density and end-to-end distance) and mechan-
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Figure 8: Resulting Young’s modulus for various sample sizes and 200 monomers per chain evaluated at strain
rates of 0.1 %ns−1, 1 %ns−1, and 20 %ns−1, standard deviation indicated by error bars.
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Figure 9: Resulting Poisson’s ratio ν for various sample sizes and 200 monomers per chain evaluated at strain
rates of (a) 0.1 %ns−1, (b) 1 %ns−1, and (c) 20 %ns−1.

ical behavior (stress, Young’s modulus, Poisson’s ratio) is negligible. However, the variability of these
quantities increases with a decreasing number of atoms, limiting the reliability of the derived statements.
Consequently, we conduct the variation of the chain length with the smallest systems investigated in this
section, i.e., 10000 atoms. We do not shrink the samples any further since local peculiarities would
increasingly determine the system characteristics, and reliable statements could no longer be made.

4 CHAIN LENGTH

After clarifying the minimum size of our samples, we can now address the second aim of our investi-
gation: Evaluating the influence of the chain length on the structure and mechanical properties of the
samples. As before, we first consider the resulting average density, which is shown in Fig. 10. Starting
from 1.16 gcm−3 at a chain length of 200, it decreases slowly at first and then falls sharply for chain
lengths below 50 down to a value of 1.00 gcm−3 at a chain length of 3. As expected, the end-to-end
distance reduces with decreasing chain length, but in a nonlinear manner (cf. Fig. 11). Its standard devi-
ation approaches zero for very short chains, indicating that these short molecules tend to translate rather
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than deform.
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Figure 10: Resulting mass density after cooldown
and equilibration for varying chain lengths and a
sample size of 10000 atoms, averaged over 10 sam-
ples, standard deviation indicated by error bars.
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Figure 11: Resulting end-to-end distance af-
ter cooldown and equilibration for varying chain
lengths and a sample size of 10000 atoms, averaged
over 10 samples, standard deviation indicated by er-
ror bars.

Fig. 12 displays the stress-strain curves, again exhibiting the rate dependence described earlier. Fur-
thermore, the short-chain specimens reach significantly lower maximum stresses, particularly for chain
lengths below 25. This loss of stiffness can be explained on the one hand by the significantly lower initial
density, as less dense polymers also tend to be softer. On the other hand, with such short molecules, the
entanglements essential for the mechanical properties of thermoplastics are unable to form.
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Figure 12: Resulting stress-strain relation for various chain lengths and a sample size of 10000 atoms, evaluated
at strain rates of (a) 0.1 %ns−1, (b) 1 %ns−1, and (c) 20 %ns−1.

Quantitatively, this is best expressed by Young’s modulus depicted in Fig. 13, which is subject to a high
variability due to the small sample size. Nevertheless, there is a clear tendency that shorter chains lead
to a reduced Young’s modulus. The stiffness loss of the specimens with the shortest chains relative to
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the longest ones amounts to 18 %, 12 %, and 15 % at strain rates of 0.1 %ns−1, 1 %ns−1, and 20 %ns−1,
respectively.
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Figure 13: Resulting Young’s modulus for various chain lengths and a sample size of 10000 atoms, evaluated at
strain rates of 0.1 %ns−1, 1 %ns−1, and 20 %ns−1, standard deviation indicated by error bars.

Finally, Fig. 14 shows the Poisson’s ratio for different chain lengths and strain rates. As before, ν

exhibits an initial build up to about 2 % strain and increases linearly from there. Peculiarly, for strain
rates of 0.1 %ns−1 and 1 %ns−1 together with chain lengths below 100 monomers low as well as high
initial Poisson’s ratios occur.

Also for the linearly increasing range above 2 % strain, no clear trend related to the chain length can be
identified, but the differences between long- and short-chained samples are clearly more pronounced at
smaller strain rates.
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Figure 14: Resulting Poisson’s ratio ν for various chain lengths and a sample size of 10000 atoms, evaluated at
strain rates of (a) 0.1 %ns−1, (b) 1 %ns−1, and (c) 20 %ns−1.
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5 CONCLUSION

In conclusion, we were able to verify that we can use significantly smaller samples for our investigations
without affecting their structure or mechanical behavior, i.e. there is no size effect. This reduces the
computational costs significantly at the expense of a larger variability of the derived results. The second
part of this investigation has revealed that shorter chains have immense effect on the structural properties,
resulting in a decrease of the density. The mechanical properties are also drastically affected, with a loss
of stiffness in the range of 15 % for very short-chain specimens.

Under the stochastic boundary conditions described above, particularly these very short polymer chains
investigated here are present due to the chain cutting. The large deviations of the material properties
identified in this study are particularly undesirable in the handshake region of a partitioned-domain mul-
tiscale approach such as the Capriccio method. This could not only compromise the performance of the
coupling scheme but also conceal artifacts of the coupling itself and thus complicate an effective opti-
mization of the method. Consequently, alternative boundary conditions are needed in this context that do
not require intervention in the polymer structure.
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