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Summary. We study numerically the varicose dynamics of a forced gravitational liquid sheet
(curtain) issuing into a quiescent gaseous ambient. The investigation is performed in supercrit-
ical regime, namely for Weber number We > 1. Two methodologies are employed: a simplified
one-dimensional (1D) linear model and two-dimensional (2D) volume-of-fluid simulations. Us-
ing harmonic forcing perturbations of the streamwise velocity applied at the inlet section, the
curtain varicose dynamics is excited by varying the forcing frequency f and amplitude Au of the
perturbations for different values of We. The 1D analysis reveals that the curtain oscillations
amplitude reaches a maximum value for a certain forcing frequency f = fmax. In other terms,
it is found that the flow manifests a resonance behaviour, with the natural oscillation frequency
fmax and corresponding amplitude Ah,max both scaling as We

1
3 , while the average wavelength

λ̄max scales as We−
1
3 . It is found that the 2D curtain breaks up numerically by increasing

the forcing amplitude Au in resonance conditions. The numerical rupture is determined by a
progressive curtain thinning induced by the varicose deformation, which moves upstream by
increasing We, i.e. downstream by increasing the surface tension coefficient. In this respect,
surface tension is found to play a stabilizing role on the varicose oscillations of the curtain.

1 Introduction

The stability and dynamics of gravitational liquid sheets (curtains) interacting with an ini-
tially quiescent gaseous ambient have been investigated by the scientific community for decades
([1]). Within a linear mathematical framework, [2] showed two linearly independent wave modes
of a liquid sheet, namely sinuous and varicose modes, which were then experimentally observed
by [3]. The sinuous mode moves the two free surfaces of the curtain in phase, while the varicose
one symmetrically moves the free surfaces in opposite directions (see Fig. 1).

The development of two-phase flow direct numerical simulations and modal decomposition
techniques has recently allowed to disclose new aspects of liquid sheets unsteady dynamics, both
in supercritical (We > 1) and subcritical (We < 1) regimes. A linear destabilization mechanism
of sinuous modes based on the interaction between the liquid phase and the surrounding gaseous
environment has been detected in supercritical conditions by [4], who derived the eigenvalues
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Figure 1: Sketch of the gravitational liquid sheet (curtain) flow. The forcing term u′f superposed to the
base flow (red lines) excites the varicose deformation of the curtain shape (blue lines).

spectrum of the one-dimensional curtain flow and showed it is unstable when the density ratio
rρ exceeds a threshold value. This result was confirmed by [5], who derived the BiGlobal
spectrum of the curtain flow by performing a dynamic mode decomposition analysis based on
two-dimensional nonlinear simulation data. For We < 1, an energy budget decomposition
analysis of the curtain flow recently performed by [6] identified surface tension as a possible
physical mechanism responsible for the sinuous modes instability in subcritical conditions, as
the Weber number is progressively decreased down to Weth. The threshold Weber number Weth
was defined as the We value for which the sheet is entirely subcritical (local Weber number less
than unity everywhere along the curtain). In these conditions, a transient algebraic growth
of perturbations was found in both asymptotically stable (Weth < We < 1) and unstable
(We < Weth) regimes, thus retrieving previous results by [7] and [8].

From the literature review summarized above, it arises that the sinuous dynamics of gravita-
tional liquid sheets has been deeply investigated over the years by means of theoretical, numerical
and experimental approaches, both for We > 1 and We < 1. On the contrary, a corresponding
systematic characterization of the varicose dynamics of this class of flows still needs to be im-
proved in the literature. The topic is particularly relevant for industrial processes such as coating
deposition ([9]). In this application, it is fundamental to maintain the curtain stable during the
whole process. Varicose perturbations of the curtain interfaces can arise due to fluctuations of
the streamwise velocity component coming from the liquid pump, which is placed upstream of
the coating die used to deliver the fluid and to form the curtain.

This work aims to provide a numerical characterization of the varicose dynamics of a gravi-
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tational liquid sheet, which is excited by harmonic disturbances of the inlet streamwise velocity
component u. The investigation is performed in a supercritical regime (We > 1) through a
simplified one-dimensional linear model (Section 2.1) and two-dimensional volume-of-fluid sim-
ulations (Section 2.2). The first results are shown in Section 3, where the varicose dynamics is
explored by varying the forcing frequency f and the Weber number We, thus identifying dif-
ferent flow conditions depending on the specific values of the two parameters. Afterwards, the
effect of the forcing amplitude Au is investigated in Section 4, focusing attention on the most
relevant flow conditions outlined in the first part of the analysis. Conclusions are finally drawn
in Section 5.

2 Physical layout and methodologies

The gravitational liquid sheet (curtain) flow here considered is schematically reported in
Fig. 1. In the unperturbed configuration, the curtain issues vertically (along the x? direction)
into a quiescent gaseous ambient, and it is characterized by a steady velocity distribution and
two symmetrical free interfaces (red lines in Fig. 1). Due to the gravitational acceleration
g, the unperturbed thickness distribution H? decreases by moving downstream along x?. A
streamwise velocity perturbation u′f is introduced at the inlet section (x? = 0) and excites the
sheet unsteady dynamics, which is characterized by a varicose (i.e. symmetric with respect to
x?) displacement of the right (y?+) and left (y?−) interfaces (blue lines in Fig. 1). The total
thickness distribution h?(x?, t?) thus results in the sum of the base flow H?(x?) and the induced
perturbation h′?(x?, t?). In terms of the curtain interfaces positions, it is given as

h?(x?, t?) = y?+(x?, t?)− y?−(x?, t?). (1)

2.1 One-dimensional linear modelling

Starting from the two-dimensional Euler equations closed by kinematic and dynamic condi-
tions imposed at the free interfaces, a simplified inviscid model of the varicose curtain dynamics
is hereafter derived.

The simplifying assumptions are the same as those made by [4] to study the sinuous dynamics
of this class of flows. The unperturbed curtain configuration is assumed to be thin with respect
to the wavelength of superposed disturbances, so that velocity profiles can be considered locally
uniform across the sheet thickness (one-dimensional flow assumption). The generic unsteady
quantity, φ?, is considered as the sum of a steady contribution and a perturbation, φ? = Φ? +
φ′?. Note that the apex ? denotes, here as elsewhere, dimensional quantities. Within the
approximation of small perturbations, the mass and x?-momentum balances are formulated by
neglecting the products of perturbations terms (linear flow assumption) and then integrated
along y?, and read as

∂h′?

∂t?
= − ∂

∂x?
(
U?h′? +H?u′?

)
, (2)

∂u′?

∂t?
+

∂

∂x?
(
U?u′?

)
=

σ

2ρl

∂3h′?

∂x?3
− 1

2ρl

∂(p′?+a + p′?−a )

∂x?
, (3)
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being

p′?+a + p′?−a = −ρa
π

∫ L?

0

∂2h′?

∂t?2
ln

∣∣∣∣x? − ξ?L?

∣∣∣∣ dξ?. (4)

In Eqs. (2)-(3), H? and U? are the base flow thickness and velocity distributions, respectively,
while h′? and u′? the corresponding perturbations. Moreover, L? is the curtain length, ρl, ρa and
σ stand for the liquid density, the gaseous ambient density, and the surface tension coefficient,
respectively, and t? denotes the time. Note that the symbol ξ? in Eq. (4) denotes the spatial
integration variable, which spans the entire liquid sheet length L?. The curtain and gaseous
ambient dynamics are thus coupled through the integral term represented by Eq. (4), being the
local ambient pressure perturbations dependent on the global liquid sheet deformation.

The dimensionless form of Eqs. (2)-(3) is finally obtained,

∂h′

∂t
+ U

∂h′

∂x
= − ε

U

∂u′

∂x
− h′∂U

∂x
+
εu′

U2

∂U

∂x
, (5)

∂u′

∂t
+ U

∂u′

∂x
= −u′∂U

∂x
+

ε

4We

∂3h′

∂x3
+
rρ
2π

∂

∂x

∫ 1

0

∂2h′

∂t2
ln |x− ξ| dξ, (6)

where Eq. (4) has been replaced into Eq. (3), and the following dimensionless parameters,

We =
ρlU

?2
i H

?
i

2σ
, Fr =

U?2i
gL?

, ε =
H?
i

L?
, rρ =

ρa
ρl
, (7)

and non-dimensional variables,

H =
H?

H?
i

, U =
U?

U?i
, h′ =

h′?

H?
i

, u′ =
u′?

εU?i
, x =

x?

L?
, t =

t?U?i
L?

, (8)

have been introduced. In Eq. (7), We is the Weber number, Fr the Froude number, ε the
curtain slenderness ratio and rρ the density ratio. Based on the works by [10] and [11], the
Torricelli’s free-fall model,

U =

√
1 +

2

Fr
x, (9)

is employed as the base flow in Eqs. (5)-(6).
The two unknowns in Eqs. (5)-(6) are the spatio-temporal evolutions of the curtain thickness

(h′(x, t)) and velocity (u′(x, t)) perturbations. The system (5)-(6) is thus closed by assigning
the following inlet boundary conditions,

h′(0, t) = 0, (10)

u′(0, t) = u′f =
Au
ε

sin(2πft), (11)

the free-outflow condition at the outlet section (x = 1) being self-guaranteed. The coefficients
Au = A?u/U

?
i and f = f?L?/U?i in Eq. (11) represent the amplitude and frequency of the

harmonic forcing, respectively. As it will be shown in Section 3, adding the forcing perturbation
(Eq. (11)) allows one to identify the natural frequencies of the varicose dynamics by searching
for the resonance conditions of the curtain flow.

The numerical resolution of the system (5)-(6) equipped with boundary conditions (10)-(11)
is performed by means of a standard finite-difference discretization method in MATLAB. Note
that, for any x = ξ, the integrand in Eq. (6) is singular, and its evaluation requires a suitable
treatment ([12]).
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2.2 Two-dimensional volume-of-fluid simulations

The two-dimensional two-phase flow field represented by the liquid curtain interacting with
the initially quiescent gaseous environment is modelled through the one-fluid formulation of
incompressible Navier-Stokes equations ([13]), reading as

∂u?i
∂x?i

= 0, (12a)

ρ

(
∂u?i
∂t?

+ u?j
∂u?i
∂x?j

)
= −∂p

?

∂x?i
+ ρgi +

∂

∂x?j

[
µ

(
∂u?i
∂x?j

+
∂u?j
∂x?i

)]
+ σκ?niδS , (12b)

∂C

∂t?
+
∂Cu?i
∂x?i

= 0. (12c)

The vectors u? = (u?, v?) and g = (g, 0) represent the flow velocity and the gravitational
acceleration, respectively, p? the pressure field, κ? the mean gas-liquid interface curvature, and
n = (nx, ny) the outward pointing normal vector to the interface. The Dirac distribution
function δS is equal to 1 at the interface, and 0 elsewhere. The density ρ and viscosity µ fields
are discontinuous across the interface separating the two fluids,

ρ = ρa + (ρl − ρa)C, (13a)

µ = µa + (µl − µa)C, (13b)

being the volume fraction C a discontinuous function, which is equal to either 1 or 0 in the
liquid or gaseous regions, respectively.

Eqs. (12a)-(12c) are solved using BASILISK, an improved version of the open-source code
Gerris ([14]) extensively used and validated for plane liquid jet flow problems ([15, 16], [17]). The
code employs the volume-of-fluid (VOF) method by [13] to track the interface on a quadtree
structured grid, with an adaptive mesh refinement based on a criterion of wavelet-estimated
discretization error ([18]) and no special treatment required in presence of liquid phase breakup
([19]). A multigrid solver is employed to satisfy the incompressibility condition, while the cal-
culation of the surface tension term is based on the balanced continuum surface force technique
([20]), which is coupled with a height-function curvature estimation method to avoid the gen-
eration of spurious currents. For exhaustive details about the code BASILISK, the reader is
referred to [14, 21] and to the software official website (http://basilisk.fr).

The computational domain employed to calculate two-dimensional curtain flow solutions is a
square, whose length side is equal to the curtain length L?. The liquid sheet shape is initialized
as a rectangle of area L? ×H?

i at t = 0. Inflow boundary conditions are prescribed at the inlet:
at the curtain slot exit section (−1/2 < y < 1/2, where y = y?/H?

i ), they read as

u =


3

2

(
1− 4y2

)
, t ≤ tsteady,

3

2

(
1− 4y2

)
+ u′f (t), t > tsteady,

(14a)

v = 0, (14b)

C = 1, (14c)
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while the values u = v = C = 0 are enforced for |y| > 1/2. Note that the streamwise ve-
locity boundary condition, Eq. (14a), is the sum of a steady contribution, corresponding to a
fully developed parabolic velocity profile, and an unsteady perturbation u′f (t). The latter term
represents the harmonic forcing (previously defined by Eq. (11)) exciting the curtain varicose
dynamics after the steady base flow solution is achieved, for which a computational time equal
to tsteady ≈ 1.5 is required. A standard free-outflow boundary condition is enforced at the outlet,
namely p = ∂u/∂x = ∂v/∂x = ∂C/∂x = 0, while homogeneous Neumann boundary conditions
for all variables are enforced on the remaining sides of the domain.

A quadtree-structured grid is employed in the computations, which is characterized by a
maximum level of refinement LoR = 10 in a rectangular region containing the entire liquid
sheet, and by a dynamical refinement of the cells elsewhere in the domain according to user-
defined adaptation criteria ([18]). In particular, the refinement of a generic grid cell is performed
at each iteration reducing by one and then increasing again its grid level, resulting in a down-
and up-sampling of the stored scalar fields. Therefore, the error χ = ||φ − φ+|| between the
original (φ) and the up-sampled (φ+) fields can be estimated; the cell is refined if χ > β and
coarsened if χ < β, where β is the error threshold of the specific scalar field. For all simulations
reported herein, the value β = 1.0× 10−4 has been prescribed for both the velocity components
and the volume fraction field. The maximum LoR employed here gives a minimum cell size
equal to ∆x? = 0.05H?

i , which corresponds to 20 grid cells within H?
i .

3 Frequency response of 1D varicose dynamics

The forcing frequency f effect on the one-dimensional curtain flow stationary (i.e. long-time)
solution obtained for Weber number We = 2.5 and forcing velocity amplitude Au = 0.1 is first
considered; results are reported in Fig. 2. In particular, Fig. 2(a) shows the curtain perturbation
thickness spatial distribution h′(x) for three significant values of the forcing frequency, namely
f = 0.76 (black curve), f = 5.34 (red curve) and f = 11.43 (blue curve), while the complete
frequency response (i.e. the oscillations amplitude) is reported in Fig. 2(b) as a function of f ,
for a broad range of forcing frequency values (f ∈ [0.15, 15]). Note that the function Ah(f) has
been scaled with respect to its maximum value Ah,max = 0.21.

The non-parallelism of the base flow U(x) due to the gravitational acceleration (see Eq. (9))
determines a spatial variation of the wavelength λ = λ?/L? of the curtain thickness perturbation
h′(x), which increases by moving downstream along the curtain (λ(x) = U(x)/f), as shown in
Fig. 2(a). By considering the average value of the base flow Ū = 1.96 as a reference velocity, one
can estimate the average wavelength λ̄ = Ū/f corresponding to each case. It is thus obtained
that λ̄ = 2.57, 0.37 and 0.17 for f = 0.76, 5.34 and 11.43, respectively, which well represents
the distance between two consecutive peaks of the h′(x) distribution (see in particular red and
blue curves in Fig. 2(a), for which λ̄ < 1). Moreover, the analysis of Fig. 2(b) reveals that the
oscillation amplitude reaches a maximum value equal to Ah,max = 0.21 at the forcing frequency
f = 5.34. Therefore, as a significant result of the present investigation, it is found that the
value f = 5.34 represents the resonance (and thus the natural) frequency of the flow system for
We = 2.5, being the trend Ah(f) peaked at fmax = 5.34 (red dashed line in Fig. 2(b)).

The varicose oscillatory dynamics of the forced flow is further investigated in Fig. 3, where
the Weber number effect on the whole frequency response Ah(f) (panel (a)), the resonance
frequency fmax (panel (b)) and the corresponding amplitude Ah,max (panel (c)) are reported in
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FIG. 4. Forcing frequency f effect on the curtain perturbation thickness spatial distribution h′(x)

(panel(a)) and on its maximum temporal oscillations amplitude Ah scaled with respect to the value

Ah,max = 0.21 (panel(b)). The red dashed line in panel (b) denotes the peak frequency fmax = 5.34.

Here, We = 2.5 and Au = 0.1.
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the analysis of Fig. 4(b) reveals that the oscillation amplitude reaches a maximum value

equal to Ah,max = 0.21 at the forcing frequency f = 5.34. Therefore, as a significant result

of the present investigation, it is found that the value f = 5.34 represents the resonance

(and thus the natural) frequency of the flow system for We = 2.5, being the trend Ah(f)

peaked at fmax = 5.34 (red dashed line in Fig. 4(b)).

The varicose oscillatory dynamics of the forced flow is further investigated in Fig. 5,

where the Weber number effect on the whole frequency response Ah(f) (panel (a)), the

resonance frequency fmax (panel (b)) and the corresponding amplitude Ah,max (panel (c))

are reported in the range We ∈ [1.25, 10]. Note that the Weber number variation is achieved
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Figure 2: Forcing frequency f effect on the curtain perturbation thickness spatial distribution h′(x)
(panel(a)) and on its maximum temporal oscillations amplitude Ah scaled with respect to the value
Ah,max = 0.21 (panel(b)). The red dashed line in panel (b) denotes the peak frequency fmax = 5.34.
Here, We = 2.5 and Au = 0.1.
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FIG. 5. Frequency response in terms of curtain perturbation thickness Ah as a function of the

forcing frequency f (panel(a)); peak frequency fmax (panel (b)) and corresponding amplitude

Ah,max (panel (c)) variations with the Weber number We. Here, the forcing amplitude is Au = 0.1.

by varying the surface tension coefficient σ. As a valuable result of the present analysis,

Fig. 5(b)-(c) show that both the resonance frequency fmax and the corresponding maximum

amplitude Ah,max exhibit an increasing trend with the Weber number, both following the

scaling law ∝ We
1
3 . As a consequence, the average wavelength in resonance conditions

scales as λ̄max ∝ We−
1
3 . Theoretical insights on these scaling laws are provided in following

Section III B.

It is interesting to highlight that results found in this Section qualitatively resemble

the findings by Le Dizés and Villermaux [34] regarding the destabilization mechanisms of

a round (axisymmetric) gravitational viscous liquid jet subjected to noise perturbations,

which are distributed along the entire jet length. In particular, these authors theoretically

studied the interplay between the instability growth of perturbations and the jet thinning

and longitudinal stretching, finding an increasing (decreasing) trend of the most dangerous

frequency (wavelength) in the case of a water jet in incipient breakup conditions (see Fig.

9 of Le Dizés and Villermaux [34]). However, it is important to note that, while capillary

forces play the well-known destabilizing role for round gravitational liquid jets, in the present
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Figure 3: Frequency response in terms of curtain perturbation thickness Ah as a function of the forcing
frequency f (panel(a)); peak frequency fmax (panel (b)) and corresponding amplitude Ah,max (panel (c))
variations with the Weber number We. Here, the forcing amplitude is Au = 0.1.
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Figure 4: VOF simulations of two-dimensional curtain flow: streamwise velocity perturbation u′ contour
(panels (a)-(c)) and Fast Fourier Transform of the thickness perturbation h′ (panel (d)). Black curves in
panels (a)-(c) denote the curtain-ambient interface. Vertical dashed lines in panel (d) denote the forcing
frequency values: f = 0.76 (black); f = 5.34 (red); f = 11.43 (blue). Here, We = 2.5 and Au = 0.1.

the range We ∈ [1.25, 10]. Note that the Weber number variation is achieved by varying the
surface tension coefficient σ. As a valuable result of the present analysis, Fig. 3(b)-(c) show
that both the resonance frequency fmax and the corresponding maximum amplitude Ah,max

exhibit an increasing trend with the Weber number, both following the scaling law ∝ We
1
3 .

As a consequence, the average wavelength in resonance conditions scales as λ̄max ∝ We−
1
3 .

Theoretical insights on these scaling laws are given in [22].

4 VOF simulations in 2D resonance conditions

The forcing frequency f effect on the two-dimensional curtain flow field obtained with VOF
simulations for Weber number We = 2.5 and forcing amplitude Au = 0.1 is reported in Fig. 4.
In particular, the streamwise velocity perturbation u′(x, y) contour is shown in panels (a)-(c)
for f = 0.76, 5.34 and 11.43, respectively, which are the same values as previously considered
in Section 3. The three forcing frequencies are also represented by the vertical dashed lines in
panel (d), which reports the Fast Fourier Transform (FFT) of the thickness distribution temporal
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Figure 5: Curtain shape in resonance conditions for different values of the Weber number We by
increasing the forcing amplitude Au: 0.1 (black); 0.15 (red); 0.2 (blue); 0.25 (green); 0.3 (magenta).
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signal h′(t) at the streamwise station x = 0.5. Note that each curve in panel (d) is normalized
with respect to the overall maximum.

The two-dimensional volume-of-fluid simulations confirm the one-dimensional linear analysis
predictions: the curtain flow exhibits a resonance behaviour at f = 5.34 (Fig. 4(d)), for which
the varicose oscillations of the curtain reach the maximum amplification. It is also interesting to
observe that the varicose displacement of the two curtain-ambient interfaces induces analogous
perturbations within the gaseous phase, as can be appreciated by looking at the symmetric
(with respect to the axis y = 0) velocity contours distributions in Fig. 4(a)-(c). Note that a
curtain-ambient interaction effect via velocity perturbations has also been found by [17] for a
curtain subjected to a normal-to-flow (i.e. sinuous) velocity forcing.

The curtain dynamics in resonance conditions is further investigated in Fig. 5, which shows
snapshots of the two-dimensional curtain shapes obtained for f = fmax by varying the inlet
forcing amplitude Au, at the same Weber number values considered in Section 3. In particular,
starting from the value Au = 0.1 so far considered (black curves), the forcing amplitude is
increased, and four more cases are investigated: Au = 0.15 (red curves), 0.20 (blue curves), 0.25
(green curves) and 0.30 (magenta curves). The main result arising from the analysis of Fig. 5
is that, in resonance conditions, the curtain breaks up due to the reduction of its thickness
induced by the varicose deformation. This thinning-induced numerical breakup results in the
formation of an unsteady curtain fragmentation (see for example the magenta curve in Fig. 5(a)
for x ≈ 0.8), which is convected downstream along the curtain by the underlying gravitational
base flow and expelled at the domain outlet (not shown in Fig. 5). It is worth pointing out that,
once a “thin enough” sheet is created by means of the thinning physical mechanism, one may
reasonably assume that the curtain will break due to short-range forces. On the other hand, we
recall explicitly that such forces (or other non-equilibrium effects) are of course not included in
the Navier-Stokes model here employed.

Interestingly, for each Weber number value considered, the reduction of curtain thickness
induced by the varicose deformation (which leads to numerical breakup) occurs at a specific
value of the forcing amplitude, i.e. Au = 0.30, not depending on We. On the other hand, it can
be seen that the streamwise station where this thinning occurs moves upstream by increasing
the Weber number (e.g. it goes from x ≈ 0.8 for We = 2.5, panel (a), to x ≈ 0.5 for We = 10,
panel (d)), i.e. it shifts downstream by considering progressively higher values of the surface
tension coefficient, thus “spatially delaying” the breakup. In this respect, surface tension is
found to play a stabilizing role on the varicose oscillations of the gravitational curtain. Note
that a stabilizing effect of surface tension on the convective instability of unconfined planar
liquid jets was also found by [23] by means of spatio-temporal stability analysis.

5 Conclusions

The varicose dynamics of a forced gravitational liquid sheet (curtain) issuing into a quiescent
gaseous ambient has been numerically studied. The investigation has been performed in super-
critical regime, namely for Weber number We > 1. Two methodologies have been employed:
a simplified one-dimensional linear model, and two-dimensional volume-of-fluid (VOF) simula-
tions. Employing harmonic forcing perturbations of the streamwise velocity applied at the inlet
section, the varicose dynamics of the curtain has been excited and characterized by varying the
forcing frequency f and amplitude Au of the perturbations, for different values of We.

10
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As a first significant result, the one-dimensional linear analysis has shown that the curtain
oscillations amplitude reaches a maximum for a certain forcing frequency f = fmax. In other
terms, it has been found that the flow manifests a resonance behaviour, with the natural oscilla-
tion frequency fmax and corresponding amplitude Ah,max both scaling as We

1
3 , while the average

wavelength λ̄max scales as We−
1
3 . The two-dimensional VOF simulations have confirmed the

one-dimensional model predictions of the flow natural frequency, as well as of the wavelength in
resonance conditions.

It has been also found that the curtain breaks up numerically by increasing the forcing ampli-
tude Au, exhibiting a nonlinear saturated shape in incipient breakup conditions. The rupture is
determined by a reduction of the curtain thickness induced by the varicose deformation, and it
occurs at a specific value of the forcing amplitude, which does not depend on the Weber number.
The streamwise station where the curtain thinning occurs moves upstream by increasing We,
i.e. it shifts downstream by increasing the surface tension coefficient, thus “spatially delaying”
the numerical breakup. In this respect, the surface tension is found to play a stabilizing role on
the varicose oscillations of the curtain.
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