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Technická 8, 30100 Pilsen, Czech Republic

Key words: convolution neural network, compressible fluid flow, blade cascade, fluid-structure
interaction

Summary. The analysis of blade cascades for flutter onset is crucial for the operational safety
of turbomachinery. Despite significant advancements in computational power, comprehensive
CFD analysis remains a time-consuming task. This paper aims to mitigate the time demands
of CFD calculations by utilizing convolutional neural networks (CNNs). The developed model
is tested on a Fluid-Structure Interaction (FSI) analysis, revealing the conditions for flutter.

1 INTRODUCTION

Recent advances in deep learning have significantly impacted the field of computational fluid
dynamics (CFD), especially through the application of convolutional neural networks (CNNs).
These networks are capable of modeling flow characteristics, handling complex geometries, and
processing extensive datasets, making them invaluable for fluid flow predictions. Their ability
to learn from raw data and make real-time predictions has established CNNs as powerful tools
in various applications of fluid dynamics. Pioneering work [1] marked a significant milestone
by applying CNNs to predict steady fluid flow. In work [8] authors extended this approach to
predict unsteady turbulent fluid flows, inspiring numerous subsequent studies exploring CNN
applications in fluid dynamics, including works [10, 2, 3, 4].

This study aims to utilize a convolutional neural network to predict unsteady flow fields in
a cascade of oscillating blades. The primary motivation for using CNNs is their high prediction
speed, which addresses the significant time constraints of traditional CFD analyses. The de-
veloped neural network model is validated against the FlowPro CFD solver [6] in an unsteady
2D problem with a moving boundary. FlowPro is based on the Discontinuous Galerkin finite
element method and was also used for the generation of the training dataset for the model.
Further testing is conducted on an FSI task to reveal the conditions for flutter onset. The usage
of CNN in FSI analysis not only reduces the computational cost but also opens new avenues for
real-time and large-scale applications.

2 PROBLEM DESCRIPTION

In this work, we examine a system of bodies composed of three blades. Specifically, we focus
on solving a cross-section of the blade cascade, as the problem is defined in a 2D space. The
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motion of the first and third blades is prescribed by a harmonic function, as follows

y1 = A sin(2πf +Φ), y3 = A sin(2πf − Φ),

where A is the amplitude, f is the frequency and Φ is the phase angle. The middle blade is
free to move with one degree of freedom along the yy-axis, and its motion is governed by a
mass-spring model.

mÿ2 + ky2 = L,

where m is the blade mass, k is the blade stiffness and L is the lift force from the fluid, defined
using the flow field variables p, u, and v as follows:
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The situation is illustrated in Fig. 1. The stiffness k of the blade is chosen such that the natural

Figure 1: Problem setup

frequency of the oscillating blade matches the prescribed frequency f of the oscillating blades,
i.e., k = m(2πf)2.

2.1 Mesh generation and deformation

For the given problem, we consider a structured computational grid of size 128× 128 points
generated by an elliptic grid generator; see Fig. 3. The grid points entering the model vary
depending on the position of the blades. To compute the deformed grid, we use a simple
algorithm based on blending functions, which applies to computing grid deformation for a system
of rigid bodies. For each of the blades, we first precompute the so-called blending function bfb(x)
as a solution to the Laplace equation with the following Dirichlet boundary conditions

bfb(x) =

{
1 if x ∈ Γj , b = j,
0 if x ∈ Γj , b ̸= j

where Γj is the boundary of j-th blade.
Let x0

ij = [x0ij , y
0
ij ] are the points of the initial undeformed mesh. Let xb

t = [xb, yb] is the
translation vector of a blade b. Then we can compute the points of the deformed mesh as follows

xij = x0
ij +

∑
b

bfbijx
b
t
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Figure 2: Blending functions. The blue lines shows initial positions of blades.

Figure 3: Illustration of the Deformed State of the Mesh: The Blue Line Represents the Undeformed
Position of the Profiles.

3 NEURAL NETWORK MODEL

To predict unsteady incompressible fluid flow in blade cascade, we use a specialized con-
volutional encoder-decoder neural network known as U-Net [5], as depicted in Fig. 4. The
encoder compresses input data from the initial layer into an encoded representation by applying
convolutional filters followed by pooling layers, progressively down-sampling the data until it
is sufficiently compressed. The decoder, which mirrors the encoder, then increases the spatial
resolution and reduces the number of channels until the desired output is reconstructed. This
process involves upsampling and deconvolution, the inverse operations of pooling and convo-
lution. The architecture also includes skip connections, which concatenate each encoder layer
with its corresponding decoder layer. These connections ensure that partially encoded input
information from each encoder layer is available during output reconstruction. Consequently,
the number of input channels in the decoder is increased by the number of channels in the en-
coder due to this concatenation. The neural network’s input is a three-dimensional array with
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dimensions 128×128×8, containing eight values for each grid point: the x and y coordinates of
the grid points, corresponding boundary mark, mesh velocities ẋ and ẏ and flow field u, v and
p at time level tn. The boundary mark is a binary value, equal to 1 if the grid point is on the
boundary of the blade profile, and 0 if the grid point is within the fluid domain. The network
outputs the pressure and velocity fields at the grid points at time tn+1. The key parameters of
the developed CNN structure are summarized in Table 1.

Figure 4: Neural network architekture

Table 1: Hyperparameters of the U-Net

Parameter Value

Input shape 128× 128× 8
Output shape 128× 128× 3
Initial number of filters 12
Convolution frame 3× 3
Pooling frame 2× 2
Pooling function Max pooling
Activation function ReLU
Activation function at output Sigmoid
Depth 7
Trainable parameters 1,062,039

4 MODEL TRAINING AND VALIDATION

The proposed neural network model was trained using data from four CFD simulations.
In each simulation, the harmonic kinematic motion of the three blades was randomly set as
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yi = Ai sin(2πfi), i = 1, 2, 3. The amplitudes Ai and frequencies fi were randomly chosen from
the intervals A ∈ [0.05, 0.2] and f ∈ [0.1, 2.0]. The computation of the flow field was performed
using CFD software based on the discontinuous Galerkin finite element method [6]. The trained
model was validated on a random kinematic motion, see Fig. 6, where the lift force acting on
each blade over time is compared. The CFD calculation is shown in blue, and the neural network
prediction is shown in orange.

Figure 5: Comparison of the flow field predicted by the neural network (left) and the flow field computed
using CFD simulation (right).
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Figure 6: Comparison of lift between CFD simulation (blue) and neural network prediction (orange) for
the upper (left), middle (middle), and lower (right) blade.

5 FSI SIMULATION RESULTS

Consider the FSI problem described in the introductory section. For the upper and lower
blades, we set a harmonic motion with an amplitude of A = 0.15 and a frequency of f = 0.1.
The parameters for the middle blade are chosen as follows. The natural frequency is considered
the same as the oscillation frequency of the surrounding blades, i.e., fn = f = 0.1. For the
chosen mass m = 20, the spring stiffness is calculated as k = m(2πf)2 = 7.84. The goal of
this study is to observe the excitation of the middle blade depending on the phase angle Φ. We
performed a total of four simulations for the fundamental phase angles Φ = −π/2, −π/4, 0, π/4.
Figs.7-10 show the lift forces acting on the blades and the blade displacements over time. From
the graphs, it is evident that for the phase angles Φ = −π/2, −π/4, 0, the oscillation amplitude
of the middle blade remains limited. This indicates that the oscillation of the blade is damped
in these regimes. This situation is well characterized in Fig.11, which shows the energy absorbed
by the middle blade from the flow field. A dramatically different situation occurs for the phase
angle Φ = π/4, where the blade’s excitation occurs relatively quickly. This is again evident in
Fig.11, where a rapid increase in absorbed energy is shown. This case is highly susceptible to
flutter.

Figure 7: Lift (left) and y-displacement of the middle blade (right) for the phase angle Φ = −π/2.
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Figure 8: Lift (left) and y-displacement of the middle blade (right) for the phase angle Φ = −π/4.

Figure 9: Lift (left) and y-displacement of the middle blade (right) for the phase angle Φ = 0.

Figure 10: Lift (left) and y-displacement of the middle blade (right) for the phase angle Φ = π/4.
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Figure 11: Energy absorbed by middle blade during time.

6 CONCLUSIONS

In this work, a model for predicting unsteady flow in a blade cascade using a convolu-
tional neural network was developed. The model was used to analyze the onset of flutter in
a simple cascade consisting of three blades. The analysis showed that for the phase angles
Φ = −π/2, −π/4, 0, there is no excitation of the middle blade. However, for the phase angle
Φ = π/4, there is an unlimited growth in the oscillation amplitude of the middle blade, leading
to flutter. The obtained conclusion is in good agreement with generally accepted findings, where
the phase angle Φ = π/4 is characteristic of the onset of flutter and corresponds to the so-called
travelling waves, which are recorded in turbine disks [7].

The analyzed task demonstrates that the neural network-based model can produce excellent
results in a fraction of the computational time. The neural network can generate the flow
field up to three orders of magnitude faster than traditional CFD computations. The obtained
computational model can be extended to any number of blades using the Schwarz alternating
method.
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