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Abstract. The time domain Boundary Element Method (BEM) for the homogeneous wave
equation with vanishing initial conditions is considered. The generalized convolution quadra-
ture method (gCQ) developed by Lopez-Fernandez and Sauter is used for the temporal dis-
cretisation. The spatial discretisation is done classically using low order shape functions. A
collocation approach is applied.

Essentially, the gCQ requires to establish boundary element matrices of the corresponding
elliptic problem in Laplace domain at several complex frequencies. Consequently, an array
of system matrices is obtained. This array of system matrices can be interpreted as a three-
dimensional array of data which should be approximated by a data-sparse representation. The
generalised Adaptive Cross Approximation (3D-ACA) can be applied to get a data sparse repre-
sentation of these three-dimensional data arrays. Adaptively, the rank of the three-dimensional
data array is increased until a prescribed accuracy is obtained. On a pure algebraic level it is
decided whether a low-rank approximation of the three-dimensional data array is close enough
to the original matrix. Within the data slices corresponding to the BEM calculations at each
frequency either the standard H-matrices approach with ACA or a fast multipole (FMM) ap-
proach can be used. The third dimension of the data array represents the complex frequencies.
Hence, the algorithm makes not only a data sparse approximation in the two spatial dimensions
but detects adaptively how much frequencies are necessary for which matrix block. Numerical
studies show the performance of these methods.

1 INTRODUCTION

Wave propagation problems appear often in engineering, e.g., for non-destructive testing or
exploring the underground. Most of such problems are formulated with hyperbolic partial dif-
ferential equations, e.g., in acoustics or elastodynamics. Despite that mostly a linear theory is
sufficient, the handling of space and time requires expensive discretisation methods, where for
scattering problems even an unbounded domain has to be considered. The latter are preferably
solved with the boundary element method (BEM). The basis are boundary integral equations
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by the use of retarded potentials as counterpart to the governing hyperbolic partial differential
equation. The first numerical realisation of a time domain boundary element formulation is orig-
inated by Mansur [21] in the 80th of the last century. Despite often used, this approach suffers
from instabilities (see, e.g., [23]). A stable space-time formulation has been published by Bam-
berger and Ha-Duong [3], which has been further explored by the group of Aimi [1, 2]. These
approaches work directly in time domain, whereas a transformation to Laplace- or Fourier-
domain results in suitable formulations as well, e.g., [9]. Somehow in between transforma-
tion and time-domain methods are BE formulations based on the convolution quadrature (CQ)
method proposed by Lubich [19, 20]. Such a formulation is a true time stepping method utilis-
ing the Laplace domain fundamental solutions and properties. Applications of the CQ to BEM
can be found, e.g., in [26, 27]. The generalisation of this seminal technique to variable time
step sizes has been proposed by López-Fernández and Sauter [16, 18] and is called generalised
convolution quadrature method (gCQ). Applications can be found in acoustics with absorbing
boundary conditions [24] and in thermoelasticity [15].

The drawback of all BE formulations either for elliptic and much stronger for hyperbolic
problems is the high storage and computing time demand as a standard formulation scales with
O(M2) for M unknowns. In time domain, additionally, the time complexity has to be consid-
ered, where in the case of a CQ based formulation the complexity is of order O(M2N) for N
time steps. For elliptic problems fast methods has been proposed as the fast multipole method
(FMM) [13] or H-matrix based methods with the adaptive cross approximation (ACA) used
in the matrix blocks [8, 5]. The extension of FMM to the time variable has been published
in [11] for acoustics. In combination with CQ, fast methods are published in combination with
a reformulation of CQ [4, 22].

Here, a different approach is used. Independently whether the CQ in the original form or
gCQ is used, essentially, a three-dimensional data array has to be efficiently computed and
stored. This data array is constructed by the spatial discretisation, resulting in two-dimensional
data, and the used complex frequencies of the algorithm, which gives the third dimension. To
find a low rank representation of this three-dimensional tensor the generalised adaptive cross
approximation (3D-ACA) can be used. This technique is a generalisation of ACA [8] and is
proposed by Bebendorf et al. [6, 7].

Here, the 3D-ACA is applied on a gCQ based time domain formulation utilising the original
idea of the multivariate ACA [7]. The original version utilising ACA in the H-matrices for the
frequencies will be compared to a version where the FMM is used. Recently a very similar
approach has been published by Seibel [29], where the conventional convolution quadrature
method is used and, contrary to the approach proposed here, the H2 technique is used for the
approximation of the boundary element matrices at the different frequencies.

2 PROBLEM SETTING

To present the proposed algorithm a Dirichlet problem is used as model problem. Let Ω ⊂ R3

be a bounded Lipschitz domain and Γ = ∂Ω its boundary with the outward normal n. The
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acoustic wave propagation is governed by

∂2

∂t2
u(x, t)− c2∆u(x, t) = 0 (x, t) ∈ Ω× (0, T )

u(x, 0) =
∂

∂t
u(x, 0) = 0 x ∈ Ω

u(x, t) = gD(x, t) (x, t) ∈ Γ× (0, T )

(1)

with the wave speed c and the end time T > 0. This Dirichlet problem will be solved with an
integral equation, where the so-called indirect approach using layer potentials is selected. The
single layer potential

(V ∗ ϑ)(x, t) =
∫ t

0

∫
Γ

U(x− y, t− τ)ϑ(y, τ) d sy d τ , (2)

solves the problem (1), with the fundamental solutionU(x−y, t−τ) = 1
4π∥x−y∥δ

(
t− τ − ∥x−y∥

c

)
.

This boundary integral equation is weakly singular. Alternatively, the problem can be solved
utilising the double layer potential defined by

(K ∗Θ)(x, t) =
∫ t

0

∫
Γ

∇U(x− y, t− τ) · n Θ(y, τ) d sy d τ . (3)

Above the operator ∇U · n is the usual co-normal derivative applied on the fundamental so-
lution resulting in the flux fundamental solution. The density functions are denoted by ϑ(x, t)
or Θ(x, t), respectively. Using these operators, which are also called retarded potentials, the
solution for these density functions can be obtained by

(V ∗ ϑ)(x, t) = gD(x, t) (x, t) ∈ ΓD × (0, T ) (4)

or considering the double layer potential

(CΘ +K ∗Θ)(x, t) = gD(x, t) (x, t) ∈ Γ× (0, T ) . (5)

The so-called integral free term in (5) is determined with the limiting process

CΘ(x, t) = lim
ε→0

∫
∂Bε(x)∩Ω

∇ 1

∥x− y∥
· n Θ(y, t) d sy (6)

with Bε(x) denoting a ball of radius ε centered at x and ∂Bε(x) is its surface. In case of a
Galerkin formulation this expression reduces to 1/2Θ(x, t) but in a collocation schema it is
dependent on the geometry at the collocation node. The physical solution u(x, t) is obtained
with the determined density function inserted in the layer potentials.
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3 BOUNDARY ELEMENT FORMULATION

Spatial discretisation The boundary Γ is discretised with elements resulting in an approx-
imation Γh =

⋃E
e=1 τe, which is the union of geometrical boundary elements τe, here linear

surface triangles. Finite element bases on the boundary Γ are used to construct the approxima-
tion spaces

XSLP = Span{φ1, φ2, . . . , φM}, XDLP = Span{ψ1, ψ2, . . . , ψM}. (7)

The unknown density functions are approximated by a linear combination of functions in XSLP

or XDLP

ϑh =
M∑
k=1

ϑk(t)ψk(x) Θh =
M∑
k=1

Θk(t)φk(x) . (8)

Note, the coefficients ϑk(t), and Θk(t) are still continuous functions of time t. In the following,
the shape functions φk will be chosen linear continuous and ψk constant discontinuous. This
is in accordance with the necessary function spaces for the integral equations, which are not
discussed here (see [25]).

Hence, inserting the spatial shape functions from above in the boundary integral equation (4)
and applying the collocation method results in the semi-discrete equation system

V ∗ ϑh = gD . (9)

The double layer approach takes (5) with the above shape functions resulting in

(CΘh + K ∗Θh) = gD . (10)

The given boundary data are approximated by the same shape functions. The notation with sans
serif fonts in (9) and (10) indicates that in these vectors the nodal values are collected and in the
matrices the respective values of the integrated fundamental solutions.

The weak singular integrals are treated with a Duffy transformation [10]. The regular inte-
grals are handled by a standard Gaussian quadrature using a heuristic distance-based formula to
determine the number of Gauss points.

Temporal discretisation The above given semi-discrete integral equations are discretised in
time using the generalised Convolution Quadrature Method (gCQ) [16, 18]. Here, the variant
using Runge-Kutta methods as the underlying time stepping technique is used. Details and the
analysis can be found in [18].

Discretising the time inN not necessarily constant time steps ∆ti, i.e., [0, T ] = [0, t1, . . . , tN ],
∆ti = ti − ti−1, i = 1, 2, . . . , N , the gCQ can be applied. Let us assume an A- and L-stable

Runge-Kutta method given by its Butcher tableau
c A

bT
with A ∈ Rm×m, b, c ∈ Rm and

m is the number of stages. The stability assumptions require that bTA−1 = (0, 0, . . . , 1) holds.
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With the vector 1 = (1, 1, . . . , 1)T of size m the semi-discretised integral formulation (9) can
be approximated by

V̂
(
(∆tnA)

−1) (ϑh)n = (gD)n −
NQ∑
ℓ=1

V̂ (sℓ)W
∆tn((ϑh)n−1, sℓ) (11)

and the double layer approach (10) is

(
C+ K̂((∆tnA)

−1)
)
(Θh)n = (gD)n −

NQ∑
ℓ=1

K̂ (sℓ)W
∆tn((Θh)n−1, sℓ) . (12)

The notation ()n indicates the discrete value of the respective function/vector at tn and (̂) in-
dicates that the Laplace transform of the respective integral kernel is used. The abbreviation
W∆tn((ϑh)n−1, sℓ) is an integration weight collecting the influence of the past time steps. The
whole algorithm and also all used parameters can be found in [17] or [14] using the same nota-
tion as here.

Essentially, this algorithm requires the evaluation of the integral kernel at NQ points sℓ,
which are complex frequencies. Consequently, we get an array of system matrices. This ar-
ray of system matrices can be interpreted as a three-dimensional array of data which will be
approximated by a data-sparse representation based on 3D-ACA.

4 GENERALISED ACA: 3D-ACA

An approximation of a three-dimensional array of data or a tensor of third order C ∈ CM×M×NQ

in terms of a low-rank approximation has been proposed in [7] and is referred to as a general-
isation of adaptive cross approximation or also called 3D-ACA. In this approach, the 3D array
of data to be approximated is generated by defining the outer product by

C = H⊗ f (13)

with H ∈ CM×M , f ∈ CNQ . The matrix H corresponds to the spatial discretization of the dif-
ferent potentials used in the boundary element formulations from above at a specific frequency
sℓ, e.g., the single layer potential in (11) on the right hand side. This matrix will be called
face or slice and may be computed as dense or approximated matrix. Here, two choices will be
utilized:

• The face can be an H-matrix after introduction of a suitable hierarchical partition. In the
examples, a balanced cluster tree [5] is introduced and the adaptive cross approximation
(ACA) [8] with recompression is used.

• The face can be approximated in the matrix free representation of the fast multipole
method (FMM). In the examples, a uniform cluster tree based on the usual geometric sub-
division is applied and the kernel expansion is performed with a Chebychev-interpolation
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denoted with Sp [12]

Û (x,y, sℓ) ≈
∑
n

Sp(x,xn)
∑
m

Û (xn,ym, sℓ)Sp(y,ym) . (14)

The polynomial order is p and xn,ym are the respective Chebychev nodes.

The vector f , called fiber in the following, collects selected elements of H at the set of frequen-
cies determined by the gCQ. The latter would amount in NQ entries and the same amount of
faces. The 3D-ACA on the one hand approximates, as above mentioned, the faces with low rank
matrices or FMM and, more importantly, the amount of necessary frequencies is adaptively de-
termined. Hence, a sum of outer products Cℓ as given in (13) is established. The summation
is stopped if Cℓ is comparable to C up to a prescribed precision ε. This is measured with a
Frobenius-norm. The basic concept of this approach is sketched in Algorithm 1. Essentially,

Algorithm 1 Pseudo code of 3D-ACA (taken from [29])
function 3D ACA(ENTRY, ε) ▷ ENTRY provides the integrated kernel values at
collocation point xi and element j

C(0) = 0, k1 = 0 and ℓ = 0
while ∥Hℓ∥F∥fkℓ ∥2 > ε∥C(ℓ)∥F do

ℓ = ℓ+ 1
Hℓ[i, j] = ENTRY (i, j, kℓ)− C(ℓ−1)[i, j, kℓ], i, j = 1, . . . ,M
Hℓ[iℓ, jℓ] = maxi,j |Hℓ[i, j]|
fℓ[k] = Hℓ[iℓ, jℓ]

−1
(
ENTRY (iℓ, jℓ, k)− C(ℓ−1)[iℓ, jℓ, k]

)
, k = 1, . . . , NQ

C(ℓ) = C(ℓ−1) +Hℓ ⊗ fkℓ
kℓ+1 = argmaxk |fℓ[k]|

end while
r = ℓ− 1 ▷ Final rank, i.e., necessary frequencies

return Cr =
r∑

ℓ=1

Hℓ ⊗ fkℓ

end function

three-dimensional crosses are established. These crosses consist of a face Hℓ, which is the
respective matrix at a distinct frequency sℓ times a fiber fℓ, which contains one matrix entry,
the pivot element, at all NQ frequencies. These crosses are added up until a predefined error is
obtained. The amount of used frequencies is the so-called rank r of this approximation of the
initial data cube. The mentioned pivot element is denoted in Algorithm 1 with Hℓ[iℓ, jℓ]. Like
in the ’normal’ ACA this pivot element can be selected arbitrarily. However, selecting the max-
imum element ensures convergence. For details see [7] or the application using H2-matrices in
the faces [29].

The stopping criterion requires a norm evaluation of C(ℓ). Assuming some monotonicity the
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norm can be computed recursively

∥∥C(ℓ)
∥∥2
F
=

ℓ∑
d,d′

(∑
i,j

Hd[i, j]Hd′ [i, j]

)(∑
k

fd[k]fd′ [k]

)
(15)

following [29].
The multiplication of the three-dimensional data array with a vector is changed by the

proposed algorithm. Essentially, the algorithm separates the frequency dependency such that
Hℓ

(
V̂
)

is independent of the frequency and the fibers fℓ
(
V̂
)

present this dependency. Let us
use the multiplication on the right hand side of (11) as example, which is changed to

NQ∑
k=1

V̂ (sk)W
∆tn
k =

NQ∑
k=1

r∑
ℓ=1

Hℓ

(
V̂
)
⊗ fkℓ

(
V̂
)
W∆tn

k =
r∑

ℓ=1

Hℓ

(
V̂
)
⊗

NQ∑
k=1

fkℓ

(
V̂
)
W∆tn

k .

(16)

The complexity of the original operation is O (NQM
2) for M spatial unknowns. The approx-

imated version has the complexity O (r(M2 +NQ)). It consists of the inner sum, which is a
vector times vector multiplication of length NQ, and the outer sum which is a matrix times vec-
tor multiplication of size M . Hence, the leading term with M2 has only a factor of r instead of
NQ compared to the dense computation. It can be expected that for larger problem sizes with a
significant reduction from NQ to r complex frequencies this discrete convolution is faster.

The above sketched algorithm requires some comments regarding its use and implementa-
tion. In principle, this algorithm can be applied to the whole matrix or in case of hierarchical
matrix structures to each matrix block. The latter is made here as it is more efficient as long as
the same hierarchical structure is used for all frequencies [28]. Further, for the FMM version
in the far field blocks the interpolation (14) is used, where only the fundamental solution is
frequency dependent. Hence, in a far field block it is sufficient to use them in the algorithm and
only in the matrix vector product the polynomials are applied. This allows as well to have a pos-
sibility to determine the above discussed pivot element and a straight forward norm computation
(15). For the technicalities of the ACA based version see [14].

5 NUMERICAL EXAMPLE

The above proposed method to accelerate the gCQ based time domain boundary element
method is tested to show that the approximation of the 3D-ACA does not spoil the results, i.e.,
the newly introduced approximation error is smaller than the error of the dense BE formula-
tion. Main focus is on the overall obtained reduction in storage, i.e., the compression which is
measured as the relation between the dense storage and the storage necessary for the proposed
method. Further, the two variants FMM-based and ACA-based are compared.

As mentioned above, linear triangles are used for the discretisation of the geometry and
either linear continuous or constant discontinuous shape functions for the densities are applied.
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The underlying time stepping method has been the 2-stage Radau IIA. The approximation in
the ACA version within the faces has been chosen to be εACA = 10−4 . . . 10−8 for the different
refinement levels of the spatial discretisation. The FMM based results are computed with the
same depth of the cluster tree as the level number is. The polynomial order is set as level plus
2, i.e., it starts with three up to seven. In each refinement level the mesh size is halved as well
as the time step size. The ratio of time steps to mesh size was kept constant with 0.7. The
precision of the method with respect to the frequencies, i.e., the ε in Algorithm 1 was selected
as ε = 100 ∗ εACA. The final equation is solved with BiCGstab without any preconditioner,
where the precision εACA is set. All results are computed for a wave speed c = 1m/s.

The test geometry is a unit cube [−0.5, 0.5]3 with the coordinate system located in the middle
of the cube. In Fig. 1, this cube is displayed with the mesh of refinement level 1 and the table of
all used meshes is given aside. These meshes are created by bisecting the cathetus of the coarser

(a) Unit cube (level 1, h = 0.5m)

level nodes elements h ∆t
1 50 96 0.5 m 0.3 s
2 194 384 0.25 m 0.15 s
3 770 1536 0.125 m 0.075 s
4 3074 6144 0.0625 m 0.0375 s
5 12290 24576 0.03125 m 0.01875 s

(b) Used meshes

Figure 1: Unit cube: Geometry and discretisation parameters

mesh. As load a smooth pulse u (y, t) =
(t− r

c)
2

r
e−c(t− r

c) H
(
t− r

c

)
with r = ∥x − y∥ at the

excitation point x = (0.8, 0.2, 0.3)T is used. The total observation time T = 3 s is selected such
that the smooth pulse travels over the whole unit cube. The acronym 3D-ACA will be used in
the following figures for the ACA based version and 3D-FMM for the FMM based version. To
show that both does not spoil the results the error in space and time it is measured at internal
points as a pointwise L2-error. The convergence rate is denoted by eoc = log2

(
Lh
2/Lh+1

2

)
, where

the superscript h and h+ 1 denotes two subsequent refinement level.
In Fig. 2, this error is plotted for the different refinement levels using both approaches from

the above section. It can be observed that the error of a dense computation, i.e., without the
proposed approximation, is mostly preserved by the 3D-ACA and the 3D-FMM. The outlier in
the 3D-FMM results can be improved by finding better parameters.

Fig. 3 shows the obtained compression, i.e., the relation of the used storage compared to the
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(a) SLP
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Dense
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eoc = 2

(b) DLP

Figure 2: L2-error versus refinement in space and time

necessary storage of a dense computation. It is obvious that a tremendous reduction in storage
can be achieved, where the FMM based version is superior for larger meshes. Unfortunately, the
computing time is actually not convincing. In Fig. 4 the CPU time is displayed for establishing
the 3-D data array and for the convolution. The time to establish the data array is good, however,
the time for the convolution is dramatically increasing, especially for the FMM based method.
The reason can be found in (16), where the computing of the tensor product to establish the
data sparse structure is visible. The inner summation over the frequencies seems to spoil the
performance.
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