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Summary. Textile reinforcements in the form of polymeric cords are currently employed in
rubber composites used in tyres as a lighter alternative to metallic wires. The cords are typi-
cally composed of two or three twisted yarns, each one made of several hundreds of filaments.
Their numerical modelling is challenging due to the different scales involved, the geometric non-
linear effects, and the filament material’s constitutive nonlinearity. In the present work, we
consider multi-ply rayon cords and we further develop a methodology that, using a viscoelastic-
viscoplastic constitutive model, an analytical description of the filaments trajectory and the
experimental measurement of the cord cross section, allows to define the inclination of the ma-
terial directions at each point of an equivalent anisotropic cylinder to be used in numerical
simulation. The numerical predictions are compared with experimental data on 3-ply rayon
cords in uniaxial tests conducted at different strain rates and in three-point bending tests.

1 INTRODUCTION

The overall behaviour of cords is highly dependent on the trajectory of the constituent fila-
ments, which can be reconstructed accurately only with complex experimental techniques, e.g.
combining X-ray microtomography and image processing, as reported in [1] with reference to
2-ply and 3-ply nylon cords. In [2], we developed a model for the simulation of the mechanical
behaviour of rayon mono-ply twisted yarns, at the macroscopic level. A yarn was represented
by an equivalent three-dimensional solid of cylindrical shape with helicoidal anisotropy. The
constitutive law accounts for visco-elastic and visco-plastic dissipation mechanisms and includes
the direction of the fibres in the free energy definition.

In [3] we extended the above approach to multi-ply yarns by making recourse to the definition
of properly oriented virtual fibres within a cord equivalent continuum cylinder, endowed with
local anisotropic properties. This is achieved by exploiting the following three ingredients: the
idealised analytical description of filament trajectories proposed by Treloar [4]; an averaging
process (better detailed further on in this paper) which leads to define axial symmetric inclina-
tions (with respect to cord axis) of virtual fibres considered present in the continuum cylinder;
the experimental measurement of the cord cross section. In [2] this approach was implemented
and numerically tested only with reference to 2-ply cords.
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Cords made up of three yarns are often used as rubber reinforcements and in the literature
several papers can be found describing experimental results on 3-ply cords of different polymeric
materials, see e.g. [5, 6]. On the contrary very few contributions exist on the modelling of 3-ply
cords, at the macroscopic scale, but accounting for the cord inner structure (e.g. the cord/yarn
twist levels). The present contribution goes in the direction just mentioned by extending what
already developed in [3] to treat the case of 3-ply cords. Another very interesting research line
on the modelling of cords is reported in [7, 8] where the problem is tackled in large strain regime
and a cord twisting simulation is incorporated in the analysis procedure.

In the present work, numerical simulations of 3-ply rayon cords are compared with experi-
mental data on greige and dipped specimens under uniaxial tests conducted at different strain
rates at Indorama Ventures Mobility Cremona SpA. Bending tests of dipped cords, conducted
at Pirelli Laboratories (Milan), are also simulated.

2 ELASTO-VISCO-PLASTIC CONSTITUTIVE MODEL

The multi-ply yarns are modelled as anisotropic solids endowed with a constitutive law ac-
counting for visco-elastic and visco-plastic dissipation mechanisms. The directions of anisotropy
are defined by a local vector a related to the filament inclination inside the cord (see fig. 1).
The constitutive model was formulated by the Authors in [2] and is described by the following
governing equations, which can be subdivided into

• State equations

σ = C : (ε− εve − εvp) Hooke’s law (1)

χ = h γ Isotropic hardening rule (2)

Xℓ = Hℓαℓ Linear kinematic hardening rule (3)

Xnℓ = Hnℓαnℓ Nonlinear kinematic hardening rule (4)

• Evolution equations

ε̇ve = Ξ−1 : (σ − C̃ : εve) Viscoelastic strain (5)

ε̇vp =
⟨φ⟩
η

sign((σ −Xℓ −Xnℓ) : (a⊗ a))(a⊗ a) Viscoplastic strain (6)

γ̇ =
⟨φ⟩
η

Internal variable of isotropic hardening (7)

α̇ℓ = ε̇vp Internal variable of linear kinematic hardening (8)

α̇nℓ = ε̇vp − ⟨φ⟩
η

B

Hnℓ
Xnℓ Internal variable of nonlinear kinematic hardening (9)

• Yield condition

φ = |(σ −Xℓ −Xnℓ) : (a⊗ a)| − σy − χ . (10)

In the above relations, σ, χ, Xℓ, Xnℓ denote the stress and the static internal hardening
variables; ε, εve and εvp denote the total, viscoelastic and viscoplastic strains; γ, αℓ, αnℓ are
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the kinematic internal variables describing isotropic, linear and nonlinear kinematic hardening;
the scalars h, Hℓ, Hnℓ, η, B and σy are material defined parameters.

In eq. (1) C is a fourth-order tensor representing the elastic stiffness of the material and its
expression in a global reference system can be found in [2].

Here the transversely isotropic elastic law is expressed for simplicity in a local reference system
where the z-axis coincides with the reinforcement direction a, and, using matrix notation, it
reads 

σxx

σyy

σzz

σxy

σxz

σyz


=



1−νPLνLP
EPEL∆

νP+νLP νPL
EPEL∆

νLP+νP νLP
EPEL∆

0 0 0

νP+νPLνLP
ELEP∆

1−νLP νPL
ELEP∆

νLP+νLP νP
ELEP∆ 0 0 0

νPL+νP νPL

E2
P∆

νPL+νPLνP
E2

P∆

1−ν2P
E2

P∆
0 0 0

0 0 0 EP
2(1+νP ) 0 0

0 0 0 0 µLP 0

0 0 0 0 0 µLP





εxx

εyy

εzz

2εxy

2εxz

2εyz


(11)

where the subscript L denotes the longitudinal direction (assumed aligned with z), the index P
denotes the transverse plane of isotropy (x-y); EL and EP are the elastic moduli, µLP is the
shear modulus and νPL, νLP and νP are Poisson’s coefficients; the term ∆ is defined as

∆ =
(1 + νP )(1− νP − 2νPLνLP )

E2
PEL

. (12)

The following condition is assumed to hold to ensure the symmetry of the stiffness matrix

νPL

EP
=

νLP
EL

. (13)

The positive definiteness of the stiffness matrix is ensured when the following relations hold

EP > 0, EL > 0, µLP > 0 (14)

|νP | < 1 (15)

|νLP | <
√

EL

EP
(16)

1− ν2P − 2νLP νPL − 2νP νLP νPL > 0 . (17)

The viscoelastic stiffness tensor C̃ has a form similar to the tensor C and is taken to be
proportional to the elastic stiffness, resulting in C̃ = c̃C. Similarly, the fourth-order tensor
describing the retardation times is simplified to Ξ = θ̃C̃, assuming a single retardation time θ̃.

When under compression, the fibres are prone to instability, significantly reducing their effec-
tive stiffness. To address this behaviour in the constitutive model, we use a “piecewise” linear
formulation as proposed in [9]. To this purpose, it is necessary to define when a material point
is in a “state of tension” or a “state of compression” while preserving material symmetries in
both states. To enforce a piecewise differentiable stress-strain law, the interface between tension
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and compression states must be defined as a linear combination of the elastic strain in terms
of invariants, as detailed in [9]. In this work, we assume that the interface is defined by a null
value of the projection along the fibres of the elastic strain, namely

εe : (a⊗ a) = 0 . (18)

By exploiting the continuity of the stress function, the only engineering parameter that can
jump across the interface is hence the longitudinal modulus EL. For greige rayon, the ratio
of longitudinal modulus for tension and compression is taken approximately equal to the value
adopted in [10]

EL+ = 300EL− . (19)

3 DOUBLY-WOUND HELIX MODEL OF 3-PLY CORDS

The mechanical response of twisted multi-ply yarns is directly influenced by the local orien-
tation of the fibres, namely the angle that each filament makes with the cord axis. In principle,
this angle can be obtained from microtomography measurements, as done in [1].

Since such refined experimental measurements are not available for the 3-ply cord here con-
sidered, we rely on the theoretical approach proposed in [4] by Treloar for cords made up of
“doubly-wound” filaments, with the central fibre of each yarn following a helical trajectory. Al-
though this model is usually employed for 2-ply cords [4, 11, 3], it can also be used for 3-ply
cords (see fig. 1).

(a) (b)

Figure 1: (a) Microscopy of 3-ply cord, (b) schematic view of the fibres of the three yarns in
blue, red and yellow; and definition of the unit vector a tangent to the fibre highlighted in black.

In the latter case, the idealised geometry of the cord depends on four parameters: n, number
of filament twists per unit length; N , number of yarn twists per unit length; Ry, yarn radius;
and the distance b between yarn axis and cord axis. The parameter n only influences the
filament paths inside each yarn, while the remaining three define the outer geometry of the
cord, represented in fig. 2 (a)-(c). For the case when N = 380 twists per metre (tpm) and
Ry = 0.23 mm, it turns out that by choosing b = 0.29 mm, the idealised horizontal sections of
the three yarns become exactly tangent to each other as in fig. 2 (c) (thus ensuring no material
interpenetration). The horizontal cross-section of a real 3-ply rayon cord is depicted in fig. 2 (d);
its three-lobed shape differs significantly from the theoretical section of fig. 2 (c) which presents
an unrealistic hole at the centre. We assume that the actual cord cross-section is circular, with
an area Aexp = 0.55 mm2 (estimated using microscopy image).
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Figure 2: 3-ply cord: (a) perspective view of the cord with right cross sections of the three
yarns, (b) perspective view of the cord with its right cross-section (c) cross sections of the three
yarns in a plane perpendicular to the cord axis (d) microscopy of the cross-section of the cord
inside rubber showing a three-lobes shape.

The Treloar’s theory gives an analytical formula for the angle ϑ formed by the filaments with
the cord axis. The contour plot of such angle is shown in fig. 3 (a). At this point, we follow the
same logical steps already used in [3]: we compute the mean value of ϑ over a pitch length of the
cord by considering that the cross section of the 3 yarns represented in fig. 3 (a) rotates when
the section is taken in different positions along the cord axis. This mean value, which turns out
to be axially symmetric, is denoted as ϑ = ϑ(r), where (b− Ry) ≤ r ≤ (b+ Ry). This function
is the red (upper) curve plotted in fig. 3 (b).

However, similarly to the case of 2-ply cords, we need to transform the relation ϑ = ϑ(r) into
a new one, ϑ∗ = ϑ∗(r∗), with 0 < r∗ < Rexp, where Rexp is the radius of the experimentally
determined cross-section area Aexp of the cord.
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Figure 3: (a) Fibre inclination on cross sections of the three yarns in a plane perpendicular to
the cord axis; (b) mean fibre inclination versus radial position on the cross-section of the hollow
cylinder enveloping the three yarns (in red) and, after transformation, on the cross-section of
the equivalent cylinder representing the 3-ply cord (in green).
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The adopted function ϑ∗ = ϑ∗(r∗) is the green (lower) curve, plotted in fig. 3 (b), and has
been obtained by a rescaling of ϑ = ϑ(r) analogous to the one described in [3] (preserving the
fibre length), followed by a translation which eliminates the central hole. Such angle distribution
ϑ∗ = ϑ∗(r∗) agrees, at least qualitatively, with the experimentally determined angle distribution
reported in [1] in the case of a 3-ply cord made of nylon filaments.

Once the directions of the virtual fibres in the cord-equivalent continuum cylinder are defined,
the analysis procedure requires the discretisation of the cylinder into FEs and the enforcement
of the anisotropic constitutive law at the element Gauss points, where the fibre direction unit
vector a must have been preliminarily calculated. All the numerical results described in the
next Section have been obtained by using 20-node quadratic hexahedral elements, with reduced
integration (8 Gauss points per element).

4 RESULTS OF SIMULATIONS AND COMPARISON WITH EXPERIMENTS

Table 1 gives the constitutive parameters here adopted for the analysis of greige 3-ply rayon
cords, also indicated by symbol C3. The parameters are identical to those used in [3] for the
simulation of reinforcements of the same rayon material but with different internal structure.
More precisely, we recall that such a parameter set was determined based on tensile tests on
untwisted and twisted single-ply yarns. Since the numerical results on 3-ply cords that we are
going to describe in the next subsections show a good agreement with corresponding experi-
mental data, we can claim that the present study represents further a validation of the overall
analysis approach developed in [2, 3] and carried over to 3-ply cords in the present contribution.

Table 1: Material model parameters for rayon in humid conditions.

EP [MPa] EL+ [MPa] EL− [MPa] νP [-] νLP [-] µL [MPa] c̃ [-]

170 14500 48.3 0 0 10 4.00

θ̃ [s] σy [MPa] Hℓ [MPa] Hnℓ [MPa] h [MPa] B [-] η [s MPa]

2.50 60 2700 40000 1200 1000 2000

4.1 Uniaxial tensile tests of greige 3-ply cords

The simulations of the tensile tests on greige cords C3 are carried out using the finite element
discretisation which, on the cross-section, is visualised in fig. 5. The numerical global force-
strain curves obtained with this mesh are compared to the corresponding experimental ones, for
various strain rates, in fig. 4.

It can be noted that there is a good agreement up to a cord strain value of about ε = 0.1.
In fig. 4 (b) both the longitudinal normal stress σ3 and the normal stress along the (local) fibre
direction σfibre are plotted along the radius, for ε = 0.1 and an adopted strain rate ε̇ = 0.003 s-1.
One can observe a non-monotonic variation of these stresses along the radius which reflects the
peculiar distribution of the equivalent fibre inclination shown in fig. 3 (b) which is non-monotonic
as well.

Contour plots of the normal stresses in the direction 3 of the cord axis and of the corresponding
plastic strains are represented in fig. 5 for ε = 0.1. As expected, the zones with higher plastic
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strain (i.e. the centre and the external layer) are those where fibres are less inclined (smaller ϑ):
such fibres are more stressed and are the first to enter the plastic regime.
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Figure 4: (a) Uniaxial tensile test on cords C3 at different strain rates, experimental (dashed
lines) and numerical (continuous lines); (b) axial stress versus radial position for ε = 0.1 and
ε̇ = 0.003 s−1.

Figure 5: Contour plots of (a) normal stress and (b) longitudinal plastic strain in the direction
of the cord axis, in cord C3 at a total cord strain of ε = 0.1.

4.2 Bending and uniaxial tensile tests of dipped 3-ply cords

When dealing with dipped cords, also denoted by symbol DC3, the presence of the adhesive
in the outer layer must be taken into account. The thickness of such layer is assumed to be
36 µm. When meshing the equivalent cylinder representing the cord, we choose to adopt two
quadratic finite elements in the radial direction to discretise the outer portion of the cord where
the adhesive is present. In this zone, some of the elastic parameters are changed to account
for the stiffening effect of the adhesive with respect to the values reported in table 1 for greige
cords. Specifically EP , EL−, νP and µLP are increased.

Since the effect of dipping is more evident for cords subject to bending, recourse is made
to three-point bending tests on a cord fabric specimen containing 10 dipped 3-ply cords, to
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calibrate the new material parameters using the experimental data coming from both the bending
tests and the tensile tests (the latter on single cords DC3). The bending test is performed in
accordance with ASTM D885. As shown in fig. 6 (a) the cord fabric sample initially rests across
a 25 mm span opening, in a straight configuration. The specimen is supported by two short
cylindrical bars (5 mm in diameter) forming the two “T’s” visible in fig. 6 (a). The specimen
is deflected by a depressor element (a cylindrical bar 6 mm in diameter) acting at the centre of
the span, and the force required to move the depressor is recorded.

The simulation of the bending test is carried out using the FE model of fig. 6 (b) in which
only a single DC3 cord is considered. A contact analysis is performed to ensure an accurate
representation of the interactions between the deformable cord, the two support elements and
the central depressor element, these three elements being represented as discrete rigid surfaces.
Frictionless contact is considered. The analysis is performed in a geometrically linear setting
(small strain and displacement) and therefore only the first stage of the bending test is simulated,
for a vertical translation of the depressor element less than, say, 2.5 mm. The deformed shape
of the cord model is shown in fig. 6 (c), just for half of the cord (due to symmetry).

Comparing numerical and experimental results relevant to cord DC3 for both uniaxial and
bending tests (the latter in their initial phase), it turns out that a good fit is obtained in
both cases by adopting the following set of parameter values for the cord zone affected by the
presence of the adhesive: EP = 8000 MPa, EL− = 290 MPa, νP = 0.3 and µLP = 90 MPa.
Since the bimodulus ratio EL−/EL+ plays a greater role in bending, the calibration of EL−
stems substantially from the bending tests.

(a)

(b)

(c)

Figure 6: (a) Bending test on a cord fabric specimen containing 10 DC3 cords, based on ASTM
D885; (b) FE model for simulating the bending of a single DC3 cord, in contact with rigid
elements; (c) side view of half of the DC3 cord, in initial and deformed configuration (with
maximum vertical displacement = 2.5 mm).
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This set of parameters for the dipped outer layer of the cord and that of table 1 for the
cord interior (without the adhesive) are used for the bending simulation. The mesh on the
cross-section is represented in fig. 7 (a) where the smaller elements used for the outer dipped
region are visible. The length of the finite elements in the longitudinal direction is such that
the elements in the zone around the cord axis have an aspect ratio close to 1. The computed
force versus mid-span displacement curve is represented in fig. 7 (b) (solid line) together with
the corresponding experimental curve (dashed line). A very good agreement is obtained at least
for values of the imposed mid-span displacement lower than 2.5 mm.
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Figure 7: (a) Stress distribution in the central (mid-span) section of the DC3 cord under bending
load, which accounts for different behaviour in tension and compression; (b) initial portion of
the force-displacement curve for the 3-point bending test of the cord fabric (10 cords of type
DC3): experimental curve (dashed line) and numerical result from FE model (solid line).

Figure 7 (a) displays the contours of normal stress σ3 in the lower portion of the central section
of the cord, where the stress is positive. The region in light-grey is subjected to σ3 < 0. One
can observe that, due the inclusion of the bimodular effect, the neutral axis is below the centre
and the stress distribution along the vertical diameter is not symmetric (tension is represented
in red and compression in light-blue).

As for the simulations of the uniaxial tensile tests whose results are shown in fig. 8, the
adopted finite element mesh is the one of fig. 5. Figure 8 (a) shows experimental and numerical
results for the uniaxial tests of cords DC3, at different strain rates. A good agreement is obtained
at least for strains up to ε = 0.08. Figure 8 (b) shows that, with the adopted set of parameters
previously specified, it is possible to have a good agreement between experimental and numerical
response for both the greige cord C3 and the dipped cord DC3.
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Figure 8: (a) Uniaxial tensile test of dipped cords DC3 at different strain rates (ε̇ = 0.017
s-1, 0.003 s-1, 0.0003 s-1), experimental data (dashed lines) and numerical results (solid lines);
(b) uniaxial tensile test on greige and dipped cords, C3 and DC3, at a strain rate of 0.003 s-1:
experimental data (dashed lines) and numerical results (solid lines).

5 CONCLUSIONS

In the present study the computational procedure for simulating the behaviour of multi-ply
yarns which was developed in [3] has been extended to 3-ply cords. The model shows a very
good quantitative agreement with experimental force-strain responses for cord tensile strains up
to 10%.

By incorporating a bimodular effect, the model captures the different response of the fibres
under tension and compression, which is particularly important for analysing the cord response
under bending. For dipped cords, by adjusting the material parameters for the outer layer,
where the adhesive is present, a good fit can be obtained with experimental data for both tensile
and bending tests.

Moreover, the model allows the estimation of local stress and strain distributions, which are
influenced by fibre inclination and cord construction. This capability paves the way for optimiz-
ing cord designs. Future work will focus on extending the model to include large displacements
and the possible reorientation of the fibres, thereby broadening the applications range of the
proposed approach.
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