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A B S T R A C T

A multiscale data-driven (MSDD) methodology is proposed for simulating the thermomechanical behavior of
granular materials subjected to thermal expansion. The macroscale is handled using a continuous model based
on the Finite Volume Method (FVM), while the microscale response is captured at Representative Volume
Elements (RVEs) with the Discrete Element Method (DEM). To significantly reduce the computational cost
of the analyses, the microscale DEM computations are not performed online, 𝑖.𝑒., simultaneously with the
macroscale FVM ones, as generally done in standard multiscale approaches. Instead, they are performed in
advance to create a comprehensive database of RVE solutions under different initial conditions and thermal
strains. This dataset is then used to train an Artificial Neural Network (ANN), which serves as a surrogate
model for the macroscale solver. The MSDD approach is validated against pure DEM solutions of problems
with distinct thermal conditions. Remarkably, we demonstrate that with only three input parameters, namely
porosity, fabric, and thermal strain, the surrogate model can predict the microstructure evolution, as well
as the updated conductivity and Cauchy stress tensors of the granular assembly. This allows for a generally
accurate simulation of transient thermomechanical analyses at a drastically lower computational cost than the
pure DEM approach.
1. Introduction

Understanding the thermomechanical behavior of granular materi-
als is of primary importance in several engineering problems. Packed
beds of granular media are widely used as heat storage systems in
renewable energy power plants (Ismail and Henrıquez, 2002). During
heating-cooling cycles, thermal stresses due to differential expansion
between the granular medium and the container can lead to potential
material and structural damage (Sassine et al., 2018; Li et al., 2019).
In the nuclear industry, packed beds of ceramic breeders are used for
tritium fuel production in a fusion reactor. Under the effect of nuclear
heating, the thermal expansion of breeders may lead to their breakage
and an overall efficiency loss of the system. This explains the scientific
interest in characterizing the thermomechanical behavior of ceramic
breeder pebble beds (Reimann et al., 2002; Reimann and Hermsmeyer,
2002; Gan and Kamlah, 2007; Ying et al., 2012). Thermal expansion
is also critical for asphalt concrete pavements (Chen et al., 2021),
where cracking may be produced due to extreme temperature drops
or fatigue induced by temperature fluctuations (Liu et al., 2021; Yin,
2015; Arabzadeh and Guler, 2019). On the other hand, as discussed
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in Chen et al. (2006) and Iliev et al. (2019), and studied numerically
in Coulibaly et al. (2020), heating-cooling cycles of granular beds and
the consequent thermal expansion–contraction may be conveniently
used to compact the granular material without the need to apply exter-
nal mechanical loads to the system. Remarkably, changes in packing
fraction may affect the bulk properties of granular systems (Vargas
and McCarthy, 2007), such as sound propagation (Liu and Nagel,
1994; Liu, 1994) and electrical conduction (Bonamy et al., 2000). In
addition, thermal effects are also relevant in several manufacturing
processes with granular materials, including, for example, granular
mixing through rotating drums (Rangel et al., 2023) or bladed stir-
rers (Kisuka et al., 2023) and additive manufacturing via selective laser
sintering (Kruth et al., 2003).

These are just a few examples highlighting the importance of model-
ing and predicting the thermomechanical behavior of granular media.
However, this task proves highly challenging due to the intrinsic hy-
brid nature of granular matter, which possesses characteristics of both
discrete and continuous materials and can behave simultaneously as a
solid, fluid, and even as a gas (Herrmann and Luding, 1998; Campbell,
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2006). Therefore, these properties make granular substances one of the
most complex types of material to simulate.

Numerical methods offer the possibility to shed light on the complex
nature of granular media. However, discrete strategies, such as the
Discrete Element Method (DEM) (Cundall and Strack, 1979), while
capable of faithfully representing the particulate nature of granular
materials, may lead to unaffordable computational costs when applied
to real-world problems. Continuous methods, such as the Finite Volume
Method (FVM) (Versteeg and Malalasekera, 2007) or the Finite Element
Method (FEM) (Zienkiewicz et al., 2005), have complementary char-
acteristics, 𝑖.𝑒., they cannot capture the intrinsic behavior of granular
media and require the use of phenomenological laws to model the
material response, but they are applicable to real-scale simulations
owing to their lower computational cost.

The dichotomy between continuous and discrete computational
methods has led to the development of hierarchical multiscale ap-
proaches for the simulation of granular materials. In these hybrid
strategies, a continuous method solves the macroscale problem deriving
the material response from the homogenized solution of microscale
analyses performed with a discrete method over Representative Volume
Elements (RVEs) (Miehe and Dettmar, 2004; Miehe et al., 2010; Nguyen
et al., 2014; Guo and Zhao, 2014; Liu et al., 2016). Typically, these
approaches use the FEM for the macroscale solution and the DEM for
the microscale analyses. More recently, particle-based methods, such
as the Material Point Method (MPM) (Sulsky et al., 1994) and the
Particle Finite Element Method (PFEM) (Idelsohn et al., 2004), have
been employed as the macroscale continuous strategy to handle large
material deformations (Liang and Zhao, 2019; Liang et al., 2021; Guo
et al., 2021). All the mentioned multiscale formulations have focused
solely on the mechanical behavior of granular media. Only recently
have thermomechanical analyses been carried out with a hierarchical
multiscale approach (Zhao et al., 2020, 2022; Yu et al., 2024).

Nevertheless, even for multiscale methods, the computational cost
remains the bottleneck of the numerical approach. This is because
the most computationally demanding procedure, 𝑖.𝑒., the DEM solution
of granular assemblies, is performed at all integration points of the
discretized continuous computational domain and in an online manner,
𝑖.𝑒., at each time step of the macroscale solution.

An attractive way to overcome this important limitation of hier-
archical multiscale strategies is to perform the DEM microscale com-
putations offline and use this information to train a surrogate model
based on Machine Learning (ML) techniques, such as Artificial Neural
Network (ANN). In the online macroscale computations, the surrogate
model feeds the continuous solution with relevant information, such as
stresses for a given deformation state (Wang and Sun, 2018, 2019a,b;
Ma et al., 2022; Qu et al., 2023; Wang et al., 2024). In the context
of thermal analysis of granular media, a multiscale methodology using
an ANN-based surrogate model was presented in Desu et al. (2019)
and Peeketi et al. (2019) to predict the effective thermal conductivity
of a granular bed in a gaseous environment. An alternative method, yet
still based on an offline–online multiscale approach, was recently pro-
posed by the authors in Rangel et al. (2024) to estimate the temperature
evolution in dense granular assemblies. A notable aspect of that work
is the surrogate model’s ability to accurately predict scale-invariant
conductivities using only two dimensionless inputs that characterize
the microstructure. Leveraging insights from the multiscale frame-
work for turbulent flow simulations developed by the same research
group (Gimenez et al., 2021; Idelsohn et al., 2024), the cited approach
minimizes the number of parameters required for the offline database
while broadening the applicability range of the methodology.

We also remark that ML-based algorithms trained with experimental
measurements have been widely used to predict the effective thermal
conductivity of materials with difficult characterization (Chen et al.,
2024), such as composites (Wei et al., 2018), food (Sablani et al., 2002;
Chayjan et al., 2007), textiles (Fayala et al., 2008), and rocks (Goutorbe

et al., 2006; Singh et al., 2007), as well as in the context of granular
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media (Grabarczyk and Furmański, 2013; Go et al., 2016; Rizvi et al.,
2020; Fei et al., 2021; Li et al., 2022; Zhang et al., 2020). However,
creating an exhaustive database from experimental observations can be
significantly more complex than from numerical results. Indeed, when
training ML models with solely laboratory data, the limited amount and
narrow scope of these data may restrict the applicability of the model
and elevate the risk of extrapolation in its predictions.

In this work, we present a Multiscale Data-Driven (MSDD) method-
ology, based on the continuum-discrete hierarchical approach, for mod-
eling the thermomechanical behavior of granular materials. Compared
to our previous work (Rangel et al., 2024), which focused on heat con-
duction over a static medium, the new method is designed to address
the transient behavior of granular media in the presence of thermal
expansion. A dataset generated from offline DEM computations on
RVEs of granular assemblies is created to train an ANN tool. The ANN
works as a surrogate constitutive model for the macroscale solution
framework, which is based on a volume-averaged FVM formulation. In
this sense, for a given state of microstructural properties and thermal
strain, the ANN forecasts the evolution of these properties, represented
by porosity and fabric, as well as the updated conductivity and stress. A
key benefit is that the evolution of microstructural properties is tracked
based only on the initial configuration, without the need to simulate
RVEs online. Furthermore, to the best of the authors’ knowledge, this
is the first application of an offline–online multiscale methodology
to investigate the thermal expansion phenomenon in granular mate-
rial. Remarkably, despite not solving the mechanical problem at the
macroscale, the proposed MSDD approach is capable of predicting not
only the time evolution of microstructural properties relevant for the
thermal behavior, but also the evolution of local stresses without any
significant additional computational cost.

To limit the complexity of the problem we assume some simplifying
hypotheses. Firstly, we only focus on two-dimensional (2D) analyses of
dense and dry granular matter. Furthermore, we consider particles with
the same shape (circular) and material properties, and we also neglect
the influences of gravity, shear effects, and interstitial air. Additionally,
heat transfer takes place only by heat conduction through contact areas.

The remainder of the paper is structured as follows. Section 2 de-
scribes the proposed methodology. Firstly, it presents the formulations
of the continuous and discrete methods used at the macro and micro
scales, respectively, as well as the homogenization to link these two
scales. Afterward, it describes the procedure for generating the database
of microscale results and how it is used to train the ML-based surrogate
model adopted. The section ends with the implementation algorithm
for the online macroscale solution. Section 3 presents the results and
discussions on the application of the method. Initially, it deals with
offline procedures by showing features of the created database, as well
as the ANN training process. Then it validates the online solution by
comparing the results provided by the MSDD approach with a pure
discrete solution. The section ends with a discussion of the limitations
of the method. Finally, Section 4 gives concluding remarks and points
towards future developments.

2. Methodology

An overview is provided for the multiscale data-driven (MSDD)
methodology to solve the transient thermomechanical behavior of gran-
ular media considering heat conduction and thermal expansion. As
shown in the schematic diagram of Fig. 1, the MSDD approach consists
of two distinct, but communicating, frameworks: an online continuous
computational method responsible for the macroscale solution, and
an offline discrete strategy used to characterize the evolution of the
microscale properties.

In the online procedure, the macroscale heat transfer problem is
solved considering, at each integration point, effective microstruc-
tural properties inferred via a Machine-Learning (ML) surrogate model,

which is implemented as an Artificial Neural Network (ANN). At a
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Fig. 1. General methodology scheme of the proposed MSDD approach.

given time step 𝑛 of the online continuum computations, the current
local porosity, 𝜂𝑛, fabric tensor, 𝑭 𝑛, and thermal strain, 𝜀𝑛, feed the
surrogate model that predicts the updated tensors of effective thermal
conductivity, 𝑲𝑛+1, Cauchy stress, 𝝈𝑛+1, and fabric, 𝑭 𝑛+1, as well as the
updated local porosity, 𝜂𝑛+1.

In the offline procedure, the ML-based surrogate model is trained
with data coming from discrete numerical analyses performed at the
microscale over Representative Volume Elements (RVEs) of the gran-
ular material. The RVEs are simulated considering different initial
consolidation conditions and applied thermal strains, which lead to
expansion or contraction of the grains and, thus, new microstructure
conditions. The porosity, fabric, and homogenized conductivity and
stress tensors obtained at the equilibrium state before and after apply-
ing the thermal strains are stored in a database that is used to train the
surrogate model.

2.1. Macroscale continuum formulation

At the macroscale, the time evolution of the temperature field
𝑇 , within a domain 𝛺 with boundaries 𝛤 , is governed by the tran-
sient volume-averaged heat diffusion equation along with its associated
boundary and initial conditions, expressed as:

𝜚𝑐 𝜕𝑇
𝜕𝑡

= ∇ ⋅ (𝑲∇𝑇 ) in [𝛺, 𝑡]

𝑇 = 𝑇 in [𝛤D, 𝑡]

𝑲∇𝑇 ⋅ 𝒏𝛤 = 𝑞 in [𝛤N, 𝑡]

𝑇 = 𝑇 0 in [𝛺, 0]

(1)

where 𝑇 is the imposed temperature on Dirichlet boundaries, 𝛤D, 𝑞 is
the applied heat flux on Neumann boundaries, 𝛤N, 𝒏𝛤 is the outwards
unit normal vector to the boundary, 𝑇 0 is the initial temperature field
for the hyperbolic differential equation, and 𝑡 denotes time.

Two effective properties describe the thermal behavior of the granu-
lar material: the conductivity tensor 𝑲 and the volumetric heat capacity
𝜚𝑐, being 𝑐 the heat capacity of the grains and 𝜚 the bulk density.
By neglecting the density of the interstitial air, we can assume that
𝜚 = 𝜌(1−𝜂), where 𝜌 is the density of the particles and 𝜂 is the porosity,
defined as the local ratio of void to averaging volumes. We remark that
these effective properties depend on the current microstructure, which
can evolve due to thermal expansion. This intricate evolution cannot
be captured by the continuous macroscale method and is modeled with
discrete analyses performed at the microscale, as described in the next
sections.

The solution of the transient diffusion problem in Eq. (1) can be
obtained using standard numerical methods for the continuum. In this
work, the spatial discretization is done via the cell-centered Finite
3 
Volume Method (FVM). Therefore, the domain 𝛺 is split into non-
overlapped volumes 𝛺𝑖, such that 𝛺 =

⋃

𝑖 𝛺𝑖 and 0 =
⋂

𝑖 𝛺𝑖. A cell
𝛺𝑖 is an arbitrary polyhedron whose boundary 𝛤𝑖 is composed by flat
faces 𝑏 of normal 𝒏𝑏 and area 𝛤𝑏, such that 𝛤𝑖 =

⋃

𝑏 𝛤𝑏. The unknown
field, 𝑇𝑖, as well as other necessary material properties, are stored in
the cell center and linearly interpolated to the face mid-points when
required. After spatial discretization and local balance procedures, the
equation system is expressed as:

∑

𝑖

(

(𝜚𝑐)𝑖
( 𝜕𝑇
𝜕𝑡

)

𝑖
𝛺𝑖 −

∑

𝑏∈𝛤𝑖

(𝑲 ⋅ ∇𝑇 ⋅ 𝐧)𝑏 𝛤𝑏

)

= 0 (2)

The resulting system of algebraic equations is obtained from Eq. (2)
once the time integration scheme and the spatial operators to approx-
imate the fields and their derivatives at face mid-points are chosen. In
particular, we employ an implicit first-order operator for the temporal
term and second-order operators for the spatial approximations.

2.2. Microscale discrete formulation

The Discrete Element Method (DEM) is applied to simulate the
granular behavior at the microscale. For simplicity, we focus only on
two-dimensional (2D) problems, where single grains are represented
as cylindrical particles of unit length, all moving within the same
plane. As typically done in DEM approaches for thermal problems, all
particles are assumed to be isothermal bodies. Furthermore, gravity and
interactions with the air are not considered.

The translational motion, rotational motion, and temperature of
each particle are solved by explicitly integrating the following equa-
tions:

𝑚d𝒗
d𝑡

= 𝒇 (3)

𝐼 d𝜔
d𝑡

= 𝑀 (4)

𝑚𝑐 d𝑇
d𝑡

= 𝑞 (5)

where 𝑚, 𝐼 , 𝒗, 𝜔, 𝒇 , 𝑀 , and 𝑞 are the mass, moment of inertia, transla-
tional velocity, angular velocity, resultant force, resultant torque, and
net heat transfer of a particle, respectively. In this work, the resultant
force acting on a particle is given by the sum of the contact forces
with each neighbor, which are composed of normal and tangential
components, 𝒇 𝑛 and 𝒇 𝑡, respectively, in addition to a non-viscous damp-
ing force, 𝒇 𝑑 . The resultant torque arises from the sum of the contact
torques with neighbors, 𝑀𝑐 , which are provoked only by contact forces,
as rolling friction is not considered. Finally, the net heat transfer of a
particle is determined by the accumulation of heat conduction from/to
each neighbor, 𝑞𝑐 , which is calculated with a thermal pipe model.
The models for calculating forces, torque, and heat transfer between
elements are the same as those employed in our previous work (Rangel
et al., 2024), whose formulas are summarized in Table 1.

The effects of thermal expansion are also considered. This phe-
nomenon is modeled using a coefficient of linear thermal expansion,
𝛼. In this work, we assume that this material property is independent
of temperature. Therefore, the increment in the radius of a particle over
a time step, 𝛥𝑟, is calculated as:

𝛥𝑟 = 𝜀𝑟0 (6)

where the radial thermal strain, 𝜀, is defined as:

𝜀 = 𝛼𝛥𝑇 (7)

with 𝛥𝑇 being the temperature variation of the particle and 𝑟0 its
radius prior to the application of the temperature change. We note that
mass conservation of individual particles implies that, if the volume
of a particle changes due to thermal expansion, its density varies
accordingly.

All computational implementations and simulations related to the
microscale were done in the open-source framework Kratos-Multiphysics
(Dadvand et al., 2010).
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Table 1
DEM models for forces, torque, and heat transfer.

Contact normal force 𝒇 𝑛 = −𝑠𝑛𝛿𝑛𝒏

Contact tangential force 𝒇 𝑡 =
{

𝒇 prev
𝑡 − 𝑠𝑡𝛥𝒖𝑡 if |

|

𝒇 𝑡
|

|

≤ |

|

𝒇 𝑛
|

|

tan (𝜑)
|

|

𝒇 𝑛
|

|

tan (𝜑) 𝒕 otherwise

Particle damping force 𝒇 𝑑 = −𝜇 |

|

𝒇 𝑐
|

|

𝒗∕ |𝒗|

Contact torque 𝑀𝑐 = |

|

𝒇 𝑡 × 𝒍|
|

Contact heat conduction 𝑞𝑐 = −𝑘𝐴
(

𝑇1 − 𝑇2
)

∕ |𝒅|

Normal stiffness: 𝑠𝑛 = 2𝐸𝑟1𝑟2∕(𝑟1 + 𝑟2). Tangential stiffness: 𝑠𝑡 = 𝜈𝑠𝑛. 𝑟1, 𝑟2, 𝑇1, 𝑇2:
articles radii and temperatures. 𝐴: contact area. 𝒅: branch vector between particles’
enters. 𝒏: unit outward normal of the contact. 𝒕: unit vector in the contact tangential

direction. 𝛿𝑛: normal overlap. 𝛥𝒖𝑡: increment of relative tangential displacement at the
contact. 𝐸: Young’s modulus. 𝜈: tangential-to-normal stiffness ratio. 𝜑: friction angle.
𝜇: damping coefficient. 𝑘: thermal conductivity. 𝒇 𝑐 : sum of contact forces with all
neighbors. 𝒇 prev

𝑡 : tangential force from previous time step. 𝒍: lever arm of tangential
force relative to particle’s longitudinal axis.

2.3. Homogenization of the discrete behavior

The discrete solution of an assembly of particles must be represented
by continuous-field variables to link the micro and macro scales. These
variables are the porosity and the tensors of fabric, effective thermal
conductivity, and effective stress. In this work, they are obtained
exclusively from the particle positions and contact forces.

The fabric is computed following a popular contact-based tensorial
definition (Oda, 1982), as:

𝑭 = 1
𝑁𝑐

𝑁𝑐
∑

𝑖=1
(𝒏⊗ 𝒏)𝑖 (8)

here 𝑁𝑐 is the total number of contacts in the assembly and ⊗ denotes
he outer product.

The effective thermal conductivity tensor is homogenized by con-
idering only the geometry of the discrete solution and the thermal
onductivity of the particles. For the thermal pipe model of heat
onduction, this tensor is expressed as (Rangel et al., 2024):

= 1
𝑉

𝑁𝑐
∑

𝑖=1
(𝑘𝐴 |𝒅|𝒏⊗ 𝒏)𝑖 (9)

where 𝑉 is the total volume of the considered assembly (area with
unit depth in 2D). An advantage of this geometry-based approach for
computing the effective thermal conductivity is that it does not require
a thermal analysis of the granular material, as done in Desu et al.
(2019) and Peeketi et al. (2019).

The force chain of the particle assembly is homogenized into the
Cauchy stress tensor following the commonly used Love’s formula
(Christoffersen et al., 1981), as:

𝝈 = 1
𝑉

𝑁𝑐
∑

𝑖=1

(

𝒅 ⊗
(

𝒇 𝑛 + 𝒇 𝑡
))

𝑖 (10)

where the direction of the branch vector joining the particles’ centers,
𝒅, is such that compression is taken as positive. From the stress tensor,
the mean effective stress, 𝑝, can be defined. In 2D, it is written as:

𝑝 = 1
2
𝑡𝑟 (𝝈) (11)

.4. Offline microscale simulations in RVEs

RVEs are employed to obtain information from the microscale and
omogenize its discrete behavior. Following Rangel et al. (2024), the
VEs are square DEM assemblies with fixed, flat, and impenetrable
alls as boundaries. In this type of mass-conserving RVEs, mass flow

hrough the contours is not admitted, which implies that its bulk
ensity and, consequently, the volumetric heat capacity can be assumed
onstant even if the volume of the particles changes.

The RVEs are composed of 500 particles; this number was shown
o offer a good balance between the representativeness of the discrete
4 
Fig. 2. Microscale data generation from a single RVE packing. The inputs of the
database are the porosity and fabric after the packing stage and the applied thermal
strains: (𝜂0, 𝑭 0, 𝜀𝑖). The outputs of the database are the porosity and the tensors of
fabric, conductivity, and stress after each strain application: (𝜂, 𝑭 , 𝑲 , 𝝈)𝑖. This two-step
rocess is repeated for different RVE packings, 𝑖.𝑒., distinct (𝜂0, 𝑭 0).

medium and the computational cost for simulating RVEs with the
mentioned conditions (Rangel et al., 2024). As explained in the cited
study, the evaluation and homogenization of microstructural properties
are carried out considering an internal region of the RVE, which is
delimited by a convex hull formed by the center of all internal particles
and some particles that touch the walls. A minor adjustment to this
methodology was made in the present work, as it was observed that the
previous one slightly underestimated the thermal conductivity. In this
sense, the delimiting convex hull is formed only by internal particles
that do not touch the walls, and all the contacts within or intersected by
the boundary of this region are considered for evaluating Eqs. (8)–(10).

To generate the microscale dataset necessary to train the ML-based
surrogate model, two stages of RVE simulations are performed offline:
packing of granular assemblies and thermal expansion of particles. This
two-step process is illustrated schematically in Fig. 2 for a single RVE
packing.

The packing stage is the same as the RVE generation protocol
described in Rangel et al. (2024). The boundaries move slowly to
compact randomly positioned particles up to a target porosity. Different
relative consolidation speeds in horizontal and vertical directions are
used to control the principal direction of the fabric. The simulation
ends when the particles reach static equilibrium after the walls stop
moving. The resulting microstructure, with porosity 𝜂0 and fabric tensor
𝑭 0, is saved to allow the thermal expansion simulations to restart from
it. Several RVE packing processes up to different target porosities are
performed to generate the dataset.

In the thermal expansion stage, multiple simulations are performed
for each RVE packing by applying different thermal strains, 𝜀0...𝑞 , to the
particles. The thermal expansion effects are reproduced by changing
the particle radii according to Eq. (6), meaning that strain values are
prescribed without needing to change the temperature of the particles
or solve a thermal problem in the RVEs. The thermal strain, either
positive, 𝜀+, or negative, 𝜀−, is imposed uniformly on all particles
n the RVE and at a slow rate to avoid excessive dynamic effects.
uring expansion, the boundaries are held still and friction with walls is
onsidered. The simulation ends when the particles are in static equilib-
ium after reaching the target strain. At this moment, the new porosity
nd fabric tensor are evaluated, (𝜂,𝑭 )0...𝑞 , as well as the homogenized
hermal conductivity and stress tensors, (𝑲 ,𝝈)0...𝑞 .

.5. Database of microscale results

Each thermal expansion simulation generates a data point of mi-
roscale results, consisting of input values that lead to an output
olution. The initial configuration, represented by the initial porosity
nd fabric, together with the applied thermal strain, defines the inputs
f the database, 𝑖.𝑒., (𝜂0, 𝑭 0, 𝜀𝑖), while the final setup of the RVE
etermines the outputs, 𝑖.𝑒., (𝜂, 𝑭 , 𝑲, 𝝈)𝑖. The scenario of zero strain,
, is also contemplated by taking the initial and final configurations as
0
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the same, thus without the need for an expansion simulation to create
the data point.

The database must be created for input ranges sufficiently wide to
cover the values that may occur in the intended problem. This is of
primary importance to avoid extrapolation by the surrogate model, as
it will be explained in the next section. Therefore, besides applying
different thermal strains to the same RVE packing, several packing
configurations are generated with varying porosities and fabrics as
inputs. However, since the value of each input is varied independently
of the others to cover the intended range, the number of RVE simula-
tions required to create the database increases exponentially with the
number of inputs. For this reason, it is crucial to reduce the database
inputs as much as possible. Hence, as done in Rangel et al. (2024), we
opt to disregard the off-diagonal, 𝑥𝑦, components of the fabric tensor
and, consequently, of the thermal conductivity and stress tensors. This
decision is based on observing that, in the problems studied in this
work, where no shear is imposed by the boundaries, the off-diagonal
components of these tensors are much smaller in magnitude than their
diagonal counterparts. In addition, since the trace of the fabric tensor
is always equal to 1, its diagonal components can be represented by
a single value in 2D. Therefore, we define a fabric index, 𝑓 , given by
𝑓 = 𝐹𝑥𝑥 − 𝐹𝑦𝑦, which is taken as the sole parameter to represent the
fabric.

We also observe that, due to the absence of gravity, the solution of
square RVEs is frame invariant (Rangel et al., 2024). In 2D, this implies
that we can generate additional data points through a 90◦ rotation of
the tensorial variables of the original dataset. Therefore, each generated
data point, with inputs (𝜂0, 𝑓0, 𝜀𝑖) and outputs (𝜂, 𝑓 , 𝐾𝑥𝑥, 𝐾𝑦𝑦, 𝜎𝑥𝑥,
𝜎𝑦𝑦)𝑖, gives rise to a new data point whose inputs are (𝜂0, −𝑓0, 𝜀𝑖) and
the outputs are (𝜂, −𝑓 , 𝐾𝑦𝑦, 𝐾𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑥𝑥)𝑖, 𝑖.𝑒., the diagonal terms
of tensors are swapped and, consequently, the sign of the fabric index
changes.

To broaden the scope of the database and make it valid for granular
materials with different properties, the inputs and outputs are stored
in dimensionless form. The porosity, fabric, and strain already possess
this characteristic. The thermal conductivity and stress tensors are
normalized by adequate scaling factors into the dimensionless tensors
�̃� and 𝝈, respectively. The scaling factor of the effective thermal
conductivity tensor is the conductivity of the particles used to create
the database, hence: �̃� = 𝑲∕𝑘. This is because its homogenization
formula (Eq. (9)) relies only on geometrical parameters, except for 𝑘,
which is considered the same for all particles in this work. Therefore,
normalization by particle conductivity makes the database independent
of this property, as the homogenized thermal conductivity tensor can
be rescaled accordingly. Analogously, the particle Young’s modulus is
taken as the scaling factor of the effective stress tensor, as it is the
common parameter for calculating the contact forces in Eq. (10), hence:
𝝈 = 𝝈∕𝐸. This scaling operation allows the database to be reused for
granular materials with different particle thermal conductivities and
Young’s moduli, provided that the dimensionless tensors are rescaled
by the properties of the selected material. However, this is valid only
for granular materials that share the same DEM modeling features
as those used to create the database. These include contact and heat
transfer formulations, particle shape and size distribution function, the
use of a single material type, and general assumptions like neglecting
gravity. Any change to these conditions would alter the microscale
results of homogenized conductivity and stress tensors in ways that the
scaling operation cannot account for. We also note that, regardless of
non-dimensionalization, the database remains applicable to materials
with varying densities, specific heat capacities, and thermal expansion
coefficients, as these properties do not affect the microscale results
under the assumptions of this work. Furthermore, although the function
of particle size distribution must match to allow re-utilization of the

database, the size magnitudes can be different. o
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Fig. 3. Architecture of the adopted ANN.

2.6. Microscale surrogate model

An Artificial Neural Network (ANN) is used as a surrogate model to
predict the microscale behavior based on the database of RVE solutions.
Following Rangel et al. (2024), a feed-forward multilayer network is
employed. The general ANN architecture has an input layer, a set of
hidden layers, and an output layer. The first contains artificial neurons
that receive the input values; in this case, the porosity, fabric index,
and thermal strain. In each hidden and output layer, there are artificial
neurons interconnected via adaptive weights. These weights are cali-
brated through a training process with the input–output values of the
database. There is no general rule to define a proper ANN structure in
terms of the number of hidden layers and artificial neurons. Therefore,
the ANN architecture adopted in this work was calibrated by trial and
error. As depicted in Fig. 3, it is formed by two hidden layers of 16
neurons, for which the tangent sigmoid is selected as the activation
function. The output layer has 6 neurons, for which linear activation
functions are used to provide the values of porosity and fabric index
increments (𝛥𝜂 and 𝛥𝑓 ), as well as the diagonal components of the
dimensionless thermal conductivity and stress tensors (K̃𝑥𝑥, K̃𝑦𝑦, 𝜎𝑥𝑥,
𝜎𝑦𝑦). Moreover, to improve training convergence, the output values are
normalized from 0 to 1.

It is worth mentioning that the thermal conductivity of a granular
medium can be accurately obtained from its current state of porosity
and fabric alone, as shown in Rangel et al. (2024). A similar conclusion
is expected for the stresses, which could also be predicted directly from
the instantaneous assembly configuration without information about
thermal strain imposition. The thermal strain is mandatory only for the
incremental outputs that dictate the evolution of the microstructure.
This provides generality to the methodology by allowing the use of de-
coupled surrogate models. For instance, in the case of already disposing
of a surrogate model relating porosity and fabric to conductivity and
stress, one could focus on developing a more compact model to predict
only the evolution of porosity and fabric resulting from thermal strains.

The ANN training performance is quantified with the coefficient of
determination R-squared (𝑅2). It is calculated as:

𝑅2 = 1 −
∑𝑁

𝑖=1(𝐷𝑖 − 𝑃𝑖)2
∑𝑁

𝑖=1(𝐷𝑖 − [𝐷])2
(12)

here 𝐷𝑖 and 𝑃𝑖 are the computed (via DEM) and predicted (via ANN)
alues for the sample i, respectively, and the square brackets denote
he mean value. A perfect agreement is obtained when R2 is equal to
ne.

Furthermore, it is crucial to ensure a consistent evolution of porosity
nd fabric, particularly for the case of zero thermal strain when the
ncrements of these properties must be null. Although the data points
f zero strain are generated considering an unchanged configuration
f porosity and fabric, the ANN prediction surface does not necessarily
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pass exactly at these points. Therefore, we enforce this condition in the
post-processing stage of the training results.

The validity of the ANN is guaranteed only for the range of input
values covered during the training, as extrapolated results may not be
reliable. Therefore, it is necessary to define the region of reliable ANN
predictions within the hyper-space of input points. In this work, we
propose building a convex hull over the three-dimensional cloud of
input points. This region defines the range of porosity, fabric index,
and thermal strain values within which the surrogate model is more
likely to predict reliable outputs for a given problem.

2.7. Online macroscale algorithm

Algorithm 1 summarizes the tasks performed at each time step of
the online macroscale solution to address the transient heat problem
formulated in Eq. (2). The macroscale and microscale solutions are
coupled by means of a first-order explicit time integration strategy that
can be classified as Gauss–Seidel scheme.

The effective material properties required for the solution of the
macroscale governing equation are the conductivity tensor and the
volumetric heat capacity at each FVM cell. The former is obtained from
the surrogate model, 𝛷, using the current local porosity, fabric index,
and thermal strain as inputs. Concerning volumetric heat capacity, this
property does not vary over time in the present context. This is because
the local bulk density is constant as a consequence of the microscale
modeling via mass-conserving RVEs. Instead, the particle density field
may vary with time, and its local values can be estimated from the bulk
density and the updated porosity, as shown in step 3.

We also point out that the thermal strain must be adjusted before
consulting the surrogate model. This is because, in an RVE simulation,
the strain is imposed relatively to the initial RVE configuration, which
corresponds to the current configuration in the macroscale problem,
𝑖.𝑒., at time step 𝑛. However, to agree with the linear thermal ex-
pansion model, the strain should be relative to the macroscale initial
configuration, 𝑖.𝑒., at time step 𝑛 = 0. The consistency of thermal
strain is achieved, after simple algebraic manipulation, by applying an
adjustment factor 𝛽, as shown in step 5.

Additionally to the variables required for the solution of the govern-
ing equations, other relevant homogenized fields can be tracked locally
at the macroscale level, such as the Cauchy stress. The results of stress
evolution can be employed for post-processing, as it is an output of
interest in various applications.

The computational implementation of this algorithm was carried
out on the open-source platform OpenFOAM (Weller et al., 1998) via
an in-house solver. This solver includes the coupling technology that
enables feeding the continuous model, at each time step and FVM cell,
with local material properties given by the surrogate model.

3. Results and discussion

In this section, the proposed methodology is validated for simulating
the thermomechanical behavior of a granular medium subjected to
temperature variations. In the offline computations, we generate the
database of microscale results and train the ANN to predict the behavior
of the given material. To validate the online macroscale computations,
the results obtained with the proposed MSDD approach using the
trained ANN are compared with those of a pure DEM model, which
is taken as a reference discrete solution.

The properties of the granular material used in this investigation
are indicated in Table 2. Those are fictitious parameter values intended
solely for method validation. When informed, specifically in the analy-
ses without thermal expansion, the coefficient 𝛼 assumes a zero value.
The particle size distribution follows the one used in Rangel et al.
(2024) and is characterized by a constant function of the radius with
mean, minimum, and maximum values of 5.0 mm, 3.0 mm and 7.0 mm,

respectively.
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Algorithm 1 - Time step solution of the online continuous solver in the
MSDD method.
Given the known fields at time step 𝑛: 𝜂𝑛, 𝑓 𝑛, 𝜀𝑛, 𝜚𝑛, 𝑇 𝑛; the fixed

aterial properties 𝑘, 𝐸, and 𝛼; and the initial temperature 𝑇 0, do for
ach cell:

1. Query the surrogate model:

[𝛥𝜂, 𝛥𝑓 , K̃ ,𝝈] = 𝛷(𝜂𝑛, 𝑓 𝑛, 𝜀𝑛)

2. Update the effective material properties:

𝜂𝑛+1 = 𝜂𝑛 + 𝛥𝜂

𝑓 𝑛+1 = 𝑓 𝑛 + 𝛥𝑓

K𝑛+1 = 𝑘K̃

𝝈𝑛+1 = 𝐸𝝈

3. Update the bulk and particle densities:

𝜚𝑛+1 = 𝜚𝑛 𝑖.𝑒., constant in this work

𝜌𝑛+1 = 𝜚𝑛+1∕(1 − 𝜂𝑛+1)

4. Solve Eq. Eq. (2) for the updated temperature 𝑇 𝑛+1

5. Update and adjust the thermal strain:

𝜀𝑛+1 = 𝛼(𝑇 𝑛+1 − 𝑇 𝑛)𝛽𝑛+1 with 𝛽𝑛+1 = 1
1 + 𝛼(𝑇 𝑛 − 𝑇 0)

Table 2
Properties of the granular material used to apply the proposed MSDD methodology.

Property Value

Density, 𝜌 [kg/m3] 3000
Young’s modulus, 𝐸 [MPa] 10
Stiffness ratio, 𝜈 [–] 0.8
Friction angle, 𝜑 [–] 0.5
Thermal conductivity, 𝑘 [W/(m⋅K)] 100
Specific heat capacity, 𝑐 [J/(kg⋅K)] 1.0
Thermal expansion coefficient, 𝛼 [–] 0.001
Damping coefficient, 𝜇 [–] 0.1

3.1. Offline computations and training analysis

3.1.1. Generation of the database of microscale results
The database of microscale results was created for a wide range of

values of input porosity, fabric index, and thermal strain to allow its
applicability for diverse conditions of the granular material. In total,
5172 data points were generated. Fig. 4 depicts these points as black
dots in the three-dimensional input space. The filled volume represents
the convex hull that defines the region of reliable ANN predictions of
the outputs. This region should cover the input values that occur in the
validation examples presented later in this work.

Through different RVE packing processes, we could cover a range
of porosity from, approximately, 6.0% to 19.5%. It must be noted that
the lower limit of porosity can only be reached in 2D DEM assemblies
by permitting large, typically non-physical, overlaps between particles.
This allows us to verify the validity of the proposed methodology under
extreme thermal expansion conditions. The upper limit corresponds to
the porosity around which the particle assemblies reach a loose packing
state and the force chain is disrupted.

To vary the fabric at each porosity level, isotropic and horizontal
compressions were performed, with the former leading to near zero
fabric indexes and the latter resulting in greater positive fabrics in-
dexes, 𝑖.𝑒., with dominant 𝐹𝑥𝑥 component. The data points with larger
negative magnitudes of fabric index were generated through orthogonal
rotation of the data obtained in the RVE simulations. Because of this,
the distribution of data points in the 𝜂 × 𝑓 plane is symmetric with
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Fig. 4. Data points in the input space and the valid ANN prediction region.
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respect to 𝑓 = 0, as seen in Fig. 4(a). Moreover, the maximum range
that can be achieved for the fabric index is related to the porosity
to which the assembly is compressed. In general, as also observed in
Fig. 4(a), the lower the porosity, the narrower the fabric index range.
This is because, in a dense packing, the particles come into contact with
neighbors in more diverse directions, thus reducing the predominance
of a principal fabric direction, 𝑖.𝑒., the values of 𝐹𝑥𝑥 and 𝐹𝑦𝑦 are closer
to each other. On the other hand, in a more porous configuration,
a greater proportion of existing contacts is related to the principal
direction.

For each RVE packing condition, with a certain input value of poros-
ity and fabric index, strains from −5% to 5% were applied during the
expansion stage. These bounding values correspond to a temperature
change of 50 K, which is the maximum possible temperature variation
the particles can experience in the upcoming validation examples.
However, the vast majority of time step increments of temperature that
will be observed in the continuous macroscale model is much lower
than that upper limit. In fact, most input thermal strains are expected
to be minimal. Therefore, as evidenced in Figs. 4(b) and 4(c), a larger
number of data points was generated for small strain values in order to
ensure an optimal training of the ANN within this input region.

3.1.2. ANN training
The training of the ANN was accomplished with Matlab’s deep

learning toolbox. The dataset was randomly split into training, vali-
dation, and testing subsets, considering proportions of 70%, 15%, and
15%, respectively. For the training function, the Levenberg–Marquardt
backpropagation algorithm was selected, considering a learning rate of
10−4 and the mean squared error (MSE) as the convergence indicator.
Convergence was assumed when the MSE showed no improvement for
20 consecutive epochs, which occurred at epoch 92.

The fittings that compare the results of ANN-predicted and DEM-
computed outputs, for all input points, are presented in the scatter plots
of Fig. 5, where the dashed line represents the ideal fitting of 𝑅2 = 1
according to Eq. (12). For the increment of porosity, the fitting is nearly
perfect, with 𝑅2 = 0.999. The increment of the fabric index, although
still satisfactory, shows the worst training performance among the con-
sidered outputs, with 𝑅2 = 0.859. This might be caused by the influence
of other parameters not considered as inputs for predicting fabric vari-
ations. Furthermore, variations in the contact network are intrinsically
subjected to the randomness of particle positions and movements in
the assembly, making it very challenging to achieve high precision of
its prediction using deterministic parameters. The components of the
dimensionless thermal conductivity and stress tensors present similar
coefficients of determination (𝑅2 = 0.989 and 𝑅2 = 0.980, respectively),
with the thermal conductivity showing a slightly better fitting than the

stress. s
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Table 3
𝑅2 values of each output considering different sets of inputs in the ANN.

Inputs 𝛥𝜂 𝛥𝑓 𝐾𝑥𝑥, 𝐾𝑦𝑦 𝜎𝑥𝑥, 𝜎𝑦𝑦
𝜂, 𝑓 , 𝜀 0.999 0.859 0.989 0.980
𝜂, 𝜀 0.998 0.003 0.935 0.851
𝑓 , 𝜀 0.985 0.834 0.358 0.362
𝜂, 𝑓 0.132 0.256 0.649 0.664

Overall, the obtained coefficients of determination are considered
sufficiently accurate for the goals of this work. They indicate that
variations in the outputs can be accurately explained by the chosen
input parameters, thus justifying the selection of porosity, fabric, and
thermal strain as inputs for the ANN. This also reveals that we are not
missing any indispensable parameter as input to the surrogate model.

To evaluate the impact of individual inputs on the prediction of
each output, alternative ANNs were implemented by removing one
input at a time from the original network of Fig. 3. Table 3 gives the
coefficients of determination of each output obtained with different sets
of inputs; the first line replicates the results from the original set, while
subsequent lines exclude one of the inputs. The more influential an
input parameter is, the greater the degradation in training performance.
It is interesting to observe that the thermal strain is the only essential
parameter for the porosity increment, and that the porosity does not
have a crucial effect on fabric variation, while the other inputs do,
yet it is much more relevant than the fabric for predicting thermal
conductivity and stress. However, the fabric has considerably more
impact on stress than on conductivity. Furthermore, it can be concluded
that there is no surplus of input parameters in our model, as each of
them has a significant effect on one or more outputs.

Fig. 6 shows ANN output surfaces in cross-sections of the reliable
prediction region. They reveal important features of the microscale be-
havior and confirm some of the discussed input effects. From Fig. 6(a),
it is clear that the porosity increment varies only with the input strain,
and the input fabric index has negligible effects. A resembling behavior
occurs in the 𝜂 × 𝜀 cross-sections (not shown for simplicity) but with a
lightly greater influence of the input porosity. Fig. 6(b) proves that the
ncrement of fabric index presents a reduced dependence on the input
orosity. Furthermore, from this positive strain cross-section (𝜀 = 0.01),
t can be noted that positive inputs of the fabric index yield negative
ncrements, while negative inputs result in positive increments. In
ther words, the absolute value of the fabric index decreases when the
articles expand. A similar, but opposite, behavior occurs with negative
trains (not shown), 𝑖.𝑒., the absolute value of fabric index tends to
ncrease as the particles contract. This relates to the range of fabric
ndex that could be achieved for different porosities in the previous

ection. As explained, in general, higher coordination numbers lead to
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Fig. 5. Fitting of the ANN predictions against DEM results of each output.
Fig. 6. ANN output surfaces in cross-sections of the valid prediction region.
a more uniform distribution of contact directions. Fig. 6(c) shows the
behavior of the 𝑥𝑥 component of the dimensionless conductivity tensor.
Clearly, the thermal conductivity gradient is steeper towards input
porosity than towards fabric, thus evidencing the greater relevance of
the former. The 𝑦𝑦 component presents a mirrored pattern and a similar
behavior is obtained for the stresses, therefore they are not shown.

These and other complex relationships between microstructural
parameters were only possible to be captured due to the use of an
ML tool. In particular, we were able to implement a compact surrogate
model, with relatively few inputs, that can predict intricate features of
the microscale behavior with good accuracy.
8 
3.2. Online computations and results validation

3.2.1. Simulated models
The reference DEM model is shown in Fig. 7. It consists of a

rectangular box 2150 mm wide and 645 mm high, with flat walls
as boundaries and containing 15 000 particles. The thermomechani-
cal material properties and particle size distribution are the same as
before. However, due to the non-dimensionalization of the microscale
database, a material with some different properties, such as Young’s
modulus, density, heat capacity, and thermal conductivity, could be
used. The control points P1, P2, and P3 used to measure local tem-
peratures are also indicated in Fig. 7. These points are positioned at
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Fig. 7. Reference DEM model indicating the dimensions, the control points P1, P2, P3, and the thermal boundary conditions for the analysis cases provided in Table 4.
Fig. 8. Initial properties assigned to FVM cells as obtained from the reference DEM model.
the mid-height of the model, with P1 and P3 situated 322.5 mm from
the lateral walls and P2 located at the center. In the DEM model, the
temperature is taken from the closest particle to the control points.

Analysis cases with distinct thermal boundary conditions and expan-
sion coefficients were simulated. These cases are indicated in Table 4.
They consist of three thermal boundary conditions for the walls, named
as hot (H), cold (C), and hot–cold (HC), each one being simulated
with and without the consideration of thermal expansion. The initial
temperature of the granular material is 50 K in all analysis cases. These
cases were selected because they allow the exploration of different
behaviors of the granular material provided by heating and cooling
effects.

The same analysis cases were reproduced with the MSDD methodol-
ogy. Therefore, an FVM model was created by discretizing the granular
domain into a structured mesh of 100 × 30 square cells. The FVM
cells were assigned the same material properties as the DEM parti-
cles for density, 𝜌, specific heat capacity, 𝑐, and thermal expansion
coefficient, 𝛼. To apply the proposed MSDD method, it is necessary
to determine the local porosity and fabric in the initial configuration.
At each FVM cell, the porosity is employed to compute the bulk
density, while the combination of both properties serves as input for
the previously trained ANN to predict the initial thermal conductivity
and stress tensors. In this work, the FVM cell values of porosity and
fabric index are obtained from the reference DEM model. They are
computed considering a 215 mm square region, which contains an
average of 500 particles, around each cell. Fig. 8 shows the color
maps of initial porosity and fabric index obtained for the FVM cells.
The porosity ranges from 11.7% to 13.1%, averaging 12.5%, while the
fabric index spans 0.030 to 0.064, with an average of 0.050. We remark
that, in practice, when a DEM model of the material is not available,
these local microstructural properties could be acquired through other
means, such as experimental methods (Yang et al., 2008; Vlahinić et al.,
2014; Wiebicke et al., 2020) or appropriate assumptions of their values.

The total analysis time was set to 20 s in all cases. A time step
size of 5 × 10−5 s was used in the DEM simulations, while 10−3 s
was employed for the FVM. These values were determined through
sensitivity analyses, such that further reductions in the time step size
produce negligible variations in the results (a convergence analysis
of the MSDD results is presented in Section 3.2.4). Remarkably, the
average wall-clock time for DEM and FVM simulations, on a personal
9 
Table 4
Thermal properties and boundary conditions for different analysis cases of the model
in Fig. 7.

Case ID 𝛼 [/K] T1 [K] T2 [K] T3 [K] T4 [K]

H* 0 100 100 100 100
H 0.001 100 100 100 100
C* 0 0 0 0 0
C 0.001 0 0 0 0
HC* 0 100 0 Insulated Insulated
HC 0.001 100 0 Insulated Insulated

computer with standard configurations, was around 30 h and 40 s,
respectively. Therefore, the proposed MSDD methodology presented a
speedup factor in the order of 3×103 compared to the discrete method.

The accuracy of the results obtained with the MSDD approach is
analyzed in the next sections. This will be done by comparing the
spatial distribution and time evolution of microstructural properties
and temperature against the reference DEM model. The discrete re-
sults of microstructural properties, such as the homogenized tensors
of fabric, thermal conductivity, and Cauchy stress, are computed via
Eqs. (8)–(10) in the DEM model. To apply these homogenizing equa-
tions, a sufficiently large assembly of particles needs to be considered.
Therefore, in order to compare the spatial distribution of microstruc-
tural properties between the discrete and continuous models, the DEM
domain is subdivided into a grid of 10 × 3 square sub-regions for
homogenizing its results in each of them. This grid was chosen because
its sub-regions contain 500 particles on average, the same number of
particles as the RVEs used in this work, which was determined to
provide a good representation of the discrete behavior (Rangel et al.,
2024). The same grid is also used to subdivide the FVM mesh and post-
process the MSDD results. In this case, each sub-region contains 10 × 10
FVM cells, and the reported result value in a sub-region corresponds to
the mean value of its 100 cells. This post-processing is to allow a fair
comparison of the results in the continuous model with the DEM, so
that the values are averaged over the same regions.

3.2.2. Analyses without thermal expansion
Initially, the analysis cases without thermal expansion are briefly ex-

amined (cases H*, C*, and HC*). In these purely thermal problems, the
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Fig. 9. Comparisons of the initial values of the thermal conductivity tensor compo-
nents. The average (Avg) and standard deviation (Std) of the sub-region values are
indicated. All units are in W/m⋅K.

Fig. 10. Comparisons of the initial values of the Cauchy stress tensor components. The
average (Avg) and standard deviation (Std) of the sub-region values are indicated. All
units are in kPa.

microstructure remains unchanged throughout simulations. Therefore,
the ANN is consulted by the continuous model only at the beginning of
the simulation to estimate the local conductivity and stress of each FVM
cell from the initial porosities and fabric indexes shown in Fig. 8. This
is the same problem type tackled in our previous investigation (Rangel
et al., 2024) and it shows the ability of the methodology to estimate the
conductivity and stress tensors for a given state of porosity and fabric.

Fig. 9 shows color maps comparing the 𝑥𝑥 and 𝑦𝑦 components
of the thermal conductivity tensors obtained in the reference DEM
model and predicted by the ANN in the MSDD approach after being
scaled by the particles’ conductivity. A similar comparison is presented
for the Cauchy stress tensor components in Fig. 10, in this case by
scaling the predicted stress by the Young’s modulus of the particles.
In both cases, the MSDD results present excellent agreement with the
DEM results. The greatest error of the average values, relative to the
reference solution, is 5%, which is observed in the 𝑥𝑥 components of
the stress tensor. Indeed, a larger error was expected for stress than
for conductivity, as the ANN fitting was slightly less precise for the
former. The temperature evolution at the center (point P2) of the DEM
and FVM models is compared for each analysis case in the graph of
Fig. 11. Again, an excellent agreement was achieved.

3.2.3. Analyses with thermal expansion
When thermal expansion is considered (cases H, C, and HC),

changes in particle size cause the microstructural properties to evolve
over time. Particularly in our methodology, the evolution of these
properties is dictated by the porosity, fabric, and thermal strain, which
are passed as inputs of the ML-based surrogate model. As previously
discussed, it is important for the input values to remain inside the
valid ANN prediction region, so the outputs can be considered reliable.
Fig. 12 depicts all the input points, projected onto the porosity-fabric
plane, that the FVM cells use to consult the ANN throughout the
10 
Fig. 11. Temperature evolution at the central point (P2): analysis cases without
thermal expansion.

simulation of each analysis case. The color scale indicates the time
when the values are reached and the gray area represents the region we
defined as valid due to the low probability of extrapolation. In case H,
the porosity and fabric index decrease from the initial configuration,
reaching the final configuration relatively quickly. In case C, both
properties increase in value, but the evolution occurs at a slower pace.
Case HC covers the spectrum of porosity and fabric exhibited by the
previous cases. In all cases, the input points stay within the valid
region. Although not shown, the thermal strain values, which are very
small in most solution steps, also remain inside the defined region.
Therefore, aggressive extrapolations are ensured not to happen during
the prediction of outputs in any analysis case.

The porosity represents an important result for granular materials,
not only for their thermal behavior, but for characterizing different mi-
crostructure properties, such as permeability. To provide a visual rep-
resentation of the porosity variation across the analysis cases, Fig. 13
shows the final configuration around the center of the reference DEM
model, with the average porosity of the cropped regions indicated.
Fig. 14 provides color maps comparing the final porosities obtained in
the DEM model with the solutions from the MSDD approach, for each
analysis case. The MSDD results show very good agreement with the
DEM, with slight underestimations of the final porosity variation in the
analysis cases H and C. In case HC, the results are also very similar
across much of the domain, but with a concentrated overestimation of
porosity by the MSDD solution near the cold wall.

A potential cause for the porosity difference on the cold side of case
HC is the bulk motion of particles within the granular medium due to
thermal expansion. As particles expand and contract in different zones
of the domain, the porosity gradient triggers a mass flux between zones
of higher and lower bulk density. This is evidenced in Fig. 15, which
displays the magnitude of horizontal displacement of DEM particles at
the end of the analysis. Notably, the most intense motion occurs on the
cooled side, where the MSDD approach struggles more. We remark that
this motion is also seen in the analysis cases H and C, but with much
less intensity, as the porosity gradients are minimal. This macroscale
phenomenon, whose impact is also noted in the subsequent results,
is a limitation of the MSDD methodology. This is because multiscale
hierarchical approaches cannot capture these effects at the microscale
with mass-conserving RVEs.

Fig. 16 shows color maps comparing the 𝑥𝑥 and 𝑦𝑦 components of
the thermal conductivity tensors obtained in the reference DEM model
and with the MSDD approach at the end of each analysis case. In
general, they reflect the accurate results obtained for the porosity, as
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Fig. 12. Evolution of input values of FVM cells in each analysis case projected onto the 𝜂 × 𝑓 plane.
Fig. 13. Final microstructure around the center (point P2) of the reference DEM model in different analysis cases. The average porosity in the cropped regions is indicated.
Fig. 14. Comparisons of the final values of porosity. The average (Avg) and standard deviation (Std) of the sub-region values are indicated. All values are given in percentage
(%).
Fig. 15. Final horizontal displacement of DEM particles in the analysis case HC.

it has been proven to be the most influential parameter, but with the
fabric also playing a role. It is important to highlight that two sources
of error combine in the MSDD approach when predicting the thermal
conductivity at any time step after the first. One is the estimation of
the thermal conductivity tensors from the current state of porosity
and fabric, which was demonstrated to be highly accurate in Fig. 9.
The other is the prediction of the evolution of porosity and fabric
up to the current state. Regardless of these error sources, the results
11 
exhibit strong agreement. With respect to the initial values in Fig. 9, the
final conductivity variations are slightly underestimated by the MSDD
solution in the analysis cases H and C, being more pronounced in the 𝑥𝑥
components of case C. In case HC, the effect of the global mass flux is
reflected in higher conductivities near the cold wall in the DEM model,
especially for the 𝑥𝑥 components.

The temperature evolution in the granular material is a direct
consequence of its effective thermal conductivity. The graph in Fig. 17
compares the temperature evolution at the center (point P2) of the
DEM and FVM models for all analysis cases, where the shadow lines
represent the MSDD solutions with no thermal expansion shown in
Fig. 11. Clearly, the proposed methodology is able to capture the
thermal expansion effects with great accuracy. In particular, maximum
errors of 5.3%, 2.8%, and 1.3%, relative to the maximum temperature
range of each problem (50 K in cases H and C, and 100 K in case
HC), were achieved for cases H, C, and HC, respectively. The thermal
expansion effects lead to an acceleration of the temperature evolution
pace from case H* to H, and a deceleration from case C* to C. This is
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Fig. 16. Comparisons of the final values of the thermal conductivity tensor components. The average (Avg) and standard deviation (Std) of the sub-region values are indicated.
All units are in W/(m⋅K).
Fig. 17. Temperature evolution at the central point (P2): all analysis cases.

consistent with the evolution pace of microstructural properties seen in
Fig. 12 and is caused by the change in coordination number and contact
areas in each case. The small temperature rise in case HC with respect
to HC* results from the asymmetry of the temperature distribution in
the former; as the heated side evolves faster, the middle is more affected
by the temperature of that side.

The analysis cases with an imposed temperature gradient (HC and
HC*) are analyzed in more detail in Fig. 18 through the temperature
evolution at points P1, P2, and P3. All results obtained with the MSDD
approach are accurate, except at point P3 of case HC. The maximum
errors, relative to the maximum temperature range of this case (100
k), are 2.2%, 1.3%, and 6.5% for points P1, P2, and P3, respectively.
The discrepancy of the latter is a consequence of the lower thermal
conductivity observed in the 𝑥𝑥 direction of the MSDD solution in
Fig. 16, which, in turn, might be related to the global mass flux that is
not modeled by the proposed methodology.
12 
Finally, the stresses obtained with the two methods are compared
in Fig. 19, which shows color maps of the 𝑥𝑥 and 𝑦𝑦 components of the
Cauchy stress tensor at the end of each analysis case. The MSDD results
are accurate in most situations. However, significant discrepancies are
observed in the 𝑥𝑥 components of case HC and, more pronouncedly, in
the 𝑦𝑦 components of case H. For the 𝑥𝑥 components of case HC, the
MSDD solution provides higher values across the domain, except near
the cold wall, where the values are lower. Again, we attribute this to
the global mass flux, whose general effect is to smooth the porosity,
and thus conductivity and stress, values throughout the DEM model.

The time evolution of stresses is addressed through the pressure on
the walls caused by the particles. The wall pressure is computed as
the mean effective stress (Eq. (11)) averaged within the domain. The
results are provided in the graph of Fig. 20. Maximum errors of 9.6%,
10.9%, and 3.0%, relative to the reference stress range of each problem
(3.2 kPa in case H, 2.2 kPa in case C, and 3.8 kPa in case HC), were
achieved for cases H, C, and HC, respectively.

As with thermal conduction, stress prediction in the MSDD approach
also involves the combination of an error related to its estimation from
the current porosity and fabric with another concerning the evolution
of these properties. The first error could be assessed in Fig. 10, where
good accuracy was achieved, although with a slightly greater error
than conductivity. On the other hand, the microstructure evolution
error is expected to have more impact on the stresses due to the
greater influence of the fabric on stress than on conductivity, as seen in
Table 3. Since the prediction of fabric evolution had the worse training
performance, it might explain the overall lower accuracy of the stress
results in the MSDD solution when compared to thermal conductivity
and temperature. However, we still regard these results as satisfactorily
precise, especially considering that the stress is a by-product of the
solution and that the simulation time to obtain these outcomes was
drastically reduced.

3.2.4. Convergence analysis
The time step size can affect the MSDD solution in different ways.

On the one hand, there are the discretization errors inherent to time
integration strategies. In this work, we employ a first-order implicit
temporal discretization to solve the heat diffusion equation with FVM at
the macroscale, while a first-order explicit Gauss–Seidel scheme is used
to couple the macroscale and microscale solutions, as summarized in
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Fig. 18. Temperature evolution at points P1, P2, and P3: analysis cases with imposed temperature gradient.
Fig. 19. Comparisons of the final values of the Cauchy stress tensor components. The average (Avg) and standard deviation (Std) of the sub-region values are indicated. All units
are in kPa.
Algorithm 1. On the other hand, the time step size may also impact the
ANN predictions that feed the continuous method. The reason is that
the evolution of the local microstructure is computed incrementally by
supplying the surrogate model with the thermal strain of each FVM cell,
which is calculated in this work from the cell’s temperature increment
over a time step. Therefore, modifying the time step size alters the
regions of the ANN prediction surfaces consulted by the online solver,
potentially accessing areas with different training quality. Due to these
reasons, it is important to ensure that the MSDD results converge
consistently when reducing the time step size. We recall that the time
step size employed for the continuum-based simulations throughout
this work was 10−3 s.

For simplicity, only the analysis case H is presented to demon-
strate the convergence behavior of the MSDD solution. The average
13 
temperature of the FVM model is taken as the representative result to
evaluate convergence, given that temperature is the primary variable
influencing all others. The solution with a time step size of 𝛥𝑡 = 10−4 s
is considered the reference solution in this analysis. The root mean
squared error (RMSE) of solutions with different step sizes is computed
relative to the reference curve, and the results are shown in the log–
log error convergence plot of Fig. 21. This graph reveals a power-law
relationship between RMSE and time step size, which can be described
by the expression RMSE = 2.205𝛥𝑡1.141. This indicates that the error
decreases consistently with decreasing step size, presenting a slightly
above-linear convergence order of 1.14. If faster convergence is desired,
a higher-order scheme could be employed to couple both scales in the
MSDD approach, such as the Strang splitting (Strang, 1968), along with
second-order schemes for the FVM solution.
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Fig. 20. Wall pressure evolution: analysis cases with thermal expansion.

Fig. 21. Log–log error convergence plot for the FVM time step size in the MSDD
olution: average temperature of analysis case H.

.3. Limitations discussion

The limitations and sources of error identified throughout this in-
estigation are recalled and briefly discussed. Firstly, as thoroughly
ssessed in our previous work (Rangel et al., 2024), the representa-
iveness of the microscale via RVEs is limited. This is because RVEs
ith a sufficient number of particles can offer a good representation
f a granular medium, but only up to a certain level of accuracy.
itting errors of the ANN are also unavoidable and originate from the
nfluence of marginally relevant parameters that are not considered
s inputs of the surrogate model. In the present context, they affect
he prediction of thermal conductivity and stress tensors from the
urrent microstructure, as well as the evolution of the microstructural
roperties.

Additionally, in cases where a strong porosity gradient develops,
global mass flux arises. Since the RVEs are mass-conserving, the
acroscale variations of porosity and fabric due to the mass flow

annot be modeled in the proposed approach. Therefore, it introduces
n error that may be significant in problems where the macroscale ma-
erial motion modifies sensibly the local microstructure of the granular
edium. Notably, similar issues also occur in multiscale approaches us-

ng RVEs with periodic boundary conditions. The appropriate modeling
f this effect in a hierarchical continuum-discrete framework could be
ossibly done at the macroscale level by solving a mass transport prob-
em whose diffusion coefficient depends on certain granular material
14 
parameters. Finally, as a simplifying assumption, we neglected the off-
diagonal components from the tensorial variables, which might have a
minor impact due to their relatively small values.

4. Conclusions and future developments

In the present study, we proposed a novel multiscale data-driven
(MSDD) methodology for simulating heat conduction in granular media
considering thermal expansion. The macroscale is handled using a
continuous model based on the Finite Volume Method (FVM), while
the microscale is simulated with the Discrete Element Method (DEM)
in Representative Volume Elements (RVEs). The RVEs are simulated
offline, without needing a thermal analysis, and the results are homoge-
nized to create a database that is used to train a surrogate model imple-
mented as an Artificial Neural Network (ANN). The main achievements
of this study are the following:

• We implemented a compact ANN with relatively few inputs re-
lated to the microstructure, demonstrating that these are optimal
for predicting complex features of the microscale behavior.

• We made the inputs and outputs dimensionless to allow the
surrogate model to be used for other materials with the same DEM
modeling characteristics and assumptions.

• Through a broad input hyper-space, we established an extended
region of valid input values to avoid extrapolations of the ANN
predictions, thus ensuring reliable outputs in a given problem.

• Without any online DEM simulation, we efficiently modeled the
local evolution of temperature and relevant microstructural prop-
erties, such as porosity, fabric, conductivity, and stress.

• The simulation time of the MSDD approach was shown to be
drastically shorter than the high-fidelity DEM solution, while still
achieving reasonably accurate results.

For future developments, we recommend exploring the effectiveness
of the methodology by relaxing some assumptions. In particular, by
addressing three-dimensional problems, tackling the use of different
particle shapes, and generalizing the microscale database to differ-
ent functions of particle size distribution or to different heat transfer
models. Moreover, an important contribution is the modeling of the
global mass flux effects in such a multiscale framework. Furthermore, a
potential extension of the methodology is to incorporate the mechanical
behavior of the material by predicting the stress–strain relationships
of a moving microscale through RVE deformation analyses performed
offline. Finally, since the creation of microscale databases is a time-
consuming task and they can be reused in similar applications, we
believe that sharing processed data for different materials, DEM mod-
els, and ranges of input parameters is a good practice. The database
used in this study can be found as supplementary material of the article.
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