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Summary. This paper explores a novel approach that combines the ps-version of the Finite
Element Method (ps-FEM), the Rayleigh-Ritz Method (RRM), and the Asymptotic-Numerical
Method (ANM) to realize an effective Model Reduction Technique (MRT). The study shows
that a proper refinement of the finite element model and selection of Ritz basis vectors leads
to efficient, yet accurate, Reduced-Order Models (ROMs). Numerical tests give evidence of the
approach’s validity in postbuckling problems of Variable-Stiffness (VS) panels. Comparisons
with high-fidelity Abaqus simulations demonstrate the potential of the present framework as a
valuable tool for the analysis and design of new-generation VS structures.

1 INTRODUCTION

The analysis and design of Variable-Stiffness (VS) plates and shells have gained considerable
attention in recent times for their improved performances over classical laminates. However,
modeling these innovative configurations demands refined numerical models to capture the com-
plex elastic couplings at different scale levels, from global to local. Moreover, the solution of
such models can be computationally challenging, especially for composite structures exhibiting
highly nonlinear response.

Over the years, different strategies have been proposed to combine modeling fidelity and
reduced computational times. For instance, refined composite shell theories [1, 2, 3], efficient
numerical methods [4, 5], and rapid solution procedures [6, 7, 8] have been proposed as viable
strategies.

One promising approach to realize fast and reliable simulation strategies is represented by
Model Reduction Techniques (MRTs). The underlying idea consists in replacing the Full-Order
Model (FOM) with a Reduced-Order Model (ROM), which features the main physical charac-
teristics of the problem at hand, but with a much lower dimensionality.

In the context of static nonlinear analysis, different approaches have been proposed to perform
this condensation. In [9] a superposition of linear buckling modes is employed to approximate
the nonlinear solution of the FOM. Another possible method relies upon the combination of the
linear solution and its iterative vector corrections [10]. A MRT has been proposed in [11] where
the FOM solution is represented as a linear combination of the high-order derivative vectors
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(a) (b)

Figure 1: Shell mathematical model: (a) reference system and (b) kinematics.

used in perturbation techniques. The approach proposed in [12] involves the use of nonlinear
solution vectors together with the correction vectors generated during the iterative procedure.
Superposition of nonlinear deformation modes at successive incremental steps have also been
employed to generate ROMs in [13]. The work of [14] explores the hybrid use of linear buckling
modes, path derivative modes and deformation modes to construct ROMs.

The Koiter’s perturbation method can also be viewed as a MRT where the ROM is generated
in the form of a quadratic asymptotic expansion. In this context, MRT based on perturbation
approaches have been recently the focus of attention for the analysis of VS structures due to their
effectiveness in solving nonlinear problems. In [15], a perturbation method is implemented in
the DIANA finite element code and is employed to study the initial postbuckling response of VS
plates. A hybrid Koiter-Newton approach [16] has been recently developed in a FE framework
to trace the equilibrium curves of VS shells in their ”deep” postbuckling regime.

The present work aims at extending the current state-of-the-art through a new approach
which combines: an efficient Finite Element method – the ps-version of the Finite Element
Method (ps-FEM) [17, 18, 19] –, an effective reduction technique based on the Rayleigh-Ritz
Method (RRM) [11], and a fast asymptotic solution procedure, known as the Asymptotic-
Numerical Method (ANM) [20].

2 GOVERNING EQUATIONS

The kinematics of the shell is described using the First-order Shear Deformation Theory
(FSDT), so that the displacement field is represented in terms of the displacements {u, v, w}T
and rotations {ϕ1, ϕ2}T components on the shell’s middle surface Ω. A sketch is reported in
Figure 1

The governing equations are obtained starting from the Total Potential Energy (TPE)

Π(u, λ) =
1

2

∫
Ω

(
ϵ0

T
Aϵ0 + kTDk+ 2ϵ0

T
Bk+ γ0

T
Aγ0

)
dΩ + λV (u), (1)

where the vectors ϵ0, k, γ0 are the generalized strains and curvatures, A,B,D,A are the
matrices defining the shell constitutive law, while V (u) is the potential of the applied loads,
proportional to the scaling factor λ.

The TPE is a quartic function of the generalized displacements u = {u, v, w, ϕ1, ϕ2}T. Con-
sequently, its variation δΠ = 0 leads to a set of equilibrium equations with cubic nonlinearities

l(u) + q(u,u) + c(u,u,u) = λf, (2)
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(a) (b)

Figure 2: Construction and refinement of the finite element (a) polynomial space, and (b) mesh.

where l(·), q(·, ·) and c(·, ·, ·) are operators obtained from the variation of the quadratic, cubic
and quartic part of the TPE, respectively; the operator f is specified according to the loading
conditions considered.

The variational problem in Eq. (2) can be discretized using different numerical methods, such
as Finite Elements (FEs).

3 FINITE ELEMENT DISCRETIZATION

This work adopts an advanced spatial discretization called the ps-version of the Finite Ele-
ment Method (ps-FEM) [18]. Within this FE scheme, quasi-optimal numerical models can be
generated by adjusting the elements’ order and size in accordance with the smoothness charac-
teristics of the solution. This is achieved through application of different refinement strategies
[17], i.e. p-refinement, s-refinement, or a combinations of the twos, see Figure 2.

In the ps-FEM, the polynomial space is constructed from the set of one-dimensional hierar-
chical functions [22]

f1(ξ) =
1

2
(1 + ξ) , f2(ξ) =

1

2
(1− ξ) , fi+1(ξ) =

√
2i− 1

2

∫ ξ

−1
Pi−1(ξ)dξ for i > 2, (3)

where Pk(ξ) defines the Legendre polynomial of order k. The resulting two-dimensional poly-
nomial space (Figure 2(a)) has the advantage of being quasi-orthogonal and hierarchical. As
result, the FE matrices remain well-conditioned even for very high polynomial orders, and the
refinement of the series can be performed easily, with no need of reassembling the whole FE
system.

The mesh is constructed using the concept of “refine-by-superposition” [23], so that the FE
approximation is decomposed into two parts, one described by a global mesh ∆G and the second
one by a local mesh ∆L. So:

u ≃ u∆ =

{
u∆G

in Ω− ΩL

u∆G
+ u∆L

in ΩL

,

where u∆G
is the global mesh solution defined in Ω, while u∆L

is the local mesh solution defined in
ΩL ⊂ Ω (Figure 2(b)). The possibility of overlaying incompatible mesh discretizations provides
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a high level of flexibility when performing local mesh refinements, as no transition regions or
multi-point constraints are required.

After introducing the FE approximation, the continuous problem of Eq. (2) turns into

r(c, λ) = Lc+Q(c)c+C(c, c)c− λf = 0 with c ∈ RN×1, (4)

where N is the dimension of the FE model, L ∈ RN×N is the the linear stiffness matrix,
f ∈ RN×1 is the vector of external loads, while Q ∈ RN×N×N and C ∈ RN×N×N×N are tensors
of order three and four obtained from the cubic and quartic terms of the TPE, respectively.

The ps-FEM enables the generation of extremely efficient numerical models, where relatively
few DOFs suffice to guarantee accurate results. Despite these interesting features, the nonlinear
solution procedure can be still computationally intensive. For instance, in the presence of strong
nonlinearities, classical Iterative-Incremental Procedures (IIPs) may require a large number of
matrix factorizations and residual evaluations. The cost of these operations increases quickly
with the size of the FE model.

To address this issue, we propose a Model Reduction Technique (MRT) to further improve
the effectiveness of the ps-FE model in a static nonlinear environment.

4 MODEL REDUCTION TECHNIQUE

Model Reduction Techniques (MRTs) are procedures for reducing a large-size problem, i.e.
the Full-Order Model (FOM), into a smaller substitute, or the Reduced-Order Model (ROM).
These procedures are based on two main steps: (I) generation of a reduced-basis subspace
of global approximation vectors, and (II) projection of the original problem onto the lower-
dimensional subspace.

The MRT proposed in this work employs a perturbation procedure for generating the reduced-
basis subspace, while the projection is carried out through the Rayleigh-Ritz Method (RRM).

4.1 Generation of the subspace

The reduced-basis subspace V is generated using a perturbation procedure known as the
Asymptotic-Numerical Method (ANM) [20]. In the present study, the ANM is employed to
generate two different subspaces, i.e. one based on the path derivatives of static modes VS,
while the second one based on the path derivatives of buckling modes VB.

Subspace 1: Static modes
The path derivatives of a generic static mode cS in equilibrium at load level λS are generated
from the solution of a series of linear algebraic problems [24]

k = 1 : TSc1 = λ1f and λ1 = 1,

k = n : TScn = λnf − qn and λn = cT1 qn/c
T
1 f , (5)
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where ck represents the k-th path derivative, TS is the tangent stiffness matrix evaluated at cS,
while qk is a vector of the nonlinear terms

qk =
k−1∑
r=1

Q(cr)ck−r +
k−1∑
r=1

C(c0, cr)ck−r +
k−1∑
r=1

C(cr, c0)ck−r +
k−1∑
r=1

C(cr, ck−r)c0+

+
k−1∑
r=1

r−1∑
q=1

C(cq, ck−r)cr−q. (6)

The procedure outlined in Eq. (5) allows for the generation of a subspace of approximation
vectors with low computational effort. Indeed, it relies on a sequence of linear problems sharing
the same coefficient matrix TS. Moreover, the approach can be automatized to generate an
arbitrary number of vector elements

VS = [cS, c1, ..., cn] ∈ RN×n, (7)

where n is the size of the base.

Subspace 2: Buckling modes
The path derivatives of the buckling mode cB with bifurcation multiplier λB are obtained from
[24]

k = 1 : [L+ λBG0] ĉ1 = 0 and λ̂1 = −
[
ĉT1 q̂2

]
/
[
ĉT1 G0ĉ1

]
,

k = n : TBĉn = −q̂n − ĝn and λ̂n = −
[
ĉT1 ĝn + ĉT1 q̂n+1

]
/
[
ĉT1 G0ĉ1

]
, (8)

where G0 is the geometric stiffness matrix evaluated at the prebukling condition c0, TB is the
tangent stiffness matrix evaluated at the bifurcation point, while the forcing term ĝk is

ĝk =

k−1∑
r=1

λ̂rG0ĉr−k. (9)

Similarly to the procedure presented for static modes, Eq. (8) provides an efficient and easy
procedure for generating a reduced-basis subspace of arbitrary dimension n

VB = [c0, ĉ1, ..., ĉn] ∈ RN×n (10)

where ĉ1 = kcB is a multiple of the buckling mode obtained from the solution of a linear
eigenvalue problem – first of Eq. (8) –, while ĉk denotes the path derivatives available from the
solution of a sequence of linear algebraic problems – second of Eq. (8). More details on the
solution procedure are presented in [24].

4.2 Projection on the subspace

The Rayleigh-Ritz method is employed to project the governing equations of the FOM onto
the reduced subspace. The basis vectors composing the subspace are used as trial functions to
approximate the solution of the FOM

c = Vψ and δc = Vδψ, (11)
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where ψ is the vector of Ritz coefficients, while V is a matrix of global approximation vectors,
or Ritz basis vectors, obtained either from Eq. (7) or Eq. (10).

The projection of Eq. (4) onto the subspace V, i.e.

δψTVTr(Vψ, λ) = 0, (12)

gives a set of reduced governing equations

r∗(ψ, λ) = L∗ψ +Q∗(ψ)ψ +C∗(ψ,ψ)ψ − λf∗ = 0 with ψ ∈ Rn×1. (13)

The coefficients defining the ROM, L∗, Q∗, C∗ and f∗, are given as

L∗
ij = cTi Lcj , Q∗

ijk = cTi Q(cj)ck, C∗
ijkl = cTi C(cj , ck)cl, f∗

i = cTi f , (14)

where ci is the generic i-th column element of V.
The set of Eq. (13) represents the governing equations of the ROM, whose size is much smaller

than the FOM, i.e. n << N . Rather than solving this set of nonlinear discrete equations via
standard IIPs, we propose a strategy based on a perturbation approach.

5 PERTURBATION SOLUTION PROCEDURE

In this section, the ANM is employed for solving the ROM described by Eq. (13). According
to this approach, the solution (ψ, λ) is approximated with a truncated expansion series around
a known initial solution (ψ0, λ0)

ψ(ξ) = ψ0 +
n∑

k=1

ξkψk and λ(ξ) = λ0 +
n∑

k=1

ξkλk, (15)

where n is the truncation order and ξ is an expansion parameter, here taken as the arclength
measure [20].

Substituting Eq. (15) into Eq. (13) and collecting power-like terms in ξk, the initial reduced
nonlinear problem is decomposed into a series of linear ones

k = 1 : T∗
0ψ1 = λ1f

∗ and ψT
1ψ1 + λ1λ1 = 1,

k = n : T∗
0ψn = λnf

∗ − q∗
n and ψT

1ψn + λ1λn = 0, (16)

where T∗
0 is the tangent matrix of the ROM evaluated at ψ0, while the vector q∗

k is assembled
according to Eq. (6). The linear problems are solved using the procedure presented in [20]. In
particular

k = 1 : ψ̂1 = T∗−1
0 f∗, λ1 =

1√
1 + ψ̂

T

1 ψ̂1

, ψ1 = λ1ψ̂1, (17)

k = n : ψ̂k = T∗−1
0 q∗

k, λk = −ψT
1 ψ̂kλ1, ψk =

λk

λ1
ψ1 + ψ̂k. (18)

The main advantage of the ANM over IIPs is that the solution in available analytically in terms of
a power series, see Eq. (15), and not in a ”point-by-point” fashion. Moreover, the computational
cost is drastically reduced as one single matrix inversion is necessary for the definition of the
terms of the series, i.e. (ψk, λk).
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(a) (b)

Figure 3: Benchmark description: (a) geometry with boundary/loading conditions, and (b) imperfection
shape.

6 RESULTS

In this section, the main features of the proposed computational framework are illustrated
with a numerical example.

The structure under investigation is illustrated in Figure 3(a), and consists of a composite
panel with cylindrical curvature loaded with a compressive load. In the analysis, an initial
imperfection is introduced with the shape of the first buckling mode and a maximum amplitude-
to-thickness ratio of 0.5. The contour of the imperfection is reported in Figure 3(b). The
geometric and material data are summarized in Tables 1 and 2, respectively.

Table 1: Geometric data for the shell.

a (mm) b (mm) a1 (mm) b1 (mm) R (mm) t (mm)

200 100 60 60 500 1

Table 2: Material properties considered for the laminate.

E11 (MPa) E22 (MPa) G12 (MPa) G13 (MPa) G23 (MPa) ν12 (-) ν13 (-) ν23 (-)

369,000 5,030 5,240 5,240 5,240 0.31 0.31 0.31

There are two main features to be noted for the test case at hand. Firstly, the shell has a
complex geometry with re-entrant edges and free-edge boundary conditions. These are sources
of stress concentrations, so appropriate numerical grids are needed. Secondly, the material is
characterized by an (artificially) high orthotropy ratio E11/E22 > 70. This aspect, together
with the Variable-Stiffness lay-up [90 ± ⟨30, 0⟩]2s, promotes complex elastic couplings, hence
potential difficulties in the convergence of the solution [21]. Furthermore, the response of the
shell exhibits an unstable postbuckling response with snap-through and snap-back occurring

7
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(a)

(b)

(c)

Figure 4: Numerical models employed for the solution of the benchmark problem: (a) FOMps, (b)
ROMB, and (c) ROMS.

along the equilibrium path.
The problem is solved by considering three different numerical models, here denoted as

FOMps, ROMB and ROMS. The features of these three models are summarized in Figure 4.
The first one is the full ps-FE model, while the models ROMB and ROMS are ROMs generated
with the path derivatives of buckling and static modes, respectively.

For all models, the solution is obtained using the ANM and is expressed in terms of load
versus end-shortening curves in Figure 5.

6.1 Solution with the FOM

The full ps-FE model is illustrated in Figure 4(a). It is based on a global/coarse mesh with
44 elements, further refined with 4 local/finer meshes at the internal corners, where localized
effects are promoted by the shell geometry.

8
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(a) (b) (c)

Figure 5: Load vs end-shortening curves from the solution of the (a) FOMps, (b) ROMB, and (c) ROMS.

The load-shortening curves obtained via FOMps are reported in Figure 5(a) for different levels
of ps-refinements. The sequence of refinement is carried out such that large-size/high-order
elements are employed in the regions where the solution is smooth, while small-size/low-order
elements in regions of local stress concentrations.

The results are compared with high fidelity Abaqus simulations based on a FE model with
18,832 elements (115,110 DOFs). As shown in Figure 5(a), the FOMps leads to converged results
with 9,318 DOFs, consisting in a saving of 92% in DOFs with respect to the Abaqus model. This
is achieved without any loss of accuracy thanks to the advanced refinements strategy proper of
the ps-FEM.

6.2 Solution with ROM based on buckling modes

The first ROM is constructed using the path derivatives of the first buckling mode, see
Figure 4(b). The path derivatives are generated via Eq. (10) using a nonlinear prebuckling
condition c0 corresponding to the load level of 2.95 kN.

The results are illustrated in Figure 5(b) for models generated with different number of path
derivatives. The comparison is presented with Abaqus results. As shown, a considerable portion
of the nonlinear prebuckling field is captured very well if 10 path derivatives are used.

The solution of ROMB is almost instantaneous, and just few seconds are required. Indeed,
the combination of the ROM’s lower dimensionality – 11 DOFs in this case – and the ANM-
based solution method results in an effective solution strategy. It is worth noting that the
ROMB model fails in predicting the limit point of the shell. So, the subspace employed VB

can be successfully applied for the prediction of the nonlinear prebuckling field, but not for the
postbuckling response.

6.3 Solution with ROM based on static modes

A different ROM is proposed in this section based on the path derivatives of the static mode in
equilibrium at the load level of 2.95 kN, see Figure 4(c). The results are illustrated in Figure 5(c).
They demonstrate that the ROMS provides an improved representation of the equilibrium path
with respect to the ROMB. In this case, the limit load is accurately predicted, and just 4 path
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derivatives of the static mode are sufficient for this purpose.
On the other hand, the description of the postbuckling field is more challenging. The simplest

model with 4 path derivatives does not capture the descending part of the equilibrium curve.
By expanding the subspace up to the 10th path derivative, a satisfactory prediction is obtained
for the initial portion of the curve. However, if the deep postbuckling response is of concern,
other strategies are necessary.

7 CONCLUSIONS

The present work has introduced a two-step model reduction technique that combines the
modeling versatility of the ps-FEM with the reduction in DOFs offered by the Rayleigh-Ritz
method.

In the first step of this approach, the ps-FEM is used with a perturbation procedure to
generate a subspace of global basis vectors. Two subspaces are proposed in this study, the first
based on the path derivatives of static modes, the second on the path derivatives of buckling
modes.

In the second step, the Rayleigh-Ritz method is employed to project the FE equations onto
the reduced-basis subspace. The FE solution is approximated by a linear combination of a pre-
selected set of global basis vectors. The size of the nonlinear FE is then reduced to few DOFs,
corresponding to the Ritz amplitudes of the vectors composing the reduced subspace.

To further improve computational efficiency, the proposed model reduction technique has
been coupled with a fast perturbation solution procedure, the ANM. Compared to classical
IIPs, this approach allows for further computational saving, as fewer matrix factorizations and
residual evaluations are needed.

The framework has been applied to the postbuckling analysis of a VS panel. The numerical
results have shown that a ROM with barely a dozen DOFs can effectively predict the nonlinear
prebuckling range, the limit point and the initial postbuckling response. In general, the moderate
and deep postbuckling responses cannot be captured. Future investigations are directed toward
the extension of the approach to overcome this latter restriction.
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