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Abstract. In this work, an explicit-implicit time-marching formulation, which adapts to the 
model's properties, its adopted spatial and temporal discretizations, and its computed 
responses, is studied for elastodynamic analyses. Explicit-implicit approaches have become 
referred to as effective time-domain solution methodologies since they allow to combine the 
advantageous features of both explicit and implicit formulations, such as reduced solver efforts 
and guaranteed stability, providing very attractive techniques. The here discussed time-domain 
hybrid solution procedure is based on three simple single-step recurrence relationships, which 
are formulated considering three locally-defined time-integration parameters, namely 𝛼଴

௘, 𝛼ଵ
௘ 

and 𝛼ଶ
௘, and each one of these time-integration parameters is adaptively determined for each 

element “e” of the adopted spatial discretization. In this context, the 𝛼଴
௘ parameter 

distinguishes explicit (𝛼଴
௘ = 0) and implicit (𝛼଴

௘ ≠ 0) elements, while 𝛼ଵ
௘ and 𝛼ଶ

௘ delineate non-
dissipative (𝛼ଵ

௘ = 𝛼ଶ
௘ = 0) and dissipative (𝛼ଵ

௘ ≠ 0 and 𝛼ଶ
௘ ≠ 0) elements. The adopted non-

null expression for 𝛼଴
௘ ensures that, in the absence of numerical dissipation, the critical 

sampling frequency of the method aligns with the maximum sampling frequency of the element, 
allowing the element to operate as if provided with its critical time-step value. This 
configuration not only ensures stability, but also better counterbalances the errors of the 
considered temporal and spatial discretization procedures, enhancing the overall accuracy of 
the computed discrete solution. On the other hand, the non-null expressions that are defined 
for 𝛼ଵ

௘ and 𝛼ଶ
௘ are designed to set the bifurcation sampling frequency of the method equal to 

the maximum sampling frequency of the element and its bifurcation spectral radius to zero. This 
configuration maximizes numerical dissipation for the element's maximum sampling frequency, 
effectively dissipating spatially unresolved high-frequency modes while accurately evaluating 
important low-frequency modes, since the developed adaptive formulation ensures that 
dissipative elements are activated only when and where it is necessary in the analysis. In 
addition, an optimal time-step value for maximal computational efficiency is also computed in 
the proposed solution methodology, based on the “particle swarm optimization” algorithm, 
which minimizes the expected total number of operations in the hybrid solution process. In this 
case, the optimal time-step value is determined so that the most efficient distribution of explicit 
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and implicit elements is considered in the analysis, providing a highly effective, fully-adaptive 
and entirely automated, time-domain solution procedure. At the end of this work, numerical 
results are presented and compared to those of standard time-marching procedures, 
demonstrating the excellent performance of the reported adaptive hybrid approach. 

1 INTRODUCTION 

Governing equations for wave propagation problems, as well as many other physical models, 
necessitate both temporal and spatial discretization techniques for accurate numerical treatment. 
Typically, these procedures are applied independently. In this scenario, spatial discretization 
methods, such as the finite element method, are usually first employed to address these 
governing equations, resulting in a time-domain semi-discrete system of equations. This semi-
discrete system is then integrated using a time-marching formulation, which specifies the 
temporal discretization procedure, enabling the numerical computation of its solution.  

The combined performance of the spatial and temporal discretization procedures determines 
the accuracy and convergence rate of the proposed solution technique. This joint performance 
is challenging to generically establish, and the labelled convergence rate of many time-
marching procedures may lack real significance within this broader context. Although 
analysing the combined behaviour of temporal and spatial discretization techniques is complex 
and often impractical (as well as highly specific to particular configurations), these aspects 
suggest a promising path to enhanced performance when developing time-marching procedures 
for wave propagation analyses.  

Time-marching procedures can generally be categorized into two main families: explicit and 
implicit methods [1]. Numerous explicit and implicit formulations for time-domain analyses 
have been frequently reported in the literature. Additionally, in recent years, several composite 
techniques have been introduced, incorporating both explicit and implicit methodologies. 
Explicit procedures are typically preferred due to their lower computational costs; however, 
their use is limited by stability constraints. Conversely, implicit procedures can achieve 
unconditional stability but require greater computational effort per time step, as a solver routine 
must be employed to handle the resulting systems of equations associated with these 
approaches. 

In this context, this work reports on a mixed explicit-implicit time-marching formulation 
proposed by Soares [2], examining its computed responses for elastodynamic analyses. This 
approach offers a generic conditionally stable time-marching procedure that operates largely at 
its critical stability limit, regardless of the provided time-step value, ensuring guaranteed 
stability and leading to enhanced accuracy. Furthermore, explicit or implicit subdomains can 
be easily defined along the discretized model based on local properties, without significant 
modifications to the proposed solution procedure. 

Historically, the motivation for using combined explicit/implicit time-integration techniques 
arose partly from issues where meshes contained both relatively flexible and stiff subdomains. 
In such cases, highly refined subdomains or spatially varying properties within the mesh could 
necessitate an excessively small time-step value for the entire model, which is particularly 
constraining for explicit approaches. Over the past decades, improved techniques have been 
developed to handle the distinction between explicit and implicit subdomains more effectively, 
and to apply combined formulations more efficiently. However, these coupled approaches 
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typically require significant input from the user, such as specifications of subdomains/interfaces 
within the model. 

The here reported mixed explicit-implicit time-marching formulation does not involve 
coupling different time-integration approaches or time-step values, nor does it require interface 
conditions or extensive information from the user. Instead, it employs a single time-marching 
framework and one time-step value. This mixed explicit-implicit formulation combines the best 
features of both standard implicit and explicit approaches in a highly effective and 
straightforward manner. It incorporates three time-integration parameters, 𝛼଴

௘, 𝛼ଵ
௘ and 𝛼ଶ

௘, 
assigned to each element “e” of the chosen spatial discretization, offering a highly adaptable 
and self-adjusting approach. The computation of the 𝛼଴

௘ parameter ensures stability and 
enhances the accuracy of the analysis, delineating the implicit and explicit elements within the 
model. Meanwhile, the 𝛼ଵ

௘ and 𝛼ଶ
௘ parameters, redefined at each time step, determine non-

dissipative and dissipative elements in an efficient numerical dissipative strategy aimed at 
mitigating the effects of spurious non-physical modes and minimizing undesirable numerical 
damping errors. 

The present work is structured as follows: initially, the governing equations of the model 
and the adaptive time-integration approach are outlined, detailing the computation of the locally 
defined self-adjusting time-integration parameters. Subsequently, numerical applications are 
provided to showcase the good accuracy and efficacy of the reported procedure. Finally, 
conclusions are drawn, summarizing the numerous positive attributes of the novel 
methodology. 

2 GOVERNING EQUATIONS AND TIME INTEGRATION STRATEGY 

The semi-discrete system of equations describing a elastodynamic model may be written as:  

𝐌𝐔̈(𝑡) + 𝐂𝐔̇(𝑡) + 𝐊𝐔(𝑡) = 𝐅(𝑡) (1) 

where the symbols 𝐌, 𝐂, and 𝐊 denote the mass, damping, and stiffness matrices of the problem, 
respectively. The force vector is represented by 𝐅(𝑡), while  𝐔(𝑡), 𝐔̇(𝑡) and 𝐔̈(𝑡) correspond 
to the displacement, velocity and acceleration vectors, respectively. The initial conditions of 
the model are defined as 𝐔଴ = 𝐔(0) and 𝐔̇଴ = 𝐔̇(0), where 𝐔଴ and 𝐔̇଴ refer to the initial 
displacement and velocity vectors, respectively. 

By integrating Eq. (1) over time, considering a time-domain discretization defined by 
𝑡௡ାଵ  =  𝑡௡ +  𝛥𝑡, where 𝛥𝑡 represents the adopted time-step, one may write: 

𝐌 න 𝐔̈(𝑡)𝑑𝑡
௧೙శభ

௧೙

+ 𝐂 න 𝐔̇(𝑡)𝑑𝑡
௧೙శభ

௧೙

+ 𝐊 න 𝐔(𝑡)𝑑𝑡
௧೙శభ

௧೙

= න 𝐅(𝑡)𝑑𝑡
௧೙శభ

௧೙

 (2) 

where the integrals on the left-hand side of Eq. (2) can be defined as: 

න 𝐔̈(𝑡)𝑑𝑡 = 𝐔̇௡ାଵ − 𝐔̇௡
௧೙శభ

௧೙

 (3a) 

න 𝐔̇(𝑡)𝑑𝑡 = 𝐔௡ାଵ − 𝐔௡
௧೙శభ

௧೙

 (3b) 
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න 𝐔(𝑡)𝑑𝑡 = 𝛥𝑡𝐔௡ +
ଵ

ଶ

௧೙శభ

௧೙

(1 − 𝛼଴ )𝛥𝑡ଶ𝐔̇௡ +
ଵ

ଶ
𝛼଴ 𝛥𝑡ଶ𝐔̇௡ାଵ (3c) 

The integral on its right-hand side, representing the time integral of the force term, may be 
denoted as 𝐅ത. This integral can be computed analytically or using any standard numerical 
procedure for calculating the numerical value of a definite integral. In Eqs. (3a–c), 𝐔௡ାଵ and 
𝐔̇௡ାଵ represent approximations for 𝐔(𝑡௡ାଵ) and 𝐔̇(𝑡௡ାଵ), respectively, and 𝛼଴  denotes a time-
integration parameter for the proposed solution procedure. Additionally, 𝐔௡ାଵ and 𝐔̇௡ାଵ can 
be related to each other through the following finite difference expression: 

𝐔௡ାଵ =  𝐔௡ +
ଵ

ଶ
𝛥𝑡𝐔̇௡ +

ଵ

ଶ
𝛥𝑡𝐔̇௡ାଵ (4) 

which, when applied together with Eqs. (3a–c) to Eq. (2), yields the following recursive 
relation: 

ቀ𝐌 +
ଵ

ଶ
𝛥𝑡𝐂 +

ଵ

ଶ
𝛼଴ 𝛥𝑡ଶ𝐊ቁ 𝐔̇௡ାଵ

= 𝐅ത + 𝐌𝐔̇௡ −
ଵ

ଶ
𝛥𝑡𝐂𝐔̇௡ − 𝛥𝑡𝐊(𝐔௡ +

ଵ

ଶ
(1 − 𝛼଴ )𝛥𝑡𝐔̇௡) 

(5) 

In this case, the velocities of the model at the current time step can be computed using Eq. 
(5), and then Eq. (4) can be employed to assess its displacements. To introduce controllable 
algorithmic damping into the analysis, the velocity vector of the model, computed as indicated 
by Eq. (5), can be modified, considering an update of its value as indicated by:  

𝐔̇௡ାଵ ⇐ 𝐔̇௡ାଵ − 𝐌ିଵ𝐊(
ଵ

ଶ
 𝛼ଵ 𝛥𝑡ଶ𝐔̇௡ +

ଵ

ଶ
 𝛼ଶ 𝛥𝑡ଶ𝐔̇௡ାଵ) (6) 

where 𝛼1  and 𝛼2  represent additional time-integration parameters for the method, which 
delineate the numerical dissipative features of the technique. 

Once Eqs. (4-6) are presented, they can be reformulated and aligned in a sequential order to 
establish the following time-marching solution algorithm: 

(𝐌 +
ଵ

ଶ
𝛥𝑡𝐂 + 𝛼′଴ 𝐊)𝛥𝐔̇ = 𝐅ሜ − 𝛥𝑡(𝐂𝐔̇௡ + 𝐊(𝐔௡ +

ଵ

ଶ
𝛥𝑡𝐔̇௡)) (7a) 

𝐔̇௡ାଵ = 𝐔̇௡ + 𝛥𝐔̇ − 𝐌ିଵ𝐊(𝛼′ଵ 𝐔̇୬ + 𝛼′ଶ 𝐔̇௡ାଵ) (7b) 

𝐔௡ାଵ = 𝐔௡ +
ଵ

ଶ
𝛥𝑡(𝐔̇௡ + 𝐔̇௡ାଵ)  (7c) 

where 𝛼′௜ =
ଵ

ଶ
𝛥𝑡ଶ𝛼௜ , for i = 0, 1 and 2. As one may observe, Eq. (7a) reproduces Eq. (5), 

considering 𝛥𝐔̇ = 𝐔̇௡ାଵ − 𝐔̇௡, and Eq. (7b) replicates the updating of the velocity vector, as 
indicated by Eq. (6), once non-null values are considered for 𝛼′ଵ  and 𝛼′ଶ .  

As previously highlighted, the solution algorithm described by equations (7a-c) are here 
implemented considering a local approach. In this context, the local time-integration parameters 
𝛼′଴

௘, 𝛼′ଵ
௘ and 𝛼′ଶ

௘ are computed as functions of the element's maximal sampling frequency 𝛺௘
௠௔௫ 

(where 𝛺௘
௠௔௫ = 𝜔௘

௠௔௫𝛥𝑡 and 𝜔௘
௠௔௫ represent the highest natural frequency of the element “e”, 

evaluated based on its local matrices 𝐌௘ and 𝐊௘) and its damping ratio 𝜉௘ (defined as 𝜉௘ =
𝜍௘(2𝜌௘𝜔௘

௠௔௫)ିଵ, where 𝜍௘ and 𝜌௘ are the physical parameters of the model describing matrices 
𝐂௘ and 𝐌௘, respectively). In this scenario, 𝛼′଴

௘ is determined based on a stability criterion. Thus, 
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if 𝛺௘
௠௔௫ is lower than or equal to the stability limit of the method's associated explicit 

formulation (i.e., if 𝛺௘
௠௔௫ ≤ 𝛺௟௜௠), 𝛼′଴

௘ = 0. In this work, lumped mass and damping matrices 
are used, resulting in a locally diagonal effective matrix for 𝛼′଴

௘ = 0, which designates an 
explicit element. Conversely, if  𝛼′଴

௘  ≠ 0 , the element is designated as implicit. The reported 
explicit procedure has its stability limit defined by 𝛺௟௜௠ = 2 , which corresponds to the critical 
sampling frequency of the Central Difference (CD) method, to which the proposed technique 
is spectrally equivalent when 𝛼′଴ = 𝛼′ଵ = 𝛼′ଶ = 0. Following this adaptive approach, 
explicit and implicit elements are automatically assigned along the discretized model. 

Similarly to the 𝛼′଴
௘  parameter, the 𝛼′ଵ

௘ and 𝛼′ଶ
௘ parameters designate the dissipative (𝛼′ଵ ≠

0 and 𝛼′ଶ ≠ 0) and non-dissipative (𝛼′ଵ = 𝛼′ଶ = 0) elements of the model. When  𝛼′ଵ
௘ = 𝛼′ଶ

௘ =
0, the velocity update is given by 𝐔̇௡ାଵ = 𝐔̇௡ + 𝛥𝐔̇, and no numerical dissipation is introduced. 
This also avoids the computation of the local remaining term of equation (7b), resulting in a 
solution algorithm with reduced computational effort. However, for other values of the time-
integration parameters, algorithmic damping can be employed to eliminate spurious non-
physical oscillations arising from the excitation of spatially unresolved high-frequency modes. 
This allows for the localized application of numerical damping whenever and wherever 
necessary, enhancing accuracy. 

The objective of algorithmic damping is to mitigate spurious non-physical oscillations by 
introducing high-frequency numerical damping without affecting the important low-frequency 
modes. This adaptive dissipative procedure can be implemented based on an oscillatory 
criterion. If the computed response of a degree of freedom oscillates over time, the time-
integration parameters of the neighboring elements are adjusted, locally introducing algorithmic 
damping. By rewriting the velocity update described by Eq.(6) as 𝐔̇௡ାଵ ⇐ 𝐔̇௡ାଵ − 𝐌ିଵ𝐕, in 
which an auxiliary vector 𝐕 is introduced, this strategy can be mathematically defined as 
follows, for each time step of the analysis: (i) establish an oscillatory parameter 𝜙ఎ for each 
degree of freedom 𝜂, as indicated by: if 𝑈̇ఎ

௡ାଵ𝑈̇ఎ
௡ < 0, 𝜙ఎ = 1; otherwise, 𝜙ఎ = 0; (ii) if 

[∑ 𝜙ఎ]௘ > 0, at least one degree-of-freedom of the element is oscillating, and the local vector 
𝐕௘ = 𝐊௘(𝛼′ଵ

௘𝐔̇௘
௡ + 𝛼′ଶ

௘𝐔̇௘
௡ାଵ) is then computed and assembled into the global vector V, 

introducing algorithmic damping into the analysis; (iii) if [∑ 𝜙ఎ]௘ = 0, the degrees-of-freedom 
of the element are not oscillating, and 𝐕௘ = 𝟎 is then defined, introducing no local numerical 
dissipation into the analysis.  

The expressions for the local time-integration parameters, considering both explicit and 
implicit elements, are provided in Tab. 1. Using these non-null expressions for 𝛼′ଵ

௘ and 𝛼′ଶ
௘, the 

bifurcation spectral radius of the method becomes null (𝜌௕ = 0), and its bifurcation sampling 
frequency equals the maximum sampling frequency of the focused element (𝛺௕ ≡ 𝛺௘

௠௔௫). 
Consequently, maximal possible numerical damping is provided for 𝛺௘

௠௔௫, resulting in a highly 
effective local dissipative procedure. Similarly, the non-null expression provided for 𝛼′଴

௘ in Tab. 
1 (for implicit analysis) is formulated so that when numerical dissipation is not applied, the 
critical sampling frequency of the method becomes equal to the maximal sampling frequency 
of the focused element (i.e., 𝛺௖ ≡ 𝛺௘

௠௔௫). This design ensures that the errors of the proposed 
time-marching technique can better counterbalance the errors of equivalent spatial 
discretization procedures, leading to enhanced accuracy through this combined spatial/temporal 
formulation. 



Delfim Soares Jr., Lucas R. Pinto, Isabelle S. Souza and Webe J. Mansur 

 6

In the discussed hybrid formulation, an optimal time-step value, which optimizes the amount 
of explicit and implicit elements in the analysis for computational efficiency, may also be 
determined. In this context, the “particle swarm optimization” algorithm [3] is here employed 
to compute an optimal Δt value that minimizes the expected total number of operations in the 
discussed hybrid solution process, turning it always more efficient than purely explicit or purely 
implicit solutions.  

 

Table 1: Adaptive parameters (𝛼′௜
௘ =

ଵ

ଶ
𝛥𝑡ଶ𝛼௜

௘) 

 
Explicit 

(𝛺௘
௠௔௫ ≤ 2) 

𝛼଴
௘ = 0 

𝛼ଵ
௘ = 2(1 − 𝛺௘

௠௔௫𝜉௘)𝛺௘
௠௔௫షర

 

𝛼ଶ
௘ = 2(𝛺௘

௠௔௫మ
− 𝛺௘

௠௔௫𝜉௘ − 1)𝛺௘
௠௔௫షర

 

 
Implicit 𝛼଴

௘ = 1/2 − 2𝛺௘
௠௔௫షమ

 

𝛼ଵ
௘ = (𝛺௘

௠௔௫/2 − 2𝜉௘)𝛺௘
௠௔௫షయ

 

𝛼ଶ
௘ = (3𝛺௘

௠௔௫/2 − 2𝜉௘)𝛺௘
௠௔௫షయ

 

 

3 NUMERICAL EXAMPLES 

This section explores two examples. Initially, in the first example, the axial motion of an 
elastic rod is examined, which is excited by Neumann boundary conditions. In the sequence, 
two synthetic models with complexities comparable to real geological applications are explored 
in the second example, demonstrating the effectiveness of the discussed methodology for 
analyzing large-scale geophysical problems, such as those encountered in the OIL & GAS 
industry.  

The Finite Element Method (FEM) is here employed for the spatial discretization, utilizing 
linear triangular elements. The responses assessed by the reported solution procedure are 
compared to those obtained from widely recognized time-marching methodologies, such as the 
Trapezoidal Rule [4], the Generalized-α method [5] (considering ρ∞= 0.5), and the Bathe 
method [6]. Concerning the reported technique, results are additionally presented utilizing two 
distinct approaches for the first example: (i) an explicit-implicit formulation, where explicit-
implicit analyses are conducted, and the expressions from the first and second blocks of Tab. 1 
are applied to the elements of the model at which 𝛺௘

௠௔௫ ≤ 2 and 𝛺௘
௠௔௫ > 2, respectively; and 

(ii) a purely implicit formulation, where only implicit analyses are employed, and the second 
block of expressions from Tab 1 is utilized regardless of the 𝛺௘

௠௔௫ value of the element.  
To assess the errors in the computed responses of the first example, and compare the 

performances of the aforementioned time-marching formulations, Eq. (8) is used, where 𝑢 
denotes the computed field describing the time-history result for a selected degree-of-freedom, 
𝑢௔ represents its analytical counterpart, and 𝑁 stands for the total number of time steps in the 
analysis.  

𝐸𝑟𝑟𝑜𝑟 = ൥෍(𝑢௡ − 𝑢௔(𝑡௡))ଶ/ ෍(𝑢௔(𝑡௡))ଶ

ே

௡ୀଵ

ே

௡ୀଵ

൩

ଵ/ଶ

 (8) 



Delfim Soares Jr., Lucas R. Pinto, Isabelle S. Souza and Webe J. Mansur 

 7

3.1 Example 1 

The first application considers a rectangular solid behaving like a one-dimensional rod, fixed 
at its left border and subjected to a suddenly applied constant force at its right border. Analytical 
solutions for the longitudinal displacements of this application are available in [2]. Both a 
uniform structured and an irregular unstructured FEM mesh with 4000 linear triangular 
elements are used to spatially discretize the model, and various Δt values are adopted for the 
analyses. For the regular spatial discretization, just one  Ω௘

௠௔௫ value arises for the entire domain. 
For the irregular spatial discretization, on the other hand, several Ω௘

௠௔௫ values occur 
simultaneously, providing a more complex configuration. 

The adopted time-step values for this application are: Δ𝑡 = 5 ⋅ 10ିସ𝑠, Δ𝑡 = 7.5 ⋅ 10ିସ𝑠, 
Δ𝑡 = 10ିଷ𝑠, Δ𝑡 = 1.25 ⋅ 10ିଷ𝑠, and Δ𝑡 = 1.5 ⋅ 10ିଷ𝑠 . Fig. 1 depicts the FEM meshes and 
their Ω௘

௠௔௫distributions for Δ𝑡 = 10ିଷ𝑠. For this time-step value, Ω௘
௠௔௫ = 3 for all the elements 

of the regular mesh, resulting in a purely implicit solution for this configuration, while 
1.6891 ≤ Ω௘

௠௔௫ ≤ 7.0912 for the irregular mesh, allowing both explicit and implicit elements 
to simultaneously occur. Tab. 2 shows the percentages of explicit elements distributed along 
the model for the adopted five time-step values. As expected, for the irregular spatial 
discretization, the number of implicit elements increases with larger Δ𝑡 values to ensure 
stability. For Δ𝑡 = 5 ⋅ 10ିସ𝑠, nearly the entire domain of the model is defined as explicit, with 
only 9.52% of elements being implicit. In contrast, for Δ𝑡 = 1.25 ⋅ 10ିଷ𝑠, and Δ𝑡 = 1.5 ⋅
10ିଷ𝑠, all elements are implicit. 

(a) 

 

(b) 

   

 
Figure 1: Adopted meshes and 𝛺௘

௠௔௫  distribution along the model (first example), for 𝛥𝑡 = 10-3 s: (a) regular 
mesh; (b) irregular mesh. 

Table 2: Percentage of explicit elements 
Δt (10-4s) irregular (%) regular (%) 

5 90.48 100 
7.5 33.05 0 
10 1.85 0 

12.5 0 0 
15 0 0 

 

Fig. 2 provides relative error results for the axial displacements at the middle of the rod, 
which are computed considering the referred time-marching techniques and time-step values. 
As one may observe, the reported novel approach yields significantly more accurate results than 
standard techniques, even outperforming a composite methodology that uses two solving 
procedures per time step. Notably, for this application, the purely implicit approach of the 
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discussed formulation provides more accurate responses than the reported mixed explicit-
implicit methodology, highlighting the effectiveness of the proposed adaptive strategy. 

 

  
(a) (b) 

Figure 2: Error results for the first example: (a) regular mesh; (b) irregular mesh. 

Fig. 3 shows time-history results for the axial displacement at the middle of the rod (zoomed 
view), illustrating the excellent accuracy of the proposed technique. Results are presented for 
Δ𝑡 = 5 ⋅ 10ିସ𝑠  with both regular and irregular FEM meshes. As indicated in this figure, the 
adaptive methodology effectively quickly eliminates spurious oscillations, unlike standard 
techniques.  

 

  
(a) (b) 

Figure 3: Zoomed view of the time-history results for the axial displacements at the middle of the rod, for 𝛥𝑡 = 
5∙10-4 s: (a) regular mesh; (b) irregular mesh. 

Fig. 4 provides relative error results for the computed velocities, further confirming the 
superior accuracy of the new formulation, particularly regarding irregular spatial 
discretizations. Fig. 5 provides snapshots of the 𝛼′ଵ

௘ + 𝛼′ଶ
௘  values, indicating the dissipative 

elements along the irregular mesh at t = 1s, t = 2s and t = 3s. This figure highlights that, in the 
discussed approach, algorithmic dissipation is locally applied only when and where it may be 
necessary, enhancing the performance of the referred time-marching technique. 
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Figure 4 Error results for the computed axial velocities at the middle of the rod, considering Δt = 5∙10-4s and 

regular and irregular meshes: 1 – New explicit-implicit; 2 – New implicit; 3 – Trapezoidal Rule; 4 – Generalized 
α; 5 – Composite Bathe. 

 
 

 

(a) 

 

 

(b) 

 

 

(c) 

 

Figure 5: Evolution of the dissipative elements along the explicit-implicit analysis of the first example 
(dissipative elements are coloured, indicating its 𝛼′ଵ

௘ + 𝛼′ଶ
௘ value), considering the adopted irregular mesh and Δt 

= 10-3s: (a) t = 1s; (b) t = 2s; (c) t = 3s. 

3.2 Example 2 

In this subsection, two geological subsurface applications are studied to further demonstrate 
the robustness and efficiency of the discussed hybrid methodology. These synthetic geological 
models are designed to mimic the complexity of real subsurface structures, making them ideal 
for evaluating the applicability of the discussed technique in industrial contexts. The first 
model, commonly referred to as the 2DEW [7] model (see Fig. 6(a)), replicates the salt 
formations found in the Gulf of Mexico. The second model, known as the 2004 BP model [8] 
(see Fig. 6(b)), offers a composite representation of various geological sections from different 
regions, including the western and central/east Gulf of Mexico, as well as elements observed in 
the Caspian, North, and Trinidad seas. Due to the high computational costs associated with 
these models, the Bathe method is not here employed for their analyses. 
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 (a) (b)  
Figure 6: Geological models: (a) model 1 – 2DEW [7]; and (b) model 2 – 2004 BP [8]. 

The first model represents an area of 35 km x 15 km, discretized using a mesh of 717,139 
linear triangular elements. It is excited by a force applied at its upper surface at x = 17440 m. 
The second model considers an area of 67.5 km x 46 km, discretized using a mesh of 2,574,204 
linear triangular elements, and is excited by a force applied at x = 33750 m. In both applications, 
perfectly matched layers (PMLs) [9] are employed to avoid wave reflections at the vertical and 
lower horizontal boundaries of the discretized domain. The thicknesses of these PMLs are 1 km 
for both models. 

Fig. 7 illustrates the computed subdomains for these two models, considering the discussed 
explicit-implicit methodology and optimal time-step values. In this case, the following 
subdivisions are obtained, considering the percentages of elements in each subdomain: (i) 
model 1 – 76.69% explicit and 23.31% implicit, for Δt = 3.4851 ∙ 10ିଷ s; and (ii) model 2 – 
86.49% explicit and 13.51% implicit, for Δt = 4.1842 ∙ 10ିଷ s. 

 
 

 
 

 

 (a) (b)  
Figure 7: Computed subdomains for (a) model 1 – 2DEW and (b) model 2 – 2004 BP: explicit subdomains are 

depicted in white, whereas implicit subdomains are depicted in blue. 
 

In Tab. 3, a detailed description of the performance of each adopted solution technique for 
each model is provided. The new technique emerges as the most efficient procedure, delivering 
results more than four to more than seven times faster than the considered standard 
formulations. Figs. 8 and 9 present screenshots depicting the computed displacement results (in 
modulus) for models 1 and 2, respectively. As these figures illustrate, the discussed hybrid 
methodology yields responses comparable to those of the Generalized-α method; however, as 
indicated in Tab. 3, it does so considering significantly lower CPU times. 

 
 



Delfim Soares Jr., Lucas R. Pinto, Isabelle S. Souza and Webe J. Mansur 

 11

Table 3: Performance of the methods for the second example 

Model Method 
Parameter 

evaluation (s) 
Pre-solver 

computation (s) 
Time-marching 
procedure (s) 

Total CPU 
time (s) 

 Trapezoidal Rule - 456.83 (5.88) 2982.19 (4.22) 3462 (4.32) 
1 Generalized-α - 472.62 (6.08) 3248.56 (4.59) 3747 (4.69) 
 New explicit-implicit 0.453 77.65 (1.00) 706.69 (1.00) 800 (1.00) 
 Trapezoidal Rule - 16913.74 (42.83) 200042.42 (6.91) 216990 (7.40) 

2 Generalized-α - 17779.33 (45.02) 213944.34 (7.40) 231760 (7.90) 
 New explicit-implicit 0.589 394.89 (1.00) 28909.96 (1.00) 29321 (1.00) 

*Relative values are provided in parenthesis 
 
 
 

  

(a) (b) 
Figure 8: Computed result along the discretized domain of model 1, at 5s: (a) Generalized-α method; and (b) 

discussed explicit-implicit approach. 
 

  

(a) (b) 
Figure 9: Computed result along the discretized domain of model 2, at 20s: (a) Generalized-α method; and (b) 

discussed explicit-implicit approach. 
 

4 CONCLUSIONS 

This work investigates a mixed self-adjustable explicit-implicit time-marching formulation 
for analysing wave propagation models. The discussed technique offers guaranteed stability by 
adding implicit elements into the analysis, as well as it reduces computational efforts by 
incorporating explicit elements, thus combining the best features of both implicit and explicit 
formulations. As reported, the technique relies on locally defined time-integration parameters 
that adaptively adjust themselves based on the characteristics of the discretized model and the 
evolution of computed responses. In this sense, it may engender enhanced accuracy, as well as 
effectively dissipate the influence of spurious high-frequency modes without significantly 
compromising the accuracy of the lower mode contributions. The superior performance of the 
discussed methodology, in terms of both accuracy and efficiency, is illustrated in the previous 
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section, at which the novel formulation consistently yields substantially better results than 
standard approaches.  

The main features of the discussed time-marching formulation may be summarized as 
follows: (i) it stands as a single-step procedure; (ii) it is truly self-starting; (iii) it is locally 
defined and it self-adjusts to the properties of the discretized model; (iv) it provides a link 
between the adopted temporal and spatial solution techniques, allowing their errors to be better 
counterbalanced; (v) it enables stable analyses; (vi) it provides enhanced accuracy; (vii) it 
engenders advanced controllable algorithmic dissipation in the higher modes, considering 
optimized adaptive calculations; (viii) it stands as a single-solver framework based on reduced 
systems of equations; (ix) it enables mixed analyses considering a single group of recurrence 
relationships, avoiding elaborated coupling procedures and/or interface treatments; (x) it is 
simple to implement and to apply; (xi) it is entirely automated, requiring no decision nor effort 
from the user; (xii) it may consider optimal time-step values, further enhancing the efficiency 
of the analysis. As one can observe, the proposed technique is very attractive, providing the 
main positive features that are requested from an effective time-marching procedure. 
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