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BRAZIL

romgerale@yahoo.com.br

2 Aerospace Engineering Center
Federal University of ABC

Al. da Universidade, s/n - Anchieta - São Bernardo do Campo
BRAZIL

luiz.gadelha@ufabc.edu.br

Key words: SDRE, CubeSat, Cold, Gas, Region, Attraction.

Abstract. The precision of controlling the attitude of a CubeSat during the injection phase in
orbit is of fundamental importance for the success of the mission. In general, the CubeSat starts
this phase with high angular velocity, and then the controller needs to maneuver the CubeSat
to its nominal mode of operation, which is characterized by an attitude of small angles. One
way to achieve such a transition between these two modes is by using cold gas thrusters. In this
paper, we investigate the region of attraction (ROA) of the State-Dependent Riccati Equation
(SDRE) applied to the Attitude Control System (ACS) algorithm during the Launch and Early
Orbit Phase which has nonlinear dynamics due to the high angular velocities and perturbations.
The SDRE controller is based on cold gas thruster torques to reduce the high angular velocities.
The main result of this investigation is the approach to numerically approximate the ROA.

1 INTRODUCTION

Recent years have witnessed a tremendous increase in interest in Cube-Satellites (CubeSats)
among the space community including space agencies, industry, and academia. Indeed, the total
cumulative launched CubeSats as of August, 1st, 2022 is 2068 including launch failures [1].

The requirements for attitude control of such CubeSats had been evolving in a way that
a propulsion subsystem had become common [2, 3]. A propulsion subsystem is the primary
mobility device of a spacecraft supporting orbit maneuvers and also attitude control.
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The precision of controlling the attitude of a CubeSat during the injection phase in orbit is
of fundamental importance for the success of the mission. In fact, in the majority of missions,
the launch and early orbit phase (LEOP) is the most critical phase, in which the demand for
actuators is the highest [4]. In general, the CubeSat starts this phase with high angular velocities,
and then the controller needs to maneuver the CubeSat to its nominal mode of operation, which
is characterized by an attitude of small angles. One way to achieve such a transition between
these two modes is by using cold gas thrusters [2, 3].

Furthermore, the design of a satellite attitude control subsystem (ACS) that involves plant
uncertainties, large angle maneuvers, and fast attitude control following a stringent pointing,
requires nonlinear control methods in order to satisfy performance and robustness requirements.

An example is the Nano-satellite Constellation for Environmental Data Collection
(CONASAT) [5, 6], a set of remote sensing CubeSats from the Brazilian National Institute for
Space Research (INPE), in which the ACS must stabilize the satellite in three-axes in order to
maximize the receiving of environment data sent by platforms in the Brazilian territory.

One candidate method for a nonlinear ACS controller is the State-Dependent Riccati Equa-
tion (SDRE) method, originally proposed by [7] and then explored in detail by [8, 9, 10]. SDRE
provides an effective algorithm for synthesizing nonlinear feedback control by allowing non-
linearities in the system states while offering great design flexibility through state-dependent
weighting matrices.

The origin of an SDRE controlled system is a locally asymptotically stable equilibrium
point [10]. Furthermore, the knowledge of its region of attraction (ROA) is fundamental due to
the local stability even more in the presence of nonlinearities. Indeed, much criticism has been
leveled against the SDRE technique since it does not provide assurance of global asymptotic sta-
bility. However, empirical experience shows that in many cases the region of attraction may be
as large as the domain of interest [8]. Moreover, there are situations in which global asymptotic
stability cannot be achieved (for example, systems with multiple equilibrium points). Therefore,
especially in aerospace, estimating the region of attraction is fundamental [8].

In this paper, we share an approach to numerically approximate the ROA of CONASAT
controlled by SDRE based on cold gas thruster torques to reduce the high angular velocities.

To the best of our knowledge, CONASAT [5, 6] is not planned to have inertial actuators
so the evaluation presented here used the available data of the CubeSat augmented with the
minimal commonly used thrust to be obtained from a propulsion subsystem based on cold gas.
Such evaluation is in accordance with a trend in the CubeSat industry [3, 2], to use inertial
actuators for LEOP and orbital maneuvers.

The investigation through a Monte Carlo perturbation model numerically approximates the
ROA of the SDRE controller.

2 PROBLEM DESCRIPTION

The SDRE technique entails factorization (that is, parametrization) of the nonlinear dynam-
ics into the state vector and the product of a matrix-valued function that depends on the state
itself. In doing so, SDRE brings the nonlinear system to a (nonunique) linear structure having
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SDC matrices given by Eq. (1).

⃗̇x = A(x⃗)x⃗+B(x⃗)u⃗

y⃗ = Cx⃗ (1)

where x⃗ ∈ Rn is the state vector and u⃗ ∈ Rm is the control vector. Notice that the SDC form has
the same structure as a linear system, but with the system matrices, A and B, being functions
of the state vector. The nonuniqueness of the SDC matrices creates extra degrees of freedom,
which can be used to enhance controller performance, however, it poses challenges since not all
SDC matrices fulfill the SDRE requirements, e.g., the pair (A,B) must be pointwise stabilizable.

The system model in Eq. (1) is subject of the cost functional described in Eq. (2).

J(x⃗0, u⃗) =
1

2

∫ ∞

0

(x⃗TQ(x⃗)x⃗+ u⃗TR(x⃗)u⃗)dt (2)

where Q(x⃗) ∈ Rn×n and R(x⃗) ∈ Rm×m are the state-dependent weighting matrices. In order to
ensure local stability, Q(x⃗) is required to be positive semi-definite for all x⃗ and R(x⃗) is required
to be positive for all x⃗.

The SDRE controller linearizes the plant about the current operating point and creates con-
stant statespace matrices so that the LQR can be used. This process is repeated in all sampling
steps, resulting in a pointwise linear model from a non-linear model, so that an algebraic Riccati
equation (ARE) is solved and a control law is computed also in each step. Therefore, accord-
ing to LQR theory and Eq. (1) and (2), the state-feedback control law in each sampling step is
u⃗ = −K(x⃗)x⃗ and the state-dependent gain K(x⃗) is obtained by Eq. (3) [9].

K(x⃗) = R−1(x⃗)BT (x⃗)P (x⃗) (3)

where P (x⃗) is the unique, symmetric, positive-definite solution of the algebraic state-dependent
Riccati equation (SDRE) given by Eq. (4) [9].

P (x⃗)A(x⃗) + AT (x⃗)P (x⃗)

−P (x⃗)B(x⃗)R−1(x⃗)BT (x⃗)P (x⃗)

+Q(x⃗) = 0

(4)

Considering that Eq. (4) is solved in each sampling step, it is reduced to an ARE.

2.1 Region of Attraction

One is frequently interested in the region of attraction (ROA; also called the domain of attrac-
tion or the basin of attraction), i.e., the region of the statespace in which the initial conditions
of the trajectories lie in order to attain stable behavior [11].
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Equilibrium points, if exist, must lie in the regions of attraction, indeed, a state xe ∈ Rn is an
equilibrium point of a nonlinear dynamical system ẋ = f(x) if x0 = xe =⇒ x(t) = xe,∀ t >
0 so f(xe) = 0. A nonlinear system can have an infinite number of equilibrium points, and,
each one can be stable or unstable.

Such equilibrium points, if exist, lie in the regions of attraction, which are defined by their
attractors. An attractor is a subset A ∈ Rn of the statespace characterized by the following
three conditions: (i) a ∈ A =⇒ f(a, t) ∈ A, ∀ t > 0; (ii) there exists a vicinity of A (region
of attraction) which consists of all trajectories that enter A for t → ∞; and, (iii) there is no
proper (non-empty) subset of A having the first two properties. The attractors can be classified
into: (I) Fixed point - the final state that a dynamic system evolves towards corresponds to
an attracting fixed point, i.e., stable equilibrium point; (II) Limit cycle - a periodic orbit; (III)
Quasiperiodic - it exhibits irregular periodicity; (IV) Strange attractor - when such sets cannot
be easily described.

Regarding the fixed point attractor, it can be defined by the following equation [12].

A = {x0 ∈ Rn : lim
t→+∞

x(t, x0) = 0} (5)

It is important for practical reasons to have information about the size and/or the shape of A.
Indeed, the stability properties could be of scarce utility if the region of attraction is very small,
or if the equilibrium point is very close to its boundary.

3 SATELLITE PHYSICAL MODELING

This paper is focused on the Launch and Early Orbit Phase (LEOP) of the CONASAT [5, 6],
a CubeSat configured in an 8U structure in the Table 1.

3.1 Propulsion Subsystem

The simplest cold gas propulsion subsystem is roughly composed of a cold gas propellant
tank and the thrusters controlled by solenoid valves. The simplified operation principle is as
follows: (A) the propellant tank is filled with a highly pressurized gas propellant; and (B) the
gas flow is controlled by the solenoid valves before the thrusters; (C) once the solenoid valves
are activated, high pressurized propellant gas is expanded and accelerated through the nozzle,
obtaining the desired thrust [3].

The minimalist design of such propulsion subsystems has a lower mass, a lower power re-
quirement and a higher robustness. Nonetheless, the tank pressure decreases throughout the
mission due to the use of the propellant stored in the tank, and, consequently, the maximum
thrust produced by the subsystem decreases [3].

The cold gas propulsion subsystem, available in the simulator, is modeled by three thruster
pairs, one for each rotation: yaw, pitch and roll. The thrusters of a pair are mounted in the op-
posite faces of the satellite so they are 0.1 meters from the respective principal axis of inertia of
the satellite, moreover, they are positioned back to back so that the nozzles are able to generate
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Table 1: Satellite characteristics and references.

Name Value
Satellite Characteristics [5, 6]

unit 8U

size (m)
[
0.2 0.2 0.2

]T
mass (kg) 8.2

inertia tensor (kg.m2)

0.0547 0 0
0 0.0519 0
0 0 0.0574


Actuators Characteristics - Thrusters

maximum thrust (mN ) 10
References for the controller

Sun versor in the body (XYZ)
[
1 0 0

]T
angular velocity (radians/second, XYZ)

[
0 0 0

]T
symmetric torques. Hence, the external torque is defined by Eq. (6).

⃗gcm = −
3∑

n=1

r⃗n × Tna⃗na⃗n
T (6)

where gcm is the external torque obtained in the centre of mass of the satellite, Tn is the mag-
nitude of the thrust obtained in the symmetry axis a⃗n by each pair of opposite nozzles, and rn
is the position vector, which is a vector from the centre of mass of the satellite about which the
torque is being computed to the symmetry axis a⃗n of the nozzles.

Recall due to the nature of solenoids, the type of control of such a propulsion subsystem is
an ON-OFF, which leads to an impulsive control [13].

3.2 Kinematics

Given the ECI reference frame (Fi) and the frame defined in the satellite with origin in its
centre of mass (the body-fixed frame, Fb), then a rotation R ∈ SO(3) represented by an unit
quaternion Q = [q1 q2 q3 | q4]T can define the attitude of the satellite. Recall SO(3) is the set of
all attitudes of a rigid body described by 3× 3 orthogonal matrices whose determinant is one.

Defining the angular velocity ω⃗ = [ω1 ω2 ω3]
T of Fb with respect to Fi measured in the Fb,
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the kinematics can be described by Eq. (7) [14].

Q̇ =
1

2
Ω(ω⃗)Q =

1

2
Ξ(Q)ω⃗

Ω(ω⃗) ≜


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 ,

(7)

where the unit quaternion Q satisfies the following identity:

q21 + q22 + q23 + q24 = 1 (8)

Eq. (7) allows the prediction of the satellite’s attitude if it is available the initial attitude and
the history of the change in the angular velocity (Q̇ = F (ω, t)).

Another possible derivation of the Eq. (7) is using the vector g (Gibbs vector or Rodrigues
parameter) as Q = [gT |q4].

Q̇ = −1

2

[
ω×

ωT

]q1q2
q3

+
1

2
q4

[
13×3

0

]
ω , (9)

where ω× is the cross-product skew-symetric matrix of ω⃗ and 1 is the identity matrix.

3.3 Rotational Dynamics

In order to know the history of the change in the angular velocity, it is necessary to understand
the history of the change in the angular acceleration ( ˙⃗ω = G(τ, t)) of the satellite. According
to the Euler-Newton formulation of the rotational motion, angular acceleration is caused by

torques, in other words, the change in the angular momentum ⃗̇h is equal to the net torques g⃗
applied in the satellite, see Eq. (10) (the present subsection is derived based on the centre of
mass of the satellite, for the general case, see [14]).

⃗̇h = g⃗ (10)

Taking into account the motion of the body-fixed frame Fb with respect to the ECI Fi and the
angular velocity ω⃗, the derivative of the angular momentum in Fb is defined by Eq. (11).

⃗̇h = g⃗ − ω⃗ × h⃗ (11)

Furthermore, ⃗̇h = I.⃗̇ω and h⃗ = I.ω⃗, where I is the time-invariant inertia tensor. The combina-
tion of this definition and Eq. (11) results in Eq. (12).

I.⃗̇ω = g⃗ − ω⃗ × (I.ω⃗) (12)
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Recall the satellite has three thruster pairs, each pair aligned with the principal axes of inertia
of the satellite, moreover, such type of actuator, inertial actuators, generates external torques.

Therefore, the motion of the satellite is described by Eq. (13) .

ω̇ = I−1gcm − I−1ω×Iω , (13)

where gcm is the external torque produced by the thrusters.

4 CONTROLLER DESIGN AND REGION OF ATTRACTION

Two dynamics states must be controlled: (1) the attitude (modeled as unit quaternions Q by
Eq. (7) or Eq. (9)) and (2) its stability (Q̇, in other words, the angular velocity ω of the satellite
by Eq. (13)). The following subsections explore the state-space modeling, the synthesis of
controller and the region of attraction.

4.1 Nonlinear Control based on SDRE

Assuming that the net external torques (gcm) are solely defined by the thrusters, the rotational
dynamics is defined in Eq. (13).

Choosing state as x1 = Q and x2 = ω, and the control vector as u1 = Tc = gcm, then the
state space model can be defined using Eq. (9) and (13), which leads to Eq. (14).[

ẋ1

ẋ2

]
=

−1
2

[
ω×

ωT

]
0

[
1
2
q413×3

0

]
0 0 −I−1ω×I

[
x1

x2

]
+

[
0
I−1

] [
u1

]
[
y
]
= 11×7

[
x1

x2

] (14)

Eq. (14) has been shown to satisfy SDRE conditions in the majority of statespace except
for the region on which the angular velocities are close to 0 (the pair(A,B) loses rank in such
region). Note this known limitation of this particular parametrization of SDRE imposes laxity.

4.2 Region of Attraction

Firstly, the control law is modeled and too many time-domain simulations are available for
analysis. Therefore, the main task is to assess the presence of a fixed point attractor as well as
its size and shape.

Nonetheless, it is somewhat difficult to depict the ROA for statespace systems with dimen-
sions higher than three.

Inspired by the works of Henri Poincaré, in particular, Poincaré maps [15] which defines a
lower-dimensional subspace for qualitative analysis. The present paper applied two Euclidean
norms, namely L2-norm of Euler angles and L2-norm of angular velocities, to define a two-
dimensional space for qualitative and quantitative analysis. In such a way that the area of the
ROA (dimensionless quantity) can be analytically computed; and, the plot of the ROA can allow
straightforward qualitative analysis.
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Besides, the definition of the fixed point attractor presented in Equation (5) is restricted by
the accounting of an explicit final time tf and a numerical error ϵ, according to the following
equation:

A = {x0 ∈ Rn : lim
t→tf

||x(t, x0)||2 < ϵ} (15)

Equipped with (A) the two-dimensional space for qualitative analysis of the original seven-
dimensional statespace, and (B) Equation (15), simple polygons (they do not intersect them-
selves and have no holes) of ROAs are defined in the two-dimensional space for the initial
conditions x0.

Taking into account the limitations of the control laws previously stated in Subsection 4.1,
the definition of the fixed point attractor presented in Equation (15) is once restricted by the
selection of sole angular velocities (x2 in Equation (14)), ω-stability in [14], according to the
following equation:

A = {x0 ∈ Rn : lim
t→tf

||x2(t, x0)||2 < ϵ} (16)

Focusing on the area of ROAs A, one defines a Monte Carlo perturbation model for a given
set of initial conditions, performs the time-domain simulation until the predefined tf , and, fi-
nally, computes such a measure.

5 SIMULATION RESULTS

The results were computed using the satellite (modeled as a nonlinear system) and the control
law (SDRE). Furthermore, such results were obtained running a full Monte Carlo perturbation
model described as follows.

Regarding initial attitudes defined by 3-2-1 Euler angles (Z-Y-X, nonclassical Euler angles),
it is well-known that representing Y beyond ±90 degrees (that means ±180 degrees) would
give two Euler angles solution for every rotation, so Y is limited to ±90 degrees. X and Z
are limited to ±180 degrees. Therefore, independent distributions are applied for each Euler
angle respecting the limits previously discussed in order to define the initial attitudes (3-2-1,
Z-Y-X, nonclassical Euler angles, which are converted in quaternions) in a given Monte Carlo
perturbation model.

Regarding initial angular velocities, they are defined by independent distributions based on
a limit.

In summary, the approach for the evaluation of the region of attraction can be summarized
as:

• Compute initial conditions for the Monte Carlo perturbation model

Using independent distributions, compute the 3-2-1 Euler angles (Z-Y-X, nonclassi-
cal Euler angles) in the range (±180, ±90, ±180)

Using independent distributions, compute the angular velocities
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Table 2: Monte Carlo perturbation model parameters.

Name Value
3-2-1 Euler angles (degrees) Z : U(−180, 180)

Y : U(−90, 90)
X : U(−180, 180)

angular velocities (rad/s) X : U(−0.09, 0.09)
Y : U(−0.09, 0.09)
Z : U(−0.09, 0.09)

Q I
R I

ϵ (rad/s) 0.01
samples 200

tf (seconds) 1000
fixed step size (seconds) 0.1

• Perform the time-domain simulation until the predefined tf

• Compute ROA

The results are based on the satellite CONASAT, which is characterized by Table 1, further-
more, the simulations were conducted with the full Monte Carlo perturbation model tuned with
the parameters shared in Table 2.

The initial conditions uniformly distributed computed using such parameters by the Monte
Carlo perturbation model are depicted using a two-dimensional space, in which the norm of
Euler angles is along the X-axis and the norm of angular velocities is along the Y-axis for each
initial condition. This space has its bounds constrained by the norm of Euler Angles ranging
from 0 to 270 degrees and the norm of angular velocities ranging from 0 to approximately 0.15
radians per second, following the parameters presented in Table 2. The same two-dimensional
space is used to depict ROAs.

Figure 1 shows the initial conditions uniformly distributed by such a Monte Carlo perturba-
tion model execution.

The result of the Monte Carlo perturbation model execution is depicted in Figure 2 which
shows the ROA of SDRE for CONASAT for the computed initial conditions.

6 CONCLUSION

As the results are based on analysis through simulations, they are neither valid for general
cases nor scenarios out of the range of the Monte Carlo perturbation models due to the under-
lying nonlinear dynamics.

Although the results numerically approximate the ROA of SDRE in the case of CONASAT,
the major contribution of the paper is the approach for the evaluation of the ROAs since the
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Figure 1: Initial conditions.

approach provides a tractable numerical algorithm to compare control techniques. Moreover,
confidence turns out to be a matter of computational power.
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Figure 2: ROA.
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