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Summary. In this work, direct numerical simulations of a high-pressure transcritical square
duct flow with distinct gravity directions in the cross-stream plane are performed. The buoyancy
effects on the instantaneous and mean fields are analyzed. Significant differences are highlighted
in the distributions of Prandtl’s second-kind motions due to a strong coupling effect between
the high-pressure transcritical phenomena and the buoyancy effects. The observed phenomena
indicate that prior characterizations of secondary flows and their contribution to heat and mass
transfer (commonly considered as independent from the Reynolds number) do not apply in
cases above the critical regime where strong variations in thermophysical properties are found.
Furthermore, the number and dynamics of these secondary flows are significantly affected by
the gravity direction.

1 INTRODUCTION

Wall-bounded fluid flows surpassing the critical pressure are gaining prominence in advanced
energy systems like power generation and propulsion [6, 22, 23, 2], where heat convection is
the prominent mechanism. When subjected to a temperature difference that oscillates around
the pressure-specific critical temperature, these supercritical fluids exhibit a diffuse transition
region. This region separates the liquid-like and gas-like supercritical phases without the physical
boundary observed under standard (subcritical pressure) thermodynamic conditions. Moreover,
this transition region is characterized by: (i) sharp gradients in thermophysical properties, such
as density (ρ), viscosity (µ), and diffusivity (α); (ii) intensified fluctuations of fluid properties;
and (iii) induced flow rotation through the baroclinic torque generated [4, 3, 11, 1].

Ducts with rectangular cross-sections are prevalent in numerous engineering applications,
encompassing both incompressible and compressible turbulent flow regimes. These flows are
characterized by the presence of secondary motions in the cross-stream plane, which signifi-
cantly influence the overall flow dynamics and system performance. In straight square ducts,
secondary motions of Prandtl’s second kind emerge due to anisotropic turbulent stresses [19],
forming eight counter-rotating vortices near the corners. Although these motions in traditional
flows exhibit an intensity significantly lower than the bulk velocity (∼ 1 − 2%), they persist
throughout the flow, contributing to mean duct friction by up to a few percent and significantly
enhancing the transverse transfer of mass, momentum, and heat [12]. Additionally, temperature
asymmetries and gradients near asymmetrically heated corners in high-pressure transcritical
square duct flows, as studied by Monteiro & Jofre [13], introduce complexities that significantly
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influence secondary flow motions. These temperature variations modulate wall shear stresses
via secondary flow motions, thereby impacting the overall flow behavior.

While Sekimoto et al. [20] investigated the effect of cross-sectional buoyancy in asymmetri-
cally heated, incompressible square ducts, the interaction between these effects and the strong
variations of fluid properties in high-pressure transcritical square ducts remains unexplored. In
this context, the present work aims to analyze the consequences of varying gravity directions
on the flow characteristics of high-pressure transcritical turbulent square duct flows. Particular
focus is given to the effects of secondary flow motions, which serve as indicators of the turbu-
lence state in straight square ducts. To that end, in Section 2, the flow physics modeling of
supercritical fluids and the description of the numerical experiments are presented. Next, the
numerical results are presented in Section 3. Finally, in Section 4, the work is concluded, and
future directions are proposed.

2 COMPUTATIONAL APPROACH & SIMULATIONS

This section outlines the framework utilized for studying supercritical fluids, focusing on
(i) the equations of fluid motion, (ii) real-gas thermophysical models, and (iii) the case setups
and descriptions. The numerical method and real-gas thermodynamics framework employed in
this study follow the approach detailed by Monteiro et al. [13]. Specifically, the Peng-Robinson
equation of state is utilized, and a second-order central-differencing scheme is implemented,
along with a third-order Runge-Kutta time integration method.

2.1 Equations of Fluid Motion

The flow motion of supercritical fluids is described by the following set of dimensionless
conservation equations of mass, momentum, and total energy

∂ρ⋆

∂t⋆
+∇⋆ ⋅ (ρ⋆v⋆) = 0, (1)

∂ (ρ⋆v⋆)
∂t⋆

+∇⋆ ⋅ (ρ⋆v⋆v⋆) = −∇⋆P ⋆ + ∇
⋆ ⋅ τ ⋆
Reb

+ (Rib +
1

Fr2b
) êg, (2)

∂ (ρ⋆E⋆)
∂t⋆

+∇⋆ ⋅ (ρ⋆v⋆E⋆) = ∇
⋆ ⋅ (κ⋆∇⋆T ⋆)
RebBrb

−∇⋆ ⋅ (P ⋆v⋆) + ∇
⋆ ⋅ (τ ⋆ ⋅ v⋆)

Reb

+ (Rib +
1

Fr2b
)v⋆êg, (3)

where superscript ⋆ denotes normalized quantities, ρ = ρb +∆ρ represents the density, t is the
time, v is the velocity vector, and P is the pressure. The viscous stress tensor is defined as
τ = µ (∇v +∇vT ) − (2µ/3)(∇ ⋅ v)I, with µ being the dynamic viscosity and I the identity
matrix. The gravity unit vector is denoted by êg, while E = e + ∣v∣2/2 and e represent the
total and internal energy, respectively. Additionally, T is the temperature, and κ is the thermal
conductivity. The obtention of these dimensionless equations is founded on the following set of
inertial-based scalings [8, 7]

x⋆ = x

Dh
, v⋆ = v

ub
, ρ⋆ = ρ

ρb
, T ⋆ = T

Tb
, (4)
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P ⋆ = P

ρbu
2
b

, E⋆ = E

u2b
, µ⋆ = µ

µb
, κ⋆ = κ

κb
,

with subscript b indicating bulk quantities, x the position vector, Dh the hydraulic diameter, and
ub the bulk streamwise velocity. The resulting set of scaled equations includes four dimensionless
numbers: (i) the bulk Reynolds number Reb = ρbubDh/µb characterizes the ratio between inertial
and viscous forces; (ii) the bulk Brinkman number Brb = PrbEcb relates heat produced by
viscous dissipation and heat transported by molecular conduction. Specifically, the bulk Prandtl
number Prb = µbcP b/κb, where cP is the isobaric heat capacity, quantifies the ratio between
momentum and thermal diffusivity. The bulk Eckert number Ecb = u2b/(cP bTb) accounts for the
ratio between advective mass transfer and heat dissipation potential; (iii) the Richardson number
Rib = Grb/Re2b represents the importance of natural convection relative to forced convection,
where the Grashof number Grb =∆ρ/ρb ⋅Dh/ν2b ⋅g quantifies the relative significance of buoyancy
forces compared to viscous forces in the fluid flow when subjected to a temperature gradient;
and (iv) the Froude number Frb = u/

√
gDh which defines the ratio between flow inertia and the

gravity field.

2.2 Flow conditions and simulation setup

In this work, four square-duct flow cases with distinct gravity directions are analyzed under
similar high-pressure transcritical thermophysical conditions. The operating fluid corresponds to
CO2, whose critical pressure and temperature are Pc = 7.4MPa and Tc = 304.1K, respectively.
Each case maintains a pseudo-boiling region within the duct flow. To achieve this, the bulk
pressure is set to Pb/Pc = 2, the top-hot wall-temperature is fixed at Thw/Tc = 1.5, and the
remaining physical walls are set to Tcw/Tc = 0.85. The streamwise boundaries for all cases
are periodic, the bulk velocity is ub = 0.5 m/s, and the hydraulic diameter is Dh = 2δ where
δ = 500 µm. These conditions result in a Richardson number of Rib ≈ 0.04 and a Froude number
of Fr ≈ 5.2, comparable to the ones in the intermediate case of Sekimoto et al. [20]. This
indicates that the effects of external forcing due to gravity account for approximately 5% of
the flow modulation relative to flow inertia. Given that these effects act in the cross-sectional
direction, their influence is expected to be particularly significant for the secondary flow motions.
Therefore, to scrutinize the effects of gravity in these systems, the primary distinction between
the four cases is the direction of gravity.

Table 1 presents the case identification, the corresponding gravity direction (or absence of
gravity), and additional characterization details, such as the bulk Reynolds number (Reb), the
friction Reynolds numbers based on cold-bottom (Reτcw) and hot-top wall units (Reτhw), the
bulk Prandtl number (Prb), the hot-top wall Nusselt number (Nuhw), and the maximum relative
intensity of the mean cross-stream flow (

√
(v̄2 + w̄2)/ubmax). The first case is configured without

a gravity component, serving as a reference point, thus enabling the analysis of the impact of
different gravity directions on the turbulence state. Specifically, case 2-mYG features gravity in
the negative y-direction, case 3-YG features gravity in the positive y-direction, and case 4-ZG
features gravity in the z-direction. In addition, a mesh resolution investigation, similar to the
one conducted by Monteiro & Jofre [13], is performed to ensure that all relevant flow scales are
resolved. The spatial discretization is meticulously designed to ensure that: (i) the first grid
point is placed at a maximum distance of y∗ < 1.0 from the hot wall and y∗ < 0.6 from the
cold wall; (ii) resolutions normalized by the Kolmogorov scale are ∆x/ηu < 9, ∆y/ηu < 2 and
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∆z/ηu < 2; and (iii) the resolutions normalized by the Batchelor scale are ∆x/ηT < 10, ∆x/ηT < 2
and ∆x/ηT < 2. Notably, all these values fall within the accepted ranges in the literature for the
direct numerical simulation (DNS) of high-pressure transcritical wall-bounded flows [17, 10, 6].

Table 1: Classification of the four numerical experiments along with their thermodynamic op-
erating conditions and resulting dimensionless parameters. The table includes the approximate
bulk Reynolds number Reb, the perimeter-averaged friction Reynolds number for the hot-top
and cold-bottoms walls Reτ , the bulk Prandtl number Prb, the hot wall Nusselt number Nuhw,
and the maximum value of the mean cross-sectional velocity intensity normalized by the bulk
velocity

√
(v̄2 + w̄2)/ubmax.

Case Symbol êg Reb Reτcw Reτhw Prb Nuhw
√
(v̄2 + w̄2)/ubmax

1 - NoG ◯ (0, 0, 0) 4400 110 200 1.83 47.3 0.046

2 - mYG △ (0, −g, 0) 4200 100 200 1.81 42.0 0.040

3 - YG ◻ (0, g, 0) 4600 120 210 1.84 52.9 0.062

4 - ZG ◇ (0, 0, g) 4300 110 210 1.80 76.5 0.095

3 RESULTS

From Table 1, the general characteristics of each flow case can be discerned. A particular fo-
cus is placed on the hot-top wall, as it is the most relevant in terms of heat transfer. Initially, the
bulk Reynolds number Reb reveals that gravity’s effect in the y-direction significantly influences
inertial effects depending on its orientation: gravity pointing towards the hot wall (up) exacer-
bates inertial effects, while gravity pointing away (down) mitigates them. This observed trend
is mirrored in other parameters such as the friction Reynolds number Reτhw , the bulk Prandtl
number (Prb), the hot-wall Nusselt number (Nuhw), and the maximum cross-stream velocity
intensity

√
(v̄2 + w̄2)/ubmax. Interestingly, when gravity is aligned parallel to the hot wall (Case

4-ZG), the behavior of these quantities is distinct. Specifically, while Reb and Prb exhibit slight
reductions, a notable increase in Reτhw is observed. This suggests that Case 4-ZG, despite hav-
ing a generally less turbulent core flow, experiences localized turbulence enhancements near the
hot wall. Notably, both the hot-wall Nusselt number and the maximum cross-stream velocity
intensity are significantly elevated in this case, even surpassing those observed in Case 3-YG,
where positive y gravity direction ostensibly enhances mixing and heat transfer. The subsequent
analysis will delve into the effects of varying gravity directions on: (i) the mean Prandtl number
distribution, (ii) distributions of hot-top wall quantities, and (iii) secondary flow motions.

3.1 Mean Fluid Properties

Figure 1 illustrates the mean variation in the Prandtl number across different cases. Due
to the symmetry along the z/δ = 1 plane for the first three cases, only half x-averaged sections
of the mean quantities are presented. In contrast, for Case 4-ZG, the full averaged section is
necessary to capture the complete distribution. In general, the cases exhibit a notably thin gas-
like region at the hot-top wall, characterized by Prandtl numbers less than unity. In this region,
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the fluid displays lower ρ, µ, κ, but higher thermal diffusivity α [13]. This region of maximum
Prandtl defines the boundaries of the pseudo-boiling zone, which shows different topological
features depending on the gravity direction. As anticipated, at lower Reb, where buoyancy effects
are significant, the distribution of fluid and flow properties becomes noticeably affected. This
observation suggests that, under the conditions investigated, the interplay between buoyancy-
driven and corner-dependent secondary flow motions influences the distribution of bulk fluid
properties and, consequently, the flow characteristics. This is in contrast to the minimal effects
of secondary flow motions of bulk properties, as typically observed in incompressible flows [19].

Additional insights can be extracted from Figure 1 by comparing each case individually to
the reference case (1-NoG). In Case 2-mYG, where gravity acts in the negative y gravity di-
rection, the colder denser fluid accumulates in the bottom region. This configuration supports
flow stability and enhances the separation between the two supercritical regimes. The presence
of denser fluid at the bottom promotes steadiness and helps maintain the delineation between
the gas-like and liquid-like phases. In contrast, Case 3-YG, with gravity directed positively
along y, sees the denser fluid migrating towards the hotter regions, where lighter fluid is encoun-
tered. This movement intensifies mixed convection, thereby increasing the depth of the region
characterized by higher momentum and thermal diffusivity within the core flow. Consequently,
this configuration enhances both mixing and heat transfer. Finally, Case 4-ZG demonstrates a
distinct asymmetric behavior in which the highest Prandtl numbers are observed near the top
left corner. This pattern aligns with the migration of lighter gas-like supercritical fluid towards
the top wall and lateral wall, while the denser liquid-like fluid shifts to the opposite lateral wall.
This configuration fosters a more pronounced counter-clockwise recirculation of the fluid.
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Figure 1: Spatial distribution with isolines of mean Prandtl number for cases D192Nog (a),
D192mY (b), D192Y (d), and D192Z (d).

3.2 Hot-Wall Distributions

Figure 4 illustrates the hot wall distribution of wall shear stresses normalized by the mean
value τw/τp and the local wall Nusselt number Nuloc = Dhκloc/κw ∂T̄w

∂n / (T̄w − Tb), as defined by
Nemati et al. [14]. In examining the distribution of wall shear stresses for cases 1 through 3, a
pattern typical of turbulent square duct flows emerges. Specifically, a double peak is observed
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Figure 2: Hot wall distributions of wall shear stress normalized by the perimeter-averaged wall-
shear stress (a) and the local Nusselt number (b).

near the perpendicular walls, with a local minimum at the center coordinate (z/δ = 1). As
Reτhw increases, these peaks slightly shift towards the center, and the local minimum becomes
slightly lower. This behavior contrasts with fully developed turbulent cases of ideal-gas and
incompressible duct flows at comparable Reynolds numbers [19, 18]. For instance, in the studies
by Pinelli et al.[18, 15], the local minimum at z/δ = 1 is evident only at lower Reynolds numbers
(Reb ∼ 1000 − 2000), corresponding to the marginally turbulent regimes described by Uhlmann
et al.[21]. This suggests that, despite achieving Reb and Reτhw indicative of fully developed flow
due to the nuanced distribution of supercritical thermophysical properties, the near-wall region
of cases 1 to 3 exhibits characteristics of marginally turbulent (lower Reb) scenarios. As noted in
the literature [13], the turbulent-like state of high-pressure transcritical ducts is predominantly
triggered by the presence of a pseudo-transition, whereas at low pressure but under the same
flow conditions, the flow would present characteristics of a fully laminar flow. This indicates that
flow disturbances in high-pressure transcritical ducts are primarily driven by magnified gradients
of thermophysical properties and flow rotation induced by baroclinic torque [3]. Consequently,
these observations reveal that the behavior of near-wall flow in high-pressure transcritical duct
flows diverges significantly from incompressible scenarios, even at comparable Reynolds numbers.
Supporting this assumption, the wall shear stress distribution in case 4-ZG exhibits a markedly
different shape, underscoring the substantial impact of buoyancy-driven and corner-dependent
secondary flow motions on the mean streamwise flow. In this scenario, the maximum discrepancy
compared to the normalized peak in case 1-NoG is approximately 20%. Furthermore, the Nusselt
number distributions corroborate these conclusions.

As a consequence of the specific shape of the wall-shear stress distributions, the streamwise
velocity field is locally affected. Therefore, Figure 3 displays the distribution of streamwise
velocity profiles from the hot wall to the cold wall in semi-local wall units [16] from the top wall.
These distributions vary along the z/δ coordinates, with each line representing a different z/δ
position. Specifically, the red line corresponds to the first grid line parallel to the lateral wall, the
purple line corresponds to the center of the duct (z/δ = 1), while the grey, blue, and green lines
represent intermediate positions. Figure 3 also includes an inset showing the corresponding
streamwise velocity field and the locations where the profile data were acquired. Significant
differences in the overall field and the velocity profiles are noticeable. The location of peak
velocity and the extent of the higher velocity region (focusing on the extent of the isocontours)
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shift according to the Prandtl number distributions. Notably, the peak velocity is approximately
located at the pseudo-boiling region.

Regarding the hot-wall velocity profiles, especially by examining the midplane z/δ = 1 distri-
butions highlighted in purple, the region of logarithmic behavior can be identified, indicating a
higher level of turbulent/inertial effects. As expected, the magnitude and shape of the profiles
become increasingly attenuated as the z/δ coordinate approaches the vertical wall (z/δ ≈ 0).
However, it is important to note that beyond the viscous sub-layer (y∗hw > 5), these profiles
fall significantly below the laws of the wall that approximate the established square duct re-
sults from Gavrilakis [5]. Additionally, the intermediate profiles (blue, green, and red lines)
present significantly different shapes, exhibiting local peaks and valleys. This can be generally
attributed to: (i) the lower hot-wall shear stress, especially when compared to the cold walls
of the duct (τhw/τp < 1); and (ii) the substantial influence of secondary flow motions on the
streamwise velocity component. It is known from the analysis of incompressible scenarios at
high enough Reynolds numbers that the self-regulating mechanism of secondary flow motions
is responsible for promoting the collapse of the velocity profiles onto the known wall-laws [19].
In incompressible cases at very low Reynolds numbers, a slight overshoot of u+ is usually seen
due to the local minimum in wall-shear stress [18, 15]. Contrarily, in this study, the overshoot
characteristic of marginally turbulent square duct scenarios is predominantly observed in the dis-
tribution of cold wall velocity profiles, coinciding with higher values of wall shear stress (omitted
for brevity). Therefore, the resulting shape of the velocity profiles in Fig. 3 is likely due to the
coupling of real-fluid effects [9] and buoyancy-driven secondary flow motions. Interestingly, the
three most interior highlighted profiles of case 4-ZG (purple, blue, and green) exhibit a better
collapse compared to the other cases. This suggests that the intensified/larger buoyancy-driven
secondary flow assists in the mentioned self-regulating mechanism of secondary flow motions on
the streamwise velocity component. It is worth mentioning that the shape of these profiles still
displays a less logarithmic-like behavior compared to the cases with higher Reb values, namely
cases 1-NoG and 3-YG. This indicates that a trade-off effect between wall-shear stress redis-
tribution and turbulence production exists in case 4-ZG towards the region of more intensified
pseudo-boiling activity (z/δ ≈ 0).

3.3 Secondary Flow Motions

Figure 4 presents the resulting mean cross-flow intensity with vectors of the cross-stream
velocity components v and w and the streamwise vorticity. Due to spatial changes in mean ther-
mophysical properties, the fluid is propelled in different cross-stream directions. Consequently,
the traditional concept of the eight symmetric contour rotating streamwise vortices, typically
visible in fully developed square ducts, is altered. These secondary flow motions, which would
otherwise result from the anisotropic distribution of Reynolds stresses in a turbulent incom-
pressible square duct flow, now also arise from cross-stream buoyancy-driven flows. Generally,
the cases show agreement with literature [13] regarding the positioning of higher cross-stream
velocity intensity in the hot wall region. Furthermore, the shape of the main counter-rotating
vortex pairs in the top and bottom walls remains similar among cases 1-NoG, 2-mYG, and 3-YG.
However, as assessed from Table 1, the maximum intensity of the secondary flows in cases 3-YG
and 4-ZG increases significantly. Specifically, it increases by roughly 35% and 100% from case
1-NoG to case 3-YG and 4-ZG, respectively. From Figure 4 (e) to (h), it is observed that the
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center of the maximum vorticity secondary motion, indicated by the yellow circle, moves away
from the corner non-monotonically with the increase of maximum intensity as Reb increases.
This suggests that the topology of the secondary motions is dependent on the gravity direc-
tions and the resulting real-fluid effects rather than the Reynolds number. Conversely, under
the conditions explored, the maximum intensity of the secondary flow motions is monotoni-
cally dependent on the Reynolds number. This finding contrasts with previous investigations
of low-pressure isothermal literature [19], where the intensity of the secondary flow motions is
approximately 1 − 2% of the bulk flow (independent of the Reynolds number), and their center
penetrates slightly further towards the corner with increasing Reb.

Investigating Figure 4 in more detail, it can be observed additional important behaviors asso-
ciated with different gravity directions. (i) Case 1-NoG presents a more uniform distribution of
peripheral secondary flow motions, with intermediate intensity and a higher number of stream-
wise vortices compared to the other cases. The bottom corner vortex pair is approximately
symmetric with respect to the duct bisector, indicating that the liquid-like supercritical region
aligns more closely with incompressible flow scenarios. (ii) Case 2-mYG shows more intense
secondary flow motions uniquely in the top region. This intensity is possibly explained by the
strong confinement of the pseudo-boiling region due to gravity, as observed in the Prandtl num-
ber distribution in Fig. 1. (iii) Case 3-YG displays a closer similarity in the secondary flow
motions in the hot and cold halves of the duct (separated by y/δ = 1). Despite this symme-
try in topology, significantly higher intensity and vorticity are found near the pseudo-boiling
region. (iv) Case 4-ZG showcases a major secondary vortex of size Dh, similar to the findings
of Sekimoto et al. [20]. In addition, smaller counter-rotating vortices are accommodated near
the corners. The highest intensity region is mainly situated near the hot-top wall region. This
enhances chaotic mixing near the walls, associated with the increased transversal flow near the
wall, which elevates enstrophy.

4 CONCLUSIONS

This investigation employed DNS to examine the impact of gravity direction on low Reynolds
number turbulent flows in high-pressure transcritical square ducts. The findings illustrate that
gravity direction profoundly influences various flow characteristics, including the bulk Reynolds
number, friction Reynolds number, and hot-wall Nusselt number. Notably, when gravity is
aligned parallel to the hot wall, local turbulence near the hot wall is significantly enhanced, even
as overall core flow turbulence diminishes.

The distribution of the Prandtl number and wall shear stress reveals the complex interplay
between buoyancy-driven effects and secondary flow motions, highlighting distinct deviations
from traditional incompressible flow behavior. For instance, case 4-ZG exhibits a marked devi-
ation from the normalized secondary flow intensity peak observed in case 1-NoG, underscoring
the pronounced impact of buoyancy-driven secondary flows. Moreover, the direction of gravity
alters the traditional vortex structures and their intensities within the duct. Cases with gravity
oriented in the y-direction show intensified secondary flows, while case 4-ZG is characterized by
a dominant secondary vortex along with smaller vortices near the corners. These results empha-
size the intricate relationship between gravity direction, buoyancy effects, and secondary flow
motions in high-pressure transcritical square duct flows. Evaluating the implications of these
findings on engineering applications, particularly in power generation and propulsion systems,
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is vital for optimizing duct designs and operational strategies to enhance thermal efficiency and
performance. This should contribute to the advancement of thermal management technologies
in high-pressure transcritical environments.

Future research should focus on the detailed dynamics of secondary flow motions under
varying high-pressure transcritical conditions. A deeper exploration of vorticity dynamics, par-
ticularly how secondary vortices form, interact, and evolve under different gravity directions, is
essential for optimizing mixing and heat transfer processes. Analyzing the transient behaviors
and stability of secondary flow motions can reveal how these flows respond to sudden changes
in operating conditions.
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Figure 3: Mean semi-local streamwise velocity profiles u∗ from the top wall (a-d) and temper-
ature distribution normalized by bulk temperature T /Tb (e-h). Panels (a,e) correspond to NoG
(no gravity), (b,f) to Case 3-YG (positive y-direction gravity), (c,g) to Case 2-mYG (negative
y-direction gravity), and (d,h) to Case 4-ZG (gravity parallel to the z-direction). The dotted
line represents the law of the viscous layer, u∗ = y∗, while the dotted-dashed line depicts the law
of the logarithmic layer, u∗ = (1/k) ln y∗ +B, with k = 0.41 and B = 5.
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Figure 4: Distribution of mean cross-flow velocity intensity normalized by the maximum value
of each case, as listed in Table 1 (a-d), and outer-scaled mean streamwise vorticity ωx = ∂v

∂z −
∂w
∂y

for cases D192Nog (a,e), D192Y (b,f), D192my (d,g), and D192Z (d,h).
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