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Summary. Density-based solvers suffer from a decrease in solution quality and convergence
rate as the Mach number decreases. Previous studies have demonstrated that low Mach precon-
ditioning improves the performance of density-based steady-state solvers at low Mach numbers.
Applying a similar procedure, this study presents a low Mach preconditioning approach for har-
monic balance solvers, which enhances the solution quality and optimizes convergence rates of
frequency-domain computations in the low Mach regime.

The convergence rate is improved by multiplying the time derivative with a preconditioning
matrix, equalizing the acoustic and convective propagation velocities. However, for unsteady
computations, the preconditioner introduces a frequency dependence to the acoustic propagation
velocity. Thus, frequency-dependent preconditionining parameters are required for harmonic
balance computations.

Excessive numerical dissipation in the Roe solver causes inaccuracies at low Mach numbers.
To address this, a preconditioned Roe solver for unsteady computations is employed, ensuring
correct Mach number scaling in the artificial diffusion.

The preconditioned harmonic balance solver is applied to a low Mach cylinder and the results
are compared with non-preconditioned computations and experimental data. This comparison
highlights shortcomings of the non-preconditioned Roe scheme in predicting unsteady flows and
demonstrates that preconditioned computations are in excellent agreement with the experiments
across all Mach numbers. Furthermore, the use of a frequency-dependent preconditioner is shown
to achieve the fastest convergence.

1 INTRODUCTION

Harmonic balance (HB) solvers have gained popularity in CFD for the efficient computation
of time-periodic flows [1]. The solution is expressed in terms of truncated Fourier series about a
base frequency, which yields a system of equations for the harmonics of the solution. This system
is solved in the frequency-domain using efficient steady-state solution algorithms, significantly
reducing computational cost compared to time-domain methods [2].

A drawback of HB solvers is that a priori knowledge of the solution’s base-frequency is required.
When the frequency itself depends on the solution, e.g., the vortex shedding frequency of a
cylinder, this requirement may not be fulfilled. A discrepancy between the solution’s frequency
and the solver frequency can lead to severe convergence issues. Therefore, HB solvers have
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recently been extended with frequency adaptation algorithms, which correct the solver frequency
at runtime [3].

To converge reliably, these algorithms require an accurate prediction of the solution. It is well
known that density-based solvers are stiff and inaccurate when applied to low Mach flows [4, 5, 6].
The solver’s performance can be enhanced using low Mach preconditioning, which is split in
two categories. Iterative preconditioning accelerates the convergence by multiplying the time
derivative of the governing equations with a preconditioning matrix. This equalizes the acoustic
and convective propagation velocities, elevating the stiffness arising from the large discrepancy
between these velocities [6]. Preconditioning of the artificial dissipation reduces the artificial
dissipation introduced by the Roe scheme at low Mach numbers, thereby greatly improving the
accuracy. To that end, the Roe matrix is rewritten based on preconditioned convective fluxes [4].

Low Mach preconditioning has been successfully applied to steady-state computations [7, 8].
However, in HB computations, steady preconditioning methods can reduce the convergence rate
and accuracy of the solution rather than improving them. Only a few publications have explored
low Mach preconditioning for HB solvers [9, 10, 11], and none consider HB equations solved
in the frequency-domain. Therefore, this paper proposes, for the first time, a preconditioning
method for the HB solver in the frequency domain.

The HB method is briefly outlined, followed by the proposal of a novel HB preconditioner
that combines an adaptation of the preconditioned Roe scheme (PRoe) for unsteady flows [12]
with a frequency-dependent iterative preconditioner. This HB preconditioner is then applied to a
laminar cylinder with vortex shedding at low Mach numbers and validated against experimental
data. The results are compared with both non-preconditioned computations and computations
using the steady preconditioner.

2 HARMONIC BALANCE

The HB equations are derived from the unsteady time-domain governing equations:

∂q

∂t
+R(q) = 0, (1)

where q is the state vector, t is the physical time, and R is the nonlinear residual containing
all fluxes and source terms. Assuming temporal periodicity, the solution is approximated as a
truncated Fourier series about a base frequency ω:

q (t, x, y, z) = Re

(
K∑
k=0

q̂k (x, y, z) eikωt

)
. (2)

Here, q̂k represents the Fourier coefficient of the k-th harmonic, while K denotes the number of
harmonics employed to approximate the solution. The substitution of the Fourier series (2) into
the governing equation (1) yields the HB equations:

ikωq̂k + R̂k(q) = 0, for k = 0, . . . ,K. (3)

The system is solved using a mixed frequency-domain and time-domain approach, whereby
equations (3) are solved in the frequency-domain, but the harmonics of the nonlinear residual
R̂k are computed in the time domain. To this end, the time-domain solution q is reconstructed
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at equidistant sampling points over one period. The nonlinear residual R is computed at each
sampling point and its harmonics R̂k are obtained using a discrete Fourier transform. The
solution procedure and the discretization of the HB system are described in detail in [2].

3 LOW MACH PRECONDITIONING

3.1 Iterative Preconditioning

The main objective of iterative preconditioning is to improve the convergence of low Mach
simulations by artificially reducing the acoustic velocity to the same magnitude as the convective
velocity. This is accomplished by multiplying the pseudo-time derivative of the governing
equations with the preconditioning matrix P−1 [13]

P−1
∂q̂k
∂τ

+ ikωq̂k + R̂k(q) = 0, for k = 0, . . . ,K (4)

where τ is the pseudo-time. In this paper, the preconditioning matrix proposed by Turkel [6] is
employed, which in entropy variables qS = (ρ, u, v, w, S) is expressed as

P−1S = diag
(
1/β2, 1, 1, 1, 1

)
. (5)

Here, ρ denotes the density, u, v, w the cartesian velocity components and S the entropy. The
preconditioner is controlled by the preconditioning parameter β2. For steady-state computations,
it is defined as

β2steady = min

(
1,max

(
kβMa2︸ ︷︷ ︸

(A)

,

(
10µ

ρa∆h

)2

︸ ︷︷ ︸
(B)

,
∆p

ρa2︸︷︷︸
(C)

, β2min︸︷︷︸
(D)

))
, (6)

where, Ma is the local Mach number, ∆p is the pressure difference between neighboring cells,
µ is the molecular viscosity, a is the speed of sound and ∆h is a characteristic cell length [8].
The convective and acoustic velocities are equalized by (A), which defines β2 as a function of
Ma2 [13]. Empirical studies performed by the author have demonstrated that adding a factor of
kβ = 10− 100, substantially improves the stability while only slightly reducing the convergence
rate. In the case of viscous computations with very small Reynolds numbers, (B) equalizes the
acoustic speed to the diffusive speed instead of the convective speed [14]. The preconditioned
system can potentially amplify strong local pressure fluctuations in the flow [15]. Consequently,
(C) increases β2 in the presence of large local pressure differences between neighboring cells. To
prevent the preconditioning matrix from becoming singular for Ma → 0, a user-defined lower
bound (D) is introduced [13]. Finally, the preconditioner is disabled in the supersonic regime
by ensuring β2 ≤ 1. For β2 = 1, the preconditioning matrix becomes the identity matrix and
the non-preconditioned system is retrieved. For HB simulations, β2 is calculated based on
time-average quantities, which coincide with the zeroth harmonic of the solution.

When preconditioning the HB system as in (4), the preconditioned acoustic propagation veloc-
ity is a function of the frequency ω. Accordingly, in order to equalize the propagation velocities,
it is necessary to extend (6) in a manner that takes into account this frequency dependence. A
frequency-dependent preconditioning parameter is derived based on the work of Venkateswaran
and Merkle [5] on iterative preconditioning for unsteady time-domain simulations. Here, an
unsteady Mach number was introduced, which controls the preconditioner based on the size
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of the physical time step. This unsteady Mach number is rewritten as a function of the solver
frequency

Mahb,k =
Lωk
2π2a

, (7)

where L is a characteristic length of the simulation, typically chosen as the domain size. The
definition of the preconditioning parameter is then extended to

β2HB,k = min
(
1,max

(
β2steady,Ma2hb,k

))
. (8)

When ω → 0, the HB system behaves like a steady-state computation and β2HB,k = β2steady. For
large frequencies, Mahb,k > 1disables the preconditioner since the non-preconditioned system is
already optimally conditioned.

In order to maximize the convergence rate across all harmonics, the computation of frequency-
dependent preconditioning parameter β2HB,k and the application of the preconditioner is performed
for each harmonic individually. This approach is therefore called individual preconditioning.

3.2 Preconditioned Dissipation

The artificial dissipation of the Roe scheme [16] between two cells is

Fd,Roe = −1

2
|D̃|∆q, (9)

where ∆q is the difference vector between the left and right face-state and the tilde denotes
quantities based on Roe-averaging [16]. The Roe matrix |D̃| is computed based on the eigenvectors
R and the eigenvalues λi of the convective flux Jacobian D̃

|D̃| = R|Λ|R−1 with |Λ| = diag (|λ1|, |λ2|, |λ3|, |λ4|, |λ5|) . (10)

At low Mach numbers, the Roe scheme’s artificial dissipation scales poorly, leading to an
inaccurate prediction of convective flows [17]. A common approach to retrieve proper scaling
is to redefine the Roe matrix based on the low Mach preconditioned convective fluxes [18, 19].
This yields the so-called PRoe scheme with the artificial dissipation

Fd,P-Roe = −1

2
P̃−1|P̃ D̃|∆q. (11)

However, in unsteady computations, PRoe excessively dampens acoustic waves [9]. To maintain
the accuracy of PRoe for convective flows, while simultaneously reducing its dampening effect on
acoustic waves, Potsdam et al. [12] proposed an adapted preconditioned Roe scheme for unsteady
time-domain simulations

Fd,Potsdam = −1

2
P̃−1u

(
|P̃uD̃|Lu + |P̃sD̃|Ls

)
∆q. (12)

In this approach, quantities denoted with the subscripts u are based on the HB preconditioning
parameter for the first harmonic β2HB,1, while those denoted with the subscript s are based on

the steady preconditioning parameter β2steady. The concept of this approach is revealed through
the use of temperature variables qT = (p, u, v, w, T ), for which the matrices Lu/s become

Lu,T = diag (1, 0, 0, 0, 0) and Ls,T = diag (0, 1, 1, 1, 1) . (13)
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Here, T is the temperature and p is the pressure. In other words, this approach preserves the
improved diffusion of PRoe for the convective temperature and velocity fields, while reducing
the dissipation associated with acoustics by adapting the pressure field’s dissipation [12].

Despite being derived based on different iterative preconditioning parameters, the definition
for β2 and respectively P , are not required to be the same between the iterative preconditioner
and the preconditioned dissipation. The different preconditioning methods can be employed
independently of each other [19].

4 LAMINAR CYLINDER

The computations presented in this work are performed with the CFD solver TRACE,
developed by the German Aerospace Center (DLR) in close cooperation with MTU Aero
Engines. TRACE is a hybrid finite-volume multi-block solver for the compressible RANS and
URANS equations, with a particular focus on turbomachinery applications [20]. The low Mach
preconditioner is implemented in TRACE’s HB solver to compute the flow around a cylinder at
low Mach numbers. The farfield Mach number ranges from Ma∞ = 0.1 to 0.0001. The flow is
intentionally maintained in the incompressible regime, in order to obtain a near Mach-independent
solution [21]. To allow unsteady vortex shedding behind the cylinder, while maintaining laminar
flow, the Reynolds number of the cylinder is varied between Re = 75 and 175. The changes in
the Mach number and the Reynolds number are achieved by modifying the farfield velocity and
adjusting the molecular viscosity accordingly.

In the first computations, the cylinder’s shedding frequency is determined as a function of the
Reynolds number, in accordance with the correlations presented by Fey et al. [22]

St = 0.2684 +
−1.0356√

Re
, (14)

with the relation between the frequency f and the Strouhal number St

f = St
d

u∞
. (15)

Here, the subscript ∞ denotes quantities at the farfield boundary and d is the diameter of the
cylinder.

The computational domain comprises 329 equidistant cells around the cylinder and 471 cells
normal to the cylinder wall with a stretching ratio of 1.01. The first cell size at the cylinder is
set to ensure a non-dimensional cell size of y+ < 1 for all Mach numbers and Reynolds numbers.
Accordingly, the cylinder wall is modeled as a non-slip wall with low-Reynolds resolution. The
outer boundary is placed 200 cylinder diameters away from the center of the computational
domain, to avoid any spurious interactions between the cylinder’s wake and the domain’s
boundary. Here, the simplified farfield boundary condition for incompressible flows, as presented
by Hejranfar and Kamali-Moghadam [23] is applied. All boundary conditions are applied in the
time-domain during the computation of the nonlinear residual at each sampling point.

The convective fluxes are discretized with the Roe scheme [16] and elevated to second-
order accuracy using the MUSCL reconstruction [25] with the van Albada limiter [26]. For
preconditioned computations, the Roe scheme is replaced by either PRoe or Potsdam’s Roe
scheme. The viscous fluxes are discretized with a central scheme. In the computed Reynolds
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Figure 1: Root-mean-square of the cylinder’s lift coefficient cL over the Reynolds number
compared with experimental data presented by Norberg [24].

number range, the cylinder remains laminar. Therefore, no turbulence model or transition model
is required. The governing equations are solved with an implicit Euler backwards scheme and
local pseudo-time marching [3]. The unsteady flow is resolved with four harmonics and the
nonlinear residual is reconstructed at 21 equidistant sampling points per period.

The computations are initialized with a constant solution corresponding to the farfield state.
To speed up the development of the unsteady wake of the cylinder, an oscillating mode with
an amplitude of 1% of the cylinder’s diameter is applied to the cylinder for the first 10 000
iterations.

The following section presents a comparative analysis of three preconditioning configurations
for the HB solver:

- non-preconditioned: Uses the Roe scheme (9) without iterative preconditioning.

- preconditioned (steady): Uses PRoe (11) with iterative preconditioning based on the
steady-state preconditioning parameter β2steady (6).

- preconditioned (HB): Uses Potsdam’s Roe scheme (12) with individual iterative precon-
ditioning based on the HB preconditioning parameters β2HB,k (8).

For all preconditioned computations, the user-defined lower bound for the preconditioning
parameter is βmin = 1e−10 and the stabilization constant is kβ = 50. For the HB preconditioner
the characteristic length L is that of the computational domain.

Figure 1 compares the root-mean-square of the cylinder’s lift coefficient with experimental
results presented in [24]. The lift coefficient is computed according to

cL =
FL

1
2ρ∞u∞dh

. (16)
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(a) non-preconditioned (b) preconditioned (Steady) (c) preconditioned (HB)

Figure 2: Contours of the pressure coefficient cp reconstructed at t = 0 s and Re = 125. The
rows contain computations of the same Mach number, while the comlumns contain computations
performed with the same preconditioning configurations.
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Figure 3: Phase of the density’s first harmonic over the pseudo-time iterations at a probe on the
cylinder. Thes computations were performed with HB preconditioning at Re = 125. The red dot
on the cylinder represents the probe’s position.

where, FL is the lift and h is the depth of the cylinder. At Ma = 0.1, the non-preconditioned
solution presents a high level of agreement with the experimental reference, accurately reflecting
the increase in lift with increasing Reynolds number. At Ma = 0.01, this trend is still maintained,
but the lift is underpredicted with an increasing error for higher Reynolds numbers. Below
Ma < 0.001, the non-preconditioned solver fails to match the experimental results. In contrast,
the preconditioned computations accurately capture the relation between the lift and the Reynolds
number for all Mach numbers. A slight decrease in the lift coefficient is observed with decreasing
Mach number.

Figure 2 presents a more detailed examination of the flow field at Re = 125, displaying the
contours of the pressure coefficient reconstructed from the HB solution at t = 0 s. The pressure
coefficient is calculated following

cp =
p− p∞
1
2ρ∞u

2
∞
. (17)

In accordance with the results in Fig. 1, at Ma = 0.1, the solutions are consistent for all
preconditioning configurations. At Ma = 0.01, the non-preconditioned computation still develops
a vortex street, however, the excessive dissipation of the Roe scheme significantly shortens
the wake. For Mach numbers below 0.001, the non-preconditioned solver yields non-physical
results, which develop no wake, reach pressures exceeding than the farfield stagnation pressure
and exhibit strong numerical artifacts. This lack of physicality in the solution is responsible
for the significant errors in the prediction of the cylinder’s lift coefficient. In contrast, both
preconditioned configurations yield consistent development of a vortex street across all Mach
numbers. However, the amplitude of the pressure coefficient decreases slightly with decreasing
Mach number, which explains the observed decline in lift. It is noteworthy that PRoe does not
introduce any inaccuracies compared to Potsdam’s Roe scheme. Both methods yield identical
solutions even at the lowest Mach numbers.

In the present computations, the frequency for the HB solver is an empirical estimation of the
cylinder’s shedding frequency. However, this estimation may differ from the shedding frequency
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Figure 4: Strouhal numbers predicted by the frequency adaptation algorithm over the Reynolds
number compared with the experimental data presented by Williamson [27]

predicted by the solver. This discrepancy manifests itself in the form of a constant shift in
the phase of the solution’s harmonics. For the computations using the HB preconditioner at
Re = 125, Figure 3a, visualizes this phase shift in the first harmonic of the density, indicating a
discrepancy between the solver frequency and the shedding frequency.

In order to eliminate the frequency discrepancy and to obtain a converged phase in the higher
harmonics, a frequency adaptation algorithm is employed, which corrects the solver frequency
at run time. For details on the frequency adaptation algorithm, the reader is referred to [3].
Figure 3b depicts the phase of the density’s first harmonic over the pseudo-time iterations using
the frequency adaptation algorithm. It demonstrates that correcting the frequency removes the
phase shift, indicating that the solver and shedding frequencies are now matching.

The frequencies resulting from the adaptation algorithm are presented in Figure 4 in the form
of their respective Strouhal number and are compared with the experimental data presented
by Williamson [27]. The preconditioned computations show excellent agreement with the
experiments, with a maximum deviation of 0.9 % from the reference. In contrast to the lift
coefficient, the predictive quality is maintained across all Mach numbers. At Ma = 0.1, the
non-preconditioned computations remain consistent with the preconditioned results. A reduction
in the Mach number to Ma = 0.01 already results in a decrease in the frequency, yielding a
consistent underestimation of the Strouhal number across all Reynolds numbers by 1.5 % to 2 %.
Figure 2 illustrated that no unsteady wake formed in the non-preconditioned computations, as
the Mach number is further decreased below Ma ≤ 0.01. Consequently, the frequency adaptation
algorithm is unable to identify any dominant frequency in the solution and reduces the solver
frequency to zero, effectively resulting in a steady-state computation.

Finally, the influence of iterative preconditioning on the convergence of the frequency adap-
tation is analyzed. The Roe scheme not only leads to inaccurate solutions, but also hinders
the convergence of the computation. Therefore, for all three preconditioning configurations,
the respective Roe scheme is replaced by Potsdam’s Roe scheme. This guarantees an accurate
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(b) Ma = 0.0001

Figure 5: Relative variation of the frequency over an interval of 1000 iteration using the frequency
adaptation algorithm. Potsdam’s Roe scheme is applied for all preconditioning setups.

solution and isolates the influence of the different iterative preconditioners. Figure 5 shows the
convergence history of the Strouhal number for Re = 125 at Ma = 0.1 and Ma = 0.0001. Here,
convergence is evaluated based on the variation of the Strouhal number over an interval of 1000
iterations divided by the mean value over the same interval. This gives a relative accuracy in
terms of the final converged frequency of each computation. For Ma = 0.1 the convergence
rates are consistent across all three preconditioning setups, reducing relative variations of the
frequency to 1e-7 after about 90 000 iterations. For Ma = 0.0001, the convergence rate of the non-
preconditioned computation is significantly reduced, still having relative variations of 1e-5 after
400 000 iterations, at which point the simulation ended. In contrast, the steady preconditioner
reaches variations of 1e-7 after about 70 000 iterations. The frequency-dependent preconditioner
converges even faster, requiring only about 45 000 iterations to reduce the variations to 1e-7,
35% fewer iterations than the steady preconditioner.

5 CONCLUSIONS

This paper presented a novel approach to low Mach preconditioning in the context of HB
solvers. The approach combines Potsdam’s adaptation of the Roe scheme for unsteady low Mach
computations with a frequency-dependent iterative preconditioning approach that optimizes the
preconditioning parameters for each harmonic equation individually. The method was applied to
HB simulations of a laminar cylinder test case and compared with the steady preconditioned
and non-preconditioned computations. The main conclusions drawn from these results are:

• At Ma = 0.1, the preconditioned computations yield consistent solutions to the non-
preconditioned solver, demonstrating that preconditioning does not alter the performance
of the HB solver at high Mach numbers.

• As Mach numbers decrease, the Roe scheme becomes increasingly inaccurate, leading to
unphysical solutions below Ma ≤ 0.001.

• At low Mach numbers, the preconditioned Roe schemes significantly improve the solution
quality and are necessary to reliably use the HB solver with frequency adaptation algorithms.
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Contrary to findings in the literature, PRoe did not yield any inaccuracies for unsteady
low Mach computations of the cylinder. Therefore, no further improvement of the solution
was achieved by using Potsdam’s Roe scheme.

• Preconditioning leads to a significant increase in convergence speed in the low Mach regime
compared to the non-preconditioned solver and yields similar convergence rates at both high
and low Mach numbers. The novel frequency-dependent preconditioner further accelerates
convergence by approximately 35% compared to the steady preconditioner.
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