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Summary. The consideration of constraints is crucial in continuum and structural mechan-
ics, such as in modeling hinges, rigid inclusions, or deformation-dependent Dirichlet boundary
conditions. In the finite element method, constraints relate to nodal degrees of freedom and are
termed multi-point constraints when involving multiple nodes. A nonlinear formulation of the
constraints is required if these degrees of freedom change significantly. Unlike Lagrange multipli-
ers and the penalty method, the master-slave elimination reduces the problem dimension but is
limited to linear constraints. We introduce a new master-slave elimination method for arbitrary
nonlinear multi-point constraints. The method’s derivation is general and can be separated from
the specific constraints in algorithmic implementation. Numerical examples demonstrate that the
method is as accurate, robust, and flexible as Lagrange multipliers, while being more efficient by
reducing the total number of degrees of freedom, particularly beneficial for numerous constraints.

1 INTRODUCTION

The consideration of constraint conditions plays an important role in many areas of continuum
and structural mechanics. For example, in the modeling of shear force hinges in frame structures,
in the modeling of rigid inclusions in a body originally modeled as deformable, or in the modeling
of deformation-dependent Dirichlet boundary conditions. In the context of the finite element
method, the constraints refer to the nodal degrees of freedom. If several nodes are involved, they
are referred to as multi-point constraints. These must be formulated non-linearly if the degrees
of freedom involved change significantly during the simulation (e.g. as a result of a heavily
deformed FE mesh). One method for considering constraints is master-slave elimination, which,
in contrast to Lagrange multipliers and the penalty method, offers the advantage of reducing
the dimension of the problem. However, the existing master-slave elimination method is limited
to linear constraints. Therefore, an extension to nonlinear constraints is of great interest.

The master-slave elimination was originally introduced by Green [10] in finite element anal-
ysis for linear constraints. Subsequent research primarily focused on efficient implementation
but not on extending the method to nonlinear constraints. Notable studies include Szabo and
Tsai [15], Curiskis and Valliapan [8], Abel and Shephard [1], Shephard [14], Chang and Lin [7],
and Ainsworth [2]. However, few studies have explored master-slave elimination for nonlinear
constraints: Naraswayamy [13] and Dhondt [9] proposed formulations for nonlinear constraints,



Jens Wackerfuß and Jonas Boungard

both with assumptions on the structure of constraints as well as missing consistent lineariza-
tion. Jelenić and Crisfield [12] presented a method solely capable of handling joints with large
rotations, while Areias et al. [3] emphasized efficient sparse system access.

The authors of this contribution introduced an extension of the method to arbitrary nonlinear
constraints [6]. In the following, the derivation of this new method is presented and it is compared
to existing constraint methods both on the basis of the equations as well as a numerical example
involving a large number of constraints. Additionally, both the challenge of selecting the slave
dofs as well as the handling of redundant constraints are addressed.

2 GOVERNING EQUATIONS

Starting point is an arbitrary nonlinear boundary value problem (BVP). It is solved by using
the finite element method. In the spatial discretization of the weak form of the BVP, the degrees
of freedom (dofs) V ∈ Rndof are introduced. To obtain the solution for the dofs V, the minimum
of the discretized functional of the BVP, denoted as W (V) ∈ R, has to be found

min
V
W (V) (1)

which can be interpreted as an optimization problem without constraints. Eq. (1) is solved by
finding a set of unknowns V with a gradient equal to zero, leading to the following nonlinear
system of equations with the residual vector R ∈ Rndof :

R(V) :=

(
∂W (V)

∂V

)T

= 0 (2)

The nonlinear system Eq. (2) cannot be solved analytically in general. For the numerical solu-
tion, the Newton-Raphson method can be used. Then, Eq. (2) has to be linearized, which leads
to the following linear system for solving for the unknown increment of the dofs ∆V ∈ Rndof

KT∆V = −R ; with KT (V) :=
∂R(V)

∂V
=
∂2W (V)

∂V∂V
(3)

with the tangential stiffness matrix KT ∈ Rndof×ndof .
The dofs of the initial BVP are now restricted by a set of nc constraints c ∈ Rnc depending

nonlinearly on the dofs:
c(V) = 0 (4)

With the nonlinear constraints in Eq. (4), the optimization problem without constraints Eq.
(1) is transformed in the following optimization problem with constraints:

min
V
W (V) subject to c(V) = 0 (5)

The numerical solution of Eq. (5) involves an effective nonlinear system which is solved using
the Newton-Raphson method. For this purpose, the Jacobian G := ∂c

∂V ∈ Rnc×ndof and Hessian

H = [H1, . . . ,Hi, . . . ,Hnc ] with Hi :=
∂2ci

∂V∂V ∈ Rndof×ndof of the constraints are introduced.
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3 CLASSIFICATION AND EXAMPLES FOR MULTI-POINT CONSTRAINTS

Before presenting the new constraint method, several constraints are introduced for illustra-
tive purposes. This paper focuses on the so called nonlinear “multi-point constraints”. Strictly
speaking, the term “multi-point constraints” can be misleading because it could imply that
the constraint equations act upon nodes (points), rather than dofs. However, the constraints
are formulated with respect to individual dofs. This is investigated in the following by a brief
classification of constraints which includes several examples. This illustrates the wide variety of
constraints that can be applied in the context of the finite element method.

3.1 Single node constraints

Single node constraints act upon dofs of a single node. They can be handled in the same
way as constraints acting upon multiple nodes since the underlying constraint equations are
structured the same way. Examples for such constraints are given in Figure 1. They can act
upon a single dof or multiple dofs. For the latter, the constraint equation can either depend
linearly or non-linearly on the dofs.

single-dof constraints multi-dof constraints
linear linear non-linear

u

w

i

u

w

i α

u

w

i

r

c(V) = wi = 0 c(V) = cos(α)ui + sin(α)wi = 0 c(V) =
√
u2i + (wi + r)2 − r = 0

Figure 1: Examples for single node constraints

3.2 Multi-node constraints

In most applications, constraints depend on the dofs of multiple nodes. Examples for this
are given in Figure 2 and include rigid trusses, rigid beams, special links of dofs like the shear
force release or the application of periodic boundary conditions at an representative volume
element (RVE) in the FE2 method. Different types of coupling of multi-node constraints result
in different structures of the Jacobian G. Special structures of G can be used exploited for a
more efficient handling of the constraints, which is described in detail in [6].
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System and deformation constraints
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Figure 2: Examples for multi-node constraints
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4 MASTER-SLAVE ELIMINATION FOR NONLINEAR MULTI-POINT CON-
STRAINTS

4.1 Derivation of the master-slave elimination for nonlinear constraints

In this section, the extensive and rigorous derivation of the new method presented in [6]
is briefly recalled. The central idea of the new approach is based on the calculation of the
constraint forces C = [C1, . . . , Ci, . . . Cndof

] ∈ Rndof resulting from the constraints c introduced
in Section 2. The constraint forces have to be taken into account in the equilibrium equations
Eq. (2) resulting in the modified nonlinear system of equations with the modified residual vector
Rmod:

Rmod := R−C (6)

In Figure 3, this modification of the equilibrium and the residual vector is illustrated. Here,
a simple one-dimensional distance constraint between nodes i and k in form of c(Vi,Vk) =
ui − uk = 0 is employed.

i k
ui uk

Ri Rk

Ci Ck

=

Rmod,i Rmod,k

Figure 3: Illustration of the constraint forces

The degrees of freedom are partitioned into ndof − nc master dofs, denoted with m, and nc
slave dofs, denoted with s

V
partition−−−−−→

[
VT

m VT
s

]T
(7)

with the subvectors of the master dofs Vm ∈ Rndof−nc and the slave dofs Vs ∈ Rnc . For each
constraint, one slave dof can be identified. For the minimal example in Figure 3, the slave dof
could either be the horizontal displacement ui at node i or the horizontal displacement uk at
node k. The dofs, that are not a slave dof, are denoted as master dofs.

Since the constraints c are a function depending on both the master dofs Vm as well as the
slave dofs Vs, the constraint forces C and, in turn, all quantities in Eq. (6) depend on both
master and slave dofs. In order to perform the master-slave elimination and derive a function
solely depending on the master dofs, a formula for the slave dofs Vs depending on the master
dofs Vm is derived based on the implicit function theorem.

In order to apply the implicit function theorem, a selection of slave dofs Vs must exist, that
fulfills the regularity condition

det (Gs) ̸= 0 ; Gs :=
∂c

∂Vs
(8)

Using the implicit function theorem leads to the following nonlinear system:

Rmod :=

[
Rm −GT

mG−T
s Rs

c

]
=

[
0
0

]
; Gm :=

∂c

∂Vm
;RT

m :=
∂W

∂Vm
;RT

s :=
∂W

∂Vs
(9)
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The nonlinear system Eq. (9) is solved using the Newton-Raphson method. This results in
the following linear system to calculate the increments of the master and slave degrees of freedom
∆Vm and ∆Vs[

Kmod,mm Kmod,ms

Gm Gs

] [
∆Vm

∆Vs

]
= −

[
Rmod,m

c

]
; Kmod∆V = −Rmod ; Kmod :=

∂Rmod

∂V
(10)

In a next step, one obtains the linearized, reduced system of equations for the master-slave
elimination with the reduced dimension ndof − nc by static condensation:

(Kmod,mm −Kmod,msG
−1
s Gm)︸ ︷︷ ︸

=:Kred

∆Vm = −Rmod,m +Kmod,msG
−1
s c︸ ︷︷ ︸

=:−Rred

(11)

with the reduced stiffness matrix Kred ∈ R(ndof−nc)×(ndof−nc) and the reduced residual vector
Rred ∈ Rndof−nc . If the tangential stiffness matrix of the unconstrained problem KT is symmet-
ric, the resulting reduced matrix Kred is symmetric too. For the special case that all constraints
depend linearly on the unknowns V, Eq. (11) coincides with the equations on existing master-
slave elimination schemes for linear constraints.

4.2 Automatic selection of slave dofs and redundancy handling

In the master-slave elimination, there are the following challenges with respect to the reg-
ularity condition in Eq. (8): a) selection of an admissible set of slave dofs, b) identification
and elimination of redundant constraints, c) identification of contradictory constraints and d)
selection of slave dofs in the context of coupled Dirichlet boundary conditions and constraints.
The consideration of these aspects is particularly relevant in the context of coupled constraints.
Due to the nonlinearity of the constraints, a re-evaluation of these aspects over the the course
of the simulation is required.

It can be shown that all of these aspects can be considered by the transformation of the
augmented system [G|c] in its row-echelon form:

[G|c] extended Gauß-Jordan-−−−−−−−−−−−−−−−→
elimination


[

Ḡs Ḡm c̄

0 0 ē

]
m̄, Pcol, Q

with the number of non-redundant constraint m̄, the submatrices Ḡs ∈ Rm̄×m̄ and Ḡm ∈
Rm̄×(ndof−m̄), the subvectors c̄ ∈ Rm̄ and ē ∈ Rnc−m̄, the column permutation matrix Pcol ∈
Nndof×ndof and the transformation matrix Q ∈ Rnc×nc . The incorporation of this in the new
method is presented in detail in [5].

4.3 Properties and comparison of methods

In the following, the new master-slave elimination scheme is compared to penalty and mul-
tiplier methods. For this, their advantages and disadvantages are briefly recalled. An excellent
overview for such methods can be found in the textbook by Belytschko et al. [4].

The penalty method (PM) is easy to implement because the structure of its effective linear
system does not differ from an unconstrained problem Eq. (3). In addition, the method does
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not need any modifications for redundant constraints but can handle them inherently. However,
it is well known that the method suffers from two major drawbacks related to the choice of the
additional penalty factor: The constraints are never satisfied exactly and small penalty factors
violate them heavily, while large penalty factors approximately satisfy the constraints. However,
large penalty factors worsen the condition number of the resulting matrix.

It is well known that Lagrange multipliers (LM) satisfy the constraints exactly but the in-
troduction of additional dofs enlarges the dimension of the problem. Moreover, the saddle point
structure of the resulting system poses an additional challenge to the equation solver, leading
to numerical problems in some relevant cases.

Like the existing master-slave elimination schemes for linear constraints, the new master-
slave elimination scheme for nonlinear constraint satisfies the constraints exactly and reduces
the dimension of the resulting linear system by the number of constraints, see Eq. (11). As
mentioned above, the master-elimination requires the selection of an appropriate set of slave dofs.
This poses a challenge but can be done with minor additional cost which is illustrated in [5]. The
master-slave elimination changes the structure of the resulting linear system fundamentally. For
the implementation in a finite element code, this requires resizing and reallocation of the arrays.
Since all matrices involved in the method are sparse, they can be stored efficiently in compressed
sparse row format (CSR). In turn, calculations as well as reallocation of these matrices can be
carried out very efficiently with external libraries such as MKL (Intel) [11]. Numerical examples
show that the change of size and the need for reallocation only have minor impact on the overall
computation time. The method presented in this paper operates at the global level of a FE-
code, not on local level. This has the huge advantage of being independent to the underlying
finite element formulation. This allows for an easy implementation of new types of constraints
because no modification of existing element types has to be performed, in contrast to the local
formulation. The comparison shows that the different methods have different dimensions of the
resulting linear system. This, combined with additional computational operations, results in
different computational complexity of the methods, see Section 4.4.

4.4 Estimation of computational costs

Compared to other constraint methods, the master-slave elimination relies on heavy manip-
ulation of the residual vector and the tangential stiffness matrix. In order to assess the overall
computational costs, the reduction of the dimension also has to be taken into account. In the
following, the overall computational cost is estimated. This is done by a computation of the
computational complexity (denoted with the Landau symbol O). Here, three computational
procedures are considered: First, the calculation of the inverse of the Jacobian related to the
slave dofs Gs

−1 which is used many times in the master-slave elimination scheme, see Eq. (11).
Second, the calculation of modified and reduced quantities. Third, the solution of the reduced
linear system Eq. (11). For the exact computation of the computational complexity, the use of
direct solvers is assumed. The three computational procedures are as follows:

1. Considering the worst case scenario, the inversion of Gs is of order O
(
(nc)

3
)
, i.e. compu-

tationally expensive. However, in many practical cases, the special structure of constraints
leads to a reduction of the actual computational costs. Additionally, for systems with very
few constraints, the calculation of the inverse Gs

−1 is computationally inexpensive. If the
automatic detection of slave dofs and redundancy analysis discussed in Section 4.2 is used,

7
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the inversion is replaced by Gauß-Jordan elimination. For ndof > nc, this algorithm is of
order O

(
(nc)

2(ndof)
)
. However, in many practical cases, the Jacobian has a large number

of zero column associated to dofs that are not involved in any constraints. Hence, the
actual computational complexity is smaller.

2. Only the matrix-matrix multiplications are taken into account because other operations
are of neglectable costs. Here, the following products are of interest, see Eq. (11):

Product Computational complexity O

Gs
−1Gm (nc)

2(ndof − nc)
GT

mG−T
s Kss (nc)

3

GT
mG−T

s Ksm (nc)
2(ndof − nc)

Kmod,msGs
−1Gm (nc)

2(ndof − nc)

Thus, the total complexity of all matrix-matrix multiplications in the master-slave elimi-
nation is O

(
max((nc)

2(ndof − nc), (nc)
3)
)
. In the penalty method and for augmented La-

grange multipliers, the only product to consider isGT G which is of complexityO
(
(ndof)

2nc
)
.

The actual computational costs are lower in practice due to sparsity of the matrices in-
volved. In addition, there exist efficient, parallelized implementations in libraries like the
Math Kernel Library (MKL) by Intel [11].

3. The computational cost of the solution of the effective linear system, see e.g. Eq. (11),
depends primarily on its dimension. In the master-slave elimination, the dimension is
(ndof − nc). Therefore, the computational complexity is O

(
(ndof − nc)

3
)
.

Two variants of the method have to be distinguished: (a) manual selection of slave dofs, re-
dundancy analysis; (b) automatic selection of slave dofs and redundancy analysis. The com-
putational complexity of the three aspects as well as the overall computational complexity are
summarized in Table 1. For primarily mathematical reasons for the exact computation of the
total computational complexity, two cases for the number of constraints nc have to be distin-
guished for (a) respectively for (b): For (a), case I, nc < ndof/2, and case II, nc ≤ ndof/2 have
to be distinguished. For (b), case III, nc < 0.43 · ndof, and case IV, nc ≤ 0.43 · ndof have to be
distinguished. For all cases, the overall computational complexity is determined.

Table 1: Overall computational complexity O of constraint methods for direct solvers

Method matrix-matrix mult. Gs
−1 Keff∆V = −Reff overall

Penalty method (ndof)
2nc – (ndof)

3 (ndof)
3

Lagrange mult. – – (ndof + nc)
3 (ndof + nc)

3

MS elim. (a), case I, I⋆ (nc)
2(ndof − nc) (nc)

3 (ndof − nc)
3 (ndof − nc)

3

MS elim. (a), case II, II⋆ (nc)
3 (nc)

3 (ndof − nc)
3 (nc)

3

MS elim. (b), case III, I⋆ (nc)
2(ndof − nc) (nc)

2(ndof) (ndof − nc)
3 (ndof − nc)

3

MS elim. (b), case IV, II⋆ (nc)
3 (nc)

2(ndof) (ndof − nc)
3 (nc)

2(ndof)

The master-slave elimination exhibits the lowest computational complexity. This is true for
an arbitrary number of constraints nc and both variants of the method. Both the penalty
method as well as the multiplier methods are computationally more complex. For case II and
IV, the reduction of the computational complexity in the master-slave elimination compared to

8
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other methods is even larger compared to case I and III. The computational complexity gives
a good estimate of the actual computational cost. It has to be mentioned that the effective
computational cost depends heavily on the specific implementation. For a more practical esti-
mation of the computational costs, two modifications of case I and case II are introduced: Case
I⋆, nc ≪ ndof, and case II⋆, nc = O(ndof). For case I⋆, as mentioned above, the calculation of
the inverse Gs

−1 is computationally inexpensive which renders the master-slave elimination to
be very efficient. For case II⋆, the master-slave elimination is also more efficient than existing
methods since the same arguments hold as for case II. In summary, the master-slave elimination
can be estimated to be more efficient than the other methods.

5 EXAMPLE

The aim of the numerical example is to compare the results of the proposed master-slave
elimination scheme with existing constraint methods in the regime of a large number of con-
straints. For this purpose, we analyze a slender plane elastic structure under shear condition
(Young’s modulus E, Poisson’s ratio ν and thickness t), see Fig. 4. It is clamped at the bottom
and supported by a sliding clamping at the top. The system is loaded at the top with load F . All
geometry and stiffness data are stated in Fig. 4. The middle part of the structure, marked with
dark gray in Fig. 4, is subsequently modified to be rigid by introducing constraints. The ratio
of the rigid part of the domain is α = 80%, see Fig. 4. For the numerical simulation, the system
is discretized with 4 × 40 geometrically nonlinear quadrilateral EAS elements with 4 element
nodes and 7 internal variables, see left side of Fig. 4, resulting in a total of ndof = 410 dofs. The
load F is applied as a uniform distributed load at the top edge and is increased incrementally
in 10 steps.

F

L

10
L

F

5L
5L

4
L

4
L

α = 0% α = 80%

E = 1× 104 kNm−2

ν = 0.3

t = 0.1m

L = 0.1m

Figure 4: Shear test: Geometry, parameters and mesh
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Two variants to model the rigid part of the structured mesh are analyzed: In model A, the
rigidity is modeled purely by the nonlinear distance constraints

c = ∆ℓik = Lik − ℓik = ∥Xi −Xk∥ − ∥xi − xk∥ = 0 (12)

preventing a change in length between two nodes i and k, with the initial length Lik and the
position vector X in reference configuration and length ℓik and position vector x in current
configuration. Here, the nodes of each edge in the finite element mesh are coupled with distance
constraints and, additionally, diagonal distance constraints are considered for the bottom and
left element rows of the FE-mesh, which act analogously to a bracing (visualized by red lines
at the left side of Fig. 5). The connectivity of the constraints is modeled deliberately in such a
way that the constraints are not redundant.In contrast, model B exhibits redundant constraints.
Similarly to model A, only nonlinear distance constraints are used. In this model, the constraints
are chosen for each element separately. The constraints related to a single element ensure that
such an element is rigid. In the total domain, this leads to redundancy, see Fig. 5.

model A

i

k
∆ℓik = 0

model B

i

k

Figure 5: Shear test: Rigid domain modeled solely by non-redundant nonlinear distance constraints
(model A) and by redundant nonlinear distance constraints (model B)

It has to be mentioned that the rigid part can be modeled simply by constraints that directly
couple the lower edge of the upper elastic part with the upper edge of the lower elastic part.
Such a model exhibit fewer number of finite elements and constraints. However, this model is
not used here for two reasons: First, even in practice they are reasons to not remove the rigid
part, e.g. to enable certain areas of the FE-mesh to be modeled once as rigid and once as elastic
during the simulation without the need of re-meshing. Secondly, in this example, the worst case
for the master-slave elimination of many fully coupled constraints is examined deliberately.

To verify the implementation of the proposed method as well as the slave dofs identification
and redundancy treatment and to examine its accuracy, the load-displacement curve is computed
for both models using the master-slave elimination and other constraint methods for model A.
For model A, no automatic slave dof identification and redundancy treatment was performed.
For model B, the automatic selection of slave dofs as well as an automatic identification and
elimination of redundancy is employed. The resulting load-displacement diagram is depicted on
the top left of Figure 6. All methods lead to the same results.

To examine the influence of the proposed slave dofs identification and redundancy treatment
on the convergence behavior, the Euclidean norm of the residual vector ∥R∥ within the iterative
process is computed for all models using the master-slave elimination. It is depicted on top right
of Figure 6 (representative for 2 of the 10 load steps). For a comparison, a curve representing

10



Jens Wackerfuß and Jonas Boungard

the optimal convergence rate of p = 2 is also shown. In the numerical simulation, the Newton-
Raphson scheme is aborted as soon as the relative criterion ∥R∥(k)/∥R∥(1) ≤ 10−12 is satisfied
(the superscripts indicating the iteration step). The diagram shows that the master-slave elim-
ination exhibits optimal, quadratic convergence.

To study the influence of the proposed slave dof identification and redundancy treatment
on the condition number κ of the resulting matrix, the condition number was computed. The
results are depicted at the bottom of Figure 6. Here, the strong influence of the slave dof
identification and redundancy treatment on the condition number κ can be obtained. For model
B, the condition number κ is identical and of the same order than the unconstrained system.
The condition number is 2 orders of magnitude smaller in comparison to model A without slave
dof identification and redundancy treatment.
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model A, Lagrange

model A, penalty, β = 103

model A, penalty, β = 106

model A, MS. elimination
model B, MS. elimination with redundancy elimination

Figure 6: Load-displacement diagrams (top left), residual norm (top right) and condition number of
resulting matrix (bottom) (model A and B)

6 CONCLUSIONS

We presented a new master-slave elimination scheme for arbitrary nonlinear multi-point con-
straints. It satisfies the constraints exactly and leads to a beneficial reduction of the problem
dimension. This results in a reduced computational complexity compared to existing constraint
methods which makes the method more efficient, especially for a large number of constraints.
Additionally, numerical results indicate that the method is as accurate, robust, and flexible as
Lagrange multipliers.
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