
The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024

3–7 June 2024, Lisboa, Portugal

SPECTRAL ANALYSIS FOR HIGH-ORDER FLUX
RECONSTRUCTION METHODS

Romaric SIMO TAMOU1,2, Vincent PERRIER2, Quang Huy TRAN1, Julien
BOHBOT1 and Julien COATLEVEN1
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1 INTRODUCTION

In the industrial sector, computational fluid dynamics (CFD) experts are increasingly
focused on conducting high-fidelity simulations to address turbulent flow challenges. Most
industrial codes employ lower-order methods, typically with an accuracy order of less than
two. This approach is justified by the extensive work carried out between the 1970s and
1990s, which made these low-order schemes both robust and efficient [1]. there is a
broad spectrum of physical problems where low-order methods are not adequate. For
instance, in vortex-dominated flows, the limitation in accuracy becomes a significant
obstacle, necessitating fine meshing to accurately capture small-scale turbulent eddies.
Additionally, low-order numerical schemes tend to introduce numerical dissipation errors,
which can compromise the integrity of the simulation results, potentially rendering them
unusable.

To overcome this major obstacle, many high-order numerical schemes with compact
stencil have been developed, including Discontinuous Galerkin (DG) schemes [2, 3, 4],
Spectral Difference (SD) schemes [5, 6, 7], and Flux Reconstruction (FR) schemes [8,
9, 10]. By construction, these schemes are highly accurate and can significantly reduce
numerical dissipation and dispersion, thus allowing the use of coarser and less expensive
meshes. Finally, DG, SD, and FR schemes parallelize efficiently and allow for the full
utilization of the computing power provided by current parallel architectures

The spectral properties allow for the analysis of how accurately a scheme represents
wave propagation by evaluating its effects on numerical dispersion and dissipation. In par-
ticular, they are essential for determining the stability, the fidelity of numerical solutions,
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and the scheme’s ability to accurately resolve the fine details of a wave or disturbance.
With the exception of spectral methods, most numerical methods preserve the dispersion
relation only for low wavenumbers, and introduce significant dispersion and/or dissipation
beyond a critical wavenumber denoted as the resolving efficiency.

Huynh [9] was the first to explore the spectral properties of FR schemes, using Fourier
analysis on 1-D advection with fully upwinded Riemann flux at the interface to identify
both principal and spurious eigenvalues. A direct modal analysis of the FR formula-
tion was conducted by Asthana et al [8] to determine dispersion, dissipation and energy
fractions corresponding to the numerical modes.

In this paper, we perform new analyses of their dissipation and dispersion properties
based on space–time spectral analysis for high-order FR schemes, and we find consis-
tent results with the classical analysis. Finally, we extend and validate these results for
academic configurations of multi-species flows and turbulent flows.

2 Flux Reconstruction

2.1 General Formulation

We consider the first-order conservation law

∂u

∂t
+

∂f(u)

∂x
= 0, (1)

with the physical coordinates x ∈ Ω ⊂ R and time t. The nonlinear flux f depends on
the quantity of interest u. Following the original work by Huynh [9], we describe here
the one-dimensional flux reconstruction formulation. We consider a partition of Ω into N
elements Ωn such that

Ω =
N−1⋃
n=0

Ωn, (2)

with
Ωn = {x ∈ R | xn < x < xn+1}. (3)

Restricting in Ωn, we approach the solution by a polynomial of degree p denoted uδD
n

in Ωn and zero elsewhere. This polynomial should approximate the system (1) in Ωn. All

calculations are performed in the reference element Ω̂

Ω̂ = {x̂ ∈ R | − 1 < x̂ < 1}. (4)

using the isoparametric transformation Θn allowing the passage of an element Ω̂ to Ωn.
The isoparametric transformation Θn that maps the reference element Ω̂ to the physical
element Ωn is given by

x = Θn(x̂) =
(xn+1 − xn)x̂

2
+

(xn+1 + xn)

2
.

2
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The Jacobian of this transformation is denoted by Jn = dΘn

dx̂
= 1

2
(xn+1 − xn). By

definition of Ωn, Jn is non-zero, and Θn is invertible. An illustration of the transformation
from Ω̂ to Ωn is provided in Figure 1. Using this transformation, we write the conservation
law (1) on the reference element Ω̂

xn xn+1

Θn

Θ−1
nΩn Ω̂

−1 1

Figure 1: Transformation from an element Ωn to the reference element Ω̂ in 1D.

∂ûδD
n

∂t
+

∂f̂ δD
n

∂x̂
= 0, (5)

with new variables

ûδD
n (t, x̂) = Jnu

δD
n (t,Θn(x̂)), (6a)

f̂ δD
n (t, x̂) = f δD

n (t,Θn(x̂)). (6b)

In order to lighten the writing, we will now remove the notation index n referring to
the element Ωn when there is no ambiguity. which allows us to rewrite (5) as

∂ûδD

∂t
+

∂f̂ δD

∂x̂
= 0. (7a)

Flux Reconstruction methods use a nodal basis of degree p to approch the solution
within each element of a given grid. Consider the Np = p + 1 distinct interior points

x̂i, 0 ≤ i ≤ p, again called solution points of Ω̂. We assume that the transform of
the discontinuous solution is known at time t at these Np points, and we note it ûδD

i =
ûδD(t, x̂i). Therefore, we can approach the solution by interpolating it at the Np solution
points

ûδD =

p∑
i=0

ûδD
i li(x̂), (8)

where the Lagrange polynomials li(x̂) of degree p is defined by

li(x̂) =

p∏
k=0,k ̸=i

x̂− x̂k

x̂i − x̂k

. (9)

The solution points are chosen to be the 1D Gauss–Legendre, Figure 2 shows the
solution and flux point locations in the reference element for p = 2.

3



Romaric SIMO TAMOU, Vincent PERRIER, Quang Huy TRAN, Julien BOHBOT and Julien
COATLEVEN

−1 1x̂0 x̂1 x̂2

Figure 2: Reference element Ω̂, for p = 2.

The approximation of degree p by cell of the flux using the values of the solution at
the Np inner points is

f̂ δD =

p∑
k=0

f̂ δD
k lk, (10)

where f̂ δD
k = f̂(t, x̂k). The principle of the FR scheme as presented in [9] consists in

writing problem (7) at Np solution points by:(
∂ûδD

∂t
+

∂f̂ δ

∂x̂

)
(x̂k) = 0, (11)

where the divergence of the flux is written as

∂f̂ δ

∂x̂
=

p∑
k=0

f̂ δD
k

dlk
dx̂

+ (f̂ δI
L − f̂ δD

L )
dhL

dx̂
+ (f̂ δI

R − f̂ δD
R )

dhR

dx̂
, (12)

with f̂ δD
L = f̂ δD(t,−1) and f̂ δD

R = f̂ δD(t, 1) are the extrapolated values of the discontinu-

ous flux transform, and f̂ δI
L and f̂ δI

R are the values of the common numerical flux transform
at the interfaces. The common flux at each interface is computed using a Riemann solver
that takes as input the solution values from the cells adjacent to the interface under con-
sideration. For example, one can use the Roe solver [11] or the Lax-Friedrichs approach
[12, 13] for the Euler or advection equations.

The VCJH [10] correction functions are given by

hL =
(−1)p

2

[
Lp −

(
ηpLp−1 + Lp+1

1 + ηp

)]
, hR =

1

2

[
Lp +

(
ηpLp−1 + Lp+1

1 + ηp

)]
, (13)

where Lp is the normalized Legendre polynomial of degree p, Lp(1) = 1, and

ηp =
c(2p+ 1)(app!)

2

2
, ap =

(2p!)

2p(p!)2
, (14)

and c is a free parameter satisfying

−2

(2p+ 1)(app!)2
< c < +∞. (15)

The parameter c thus defined allows for a family of FR schemes, and some clever choices
allow retrieving known high-order schemes, in the case of problems with linear fluxes as
presented in Table 1.
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c 0
2p

(2p+ 1)(p+ 1)(app!)2
2(p+ 1)

(2p+ 1)p(app!)2

High order scheme Nodal DG SD Huynh

Table 1: Higher-order schemes obtained from the correction function parameter c.

The correction functions (13) allow us to impose the values f̂ δI
L and f̂ δI

R of the common
numerical flux transform at the interfaces. This will shift the flux discontinuity from the
interfaces to the interior of the elements. An illustration of the flux reconstruction is given
in Figure 3.

Ωn Ωn+1

ef δI
R

f δD
R

f δD
L

f δI
L

f δ

Figure 3: Reconstruction of the continuous flux at the interface e.

3 Spectral analysis

3.1 Methodology

We consider the linear advection equation in a periodic domain with a harmonic initial
solution

∂u

∂t
+

∂u

∂x
= 0, (16a)

u(0, x) = ejkx, (16b)

where k the constant wavenumber and j2 = −1. Problem (16a) is obtained from problem
(1) by using the flux function f(u) = u.

We start by spatially discretizing equation (16a) using the FR scheme. For simplicity
in notation and without loss of generality, we assume that the interval Ωn has a length
∆xn = ∆x, and the flux at interfaces follows the upwind scheme. Applying the FR
schemes methodology from subsection 3.1 to (16a) on the reference element Ω̂, we write
it in matrix form:

dûδ
n

dt
= − 2

∆x
Dûδ

n −
2

∆x
hL(l

T ûδ
n−1 − lT ûδ

n), (17)
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Runge Kutta Schemes RK33 RK44 RK45

G
∑3

i=0

(∆tM)i

i!

∑4
i=0

(∆tM)i

i!

∑4
i=0

(∆tM)i

i!
+

(∆tM)5

200

Table 2: The spatio-temporal transfer matrix G.

with

D[i, n] =
dln
dx̂

(x̂i), ûδ
n[i] = ûδD

n (x̂i), l[i] = li(−1), hL[i] =
dh

dx̂
(−1), 1 ≤ i, n ≤ p+ 1.

(18)
The exact solution to problem (16) is:

u(t, x) = ejk(x−t). (19)

However, the numerical solution given by (17) is

ûδ
n(t) = ej(k∆x−ωδ(k)t)v, (20)

where ωδ(k) is a complex number that expresses the numerical wave frequency. v is a
vector associated with the projection of the numerical solution onto the basis of nodal
functions. By substituting (20) into (17), and setting

M = − 2

∆x
(D− hLl

T + e−jkδ∆xhLl
T ), (21a)

dûδ
n

dt
= Mûδ

n. (21b)

Next, we discretize (21b) in time using a Runge-Kutta method, and we write

ûδ
n(ts+1) = Gûδ

n(ts), (22)

with ts+1 = ts +∆t. The spatio-temporal transfer matrix G is defined by the matrix M
and the Runge-Kutta method used in Table 2.

3.2 Matrix power method for the spectral analysis

The Matrix Power Multiplication (MPM) is a technique used to compute the successive
powers of a matrix. It leverages these matrix multiplications to achieve various goals, such
as determining the convergence of matrix powers or identifying the dominant eigenvalues,
often through successive iterations. The MPM was used by Vanharena et al. [14] for the
spectral analysis of high-order spectral discontinuous methods.

According to subsection 3.1, the solution at time ts+1 is calculated using the solution
at time ts and the spatio-temporal discretization matrix G using the relation (22). By
applying this process recursively, it follows that the solution at time ts+1 can be obtained
by applying the sth power of the matrix G to the initial solution.

ûδ
n(ts+1) = Gsûδ

n(t = 0). (23)

6
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Hypothesis: We assume that the matrix G satisfies the eigenvalue problem Gvl = λlvl
, where for l ∈ {0, 1, · · · , p}, λl ∈ C and vl ∈ C(p+1). We also assume that the p + 1
eigenvectors vl span C(p+1) and that the eigenvalues satisfy: |λ0| < |λl| and |λl| < |λp| for
l /∈ {0, p}. Then, for any initial condition

ûδ
n(t = 0) =

p∑
l=0

α0
l vl, with α0

p ̸= 0, (24)

we have the approximation [14] of (23) as s → +∞

ûδ
n ≈ α0

pλ
s
pvp. (25)

This result indicates that as the number of temporal iterations becomes large, ûδ
n

behaves similarly to α0
pλ

s
pvp.

Conclusion: Under the previous hypothesis, spectral analysis of FR schemes can be
performed using the properties of the eigenvalue λp. The criteria for measuring dispersion
and dissipation relations are

1− ρ = 0, (26)

|k∆x− ϕ| = 0, (27)

where ρ = λp and ϕ = − arg(λp)/CFL.

3.3 Effect of Polynomial Order

The dissipation and dispersion relations for each SD scheme via FR are drawn in Fig-
ure 4 by varying the polynomial degrees p ∈ {2, 5}. It is observed that for all polynomial
degrees, the dispersion and dissipation relation are well approximated for low wavenum-
bers. However, as the order increases, the scheme has difficulty accurately approximating
the exact relation for a range of high wavenumbers. These findings are consistent with
those reported by Jameson [8].

3.4 Effect of Correction Function

The dissipation and dispersion relations are plotted in Figure 5. It is observed that
the exact mode is relatively well approximated for low wavenumbers by the DG, SD,
and Huynh schemes via FR. However, for high wavenumbers, the Huynh, SD, and DG
schemes via FR, in this order, struggle to approximate the exact relation. These results
are consistent with those of Jameson [8].

4 Validation

4.1 2D Transports of chemical species

In this test case, we consider the transport of two chemical species, O2 and N2,
with mass fractions Y 0

O2
= 0.23 and Y 0

N2
= 0.77 respectively, at the same temperature

7
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(a) (b)

Figure 4: Relations of (a) dissipation and (b) dispersion of the SD scheme via FR for
p ∈ {2, 5}.

(a) (b)

Figure 5: Relations of (a) dissipation and (b) dispersion for the DG, SD, and Huynh
schemes via FR for p = 4.

(T=300K), without accounting for any chemical reactions nor viscous forces. To avoid
any numerical instability, the steps at the interface between both regions are smoothed
out using hyperbolic exponential functions as follows

ϕ(x, y, t) =
β√

4νt

α2
+ 1

exp

(
− x2

4νt+ α2

)
(28)

YN2 = Y 0
N2

− ϕ, YO2 = Y 0
O2

+ ϕ. (29)

The geometry is defined by a rectangle with a length L = 0.02 m and a width l = 0.0004
m. The adjustment parameters are taken as ν = 1×10−3, β = 0.1, and α = 2×10−3. The
pressure is constant throughout the domain and equal to P = 101325 Pa, and the velocity
field V = (100, 0) leads to convection of species at a constant velocity in the x-direction.
Finally, periodic boundary conditions are imposed on each side of the geometry. Figure 6

8
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displays the profiles of the mass fractions YN2 and YO2 after 10 convection times using
the DG, SD, and Huynh schemes via FR with third-order accuracy in space (polynomial
degree p = 2) and time (RK33). It is observed that the DG, SD, and Huynh schemes
via FR, in that order, better approximate the exact mass fraction profiles, indicating
that the numerical dissipation and dispersion properties are reduced with DG, SD, and
Huynh schemes via FR, in that order. The spurious oscillations observed in the regions
−1 < x < −0.4 and 0.5 < x < 1 are related to the coarse nature of the mesh. These
oscillations are more pronounced with the Huynh, SD, and DG schemes via FR, in that
order. This suggests that for Large Eddy Simulation-type calculations, better results
might be achieved with the DG scheme via FR, compared to SD and Huynh via FR.
The results obtained are in good agreement with the numerical analysis presented in
subsection 4.1.

(a) (b)

Figure 6: Profiles of the mass fractions YN2 (a) and YO2 (b) after 10 periods with the DG,
SD, and Huynh schemes via FR for p = 2.

4.2 3D Taylor Green Vortex

The Taylor-Green vortex (TGV) problem is a canonical problem for which a turbulent
energy cascade can be observed numerically. We assume that Ω =]−πL0, πL0[

D, with L0

being the characteristic length. The physical quantities are made dimensionless using the
reference quantities L0, V0, ρ0 et T0. The viscosity is derived from the Reynolds number

µ =
ρ0V0L0

Re
. (30)

We assume that at the initial time, the density is uniform in Ω and equal to ρ0. The

9
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initial velocity field is

V1 = V0 sin
( x

L0

)
cos
( y

L0

)
cos
( z

L0

)
, (31a)

V2 = −V0 cos
( x

L0

)
cos
( y

L0

)
cos
( z

L0

)
, (31b)

V3 = 0. (31c)

The initial pressure is

P = P0 +
ρ0V

2
0

16

[
cos
(2x
L0

)
+ cos

(2y
L0

)][
cos
(2z
L0

)
+ 2
]
. (32)

For this test case, the following values were chosen

L0 =
1

π
, V0 =

1

π
, ρ0 = 1, Ma = 0.1, Pr = 0.71 and Re = 1600. (33)

(a) (b)

Figure 7: Kinetic energy (a) and enstrophy (b) of the TGV at Re=1600: case of h,p-
refinement with 3843 degrees of freedom.

We propose in this case to compare polynomial order increase of FR schemes for a
number of degrees of freedom equal to 3843. The calculations performed in this case are
on a 1283 mesh with third-order accuracy in space (p = 2) denoted 128p2 and on a 963

mesh with four-order accuracy in space (p = 3) denoted 96p3. For both 128p2 and 96p3
calculations, we use the RK45 time discretization scheme. We compared the results of
DG simulations via FR with those obtained from the Pseudo-Spectral PS code [15] on a
5123 mesh. The simulations were carried out up to a time t = 12 s. Figure 7 shows the
evolution of kinetic energy and enstrophy. It can be observed that DG calculations via FR
reproduce the evolution of kinetic energy. The evolution of enstrophy is well represented
by all calculations up to t = 8.5 s. After this time, the 128p2 calculation overestimates
the evolution of enstrophy. The 96p3 calculation accurately reproduces the evolution of

10
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enstrophy throughout the entire simulation time. However, it is noted that enstrophy
curves are well reproduced by all calculations up to t = 8.5 s. After this time, the 128p2
calculation overestimates the evolution of enstrophy. The 96p3 calculation reproduces
the evolution of enstrophy perfectly throughout the entire simulation time. This study
demonstrates that it is possible to achieve a level of accuracy given by reference data on
coarse meshes when using high order for a fixed number of degrees of freedom.

5 CONCLUSIONS

In this paper, we presented a spatio-temporal analysis of FR schemes, highlighting two
main results. The first result focuses on the spatio-temporal analysis of the spectral prop-
erties of FR schemes, which is consistent with and complementary to the semi-discrete
analysis conducted by Asthana et al [8]. We showed that dissipation and dispersion prop-
erties can be reduced through careful choices of the correction function parameters and
by increasing the polynomial order. Finally, we extended and validated these results for
academic configurations of multi-species flows and turbulent flows. The results presented
in this article stem from the development of FR schemes that we implemented in the
CONVERGE CFD [16] software.

The authors of this paper are aware that, to date, methodologies for extending FR
schemes to multi-species flows, both reactive and non-reactive, as well as for h-p refinement
adaptation, are still scarce in the literature. We have defined approaches for these topics
that go beyond the scope of this paper and will be presented in our future work.
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