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Summary. High-performance scientific computing is at the heart of digital technology. It enables the
simulation of complex physical phenomena in a reasonable time. The current trend for computer hard-
ware architecture is to shift towards more parallelism. To use these systems in the most optimal way
different levels of parallelism need to be studied. The demand for a fast solution of simulations coupled
with new computing architectures drives the need for an adequate programming model, challenging par-
allel algorithms, a suitable memory layout, appropriate architecture-specific parameters and a flexible
software architecture. This paper focuses on two prominent x86 and ARM hardware architectures. First,
it highlights the key considerations for achieving more efficient computation at the node level. It also
evaluates whether optimal use of the mentioned computing resources can be possible by considering all
levels of parallelism and how. It addresses the aforementioned aspects, through an iterative precondi-
tioned linear solver for sparse, non-symmetric matrices. The scalability and time-to-solution of several
test cases are demonstrated and analyzed.

1 Introduction

Selecting the best sites for exploiting lithium from hydro-thermal sources, or ensuring long-term stor-
age of CO2 in deep aquifers, are major challenges requiring a deep understanding of fluid movements in
the subsurface. To meet these energy transition challenges, numerical simulation is an indispensable tool
requiring efficient usage of high-performance scientific computing resources. The most time-consuming
part of such Geoscience simulations consists of solving non-symmetric, sparse, ill-conditioned matrices.
It can even contribute to 80% of the simulation time, as the Jacobian matrices generated by unsteady and
nonlinear problems are solved across multiple Newton iterations and time steps.

Today’s hardware architectures make parallel programming for numerical simulation more challeng-
ing. In this paper, we study how to improve the performance and exploit optimally computing resources
based on x86 and ARM architectures, excluding the consideration of accelerators like GPUs. The opti-
mal performance could not be reached by using the same settings for all parallel computing resources.
To tackle this challenge, we focus on sparse linear preconditioned solvers. The reason for this is twofold.
First of all, linear system solution is one of the most time-consuming phases of simulations based on Par-
tial Differential Equations (PDEs), such as those in the Geoscience applications, and therefore its per-
formance has a direct impact on the performance of the overall simulation. Second, the used algorithms

1



Ani Anciaux-Sedrakian, Raphael Gayno, Thomas Guignon and Aboul-Karim Mohamed El Maarouf

are memory-bound based, so providing an efficient solution on the target architectures is challenging,
and represents a tricky problem. In the context of solving linear systems, the legacy libraries are not in
the optimal position to fully exploit the highly parallel architectures. To deal with this issue, different
research works are carried out to bring an adapted solution. Each of them tries also to minimize the im-
pact of the permanent evolution of hardware architectures. There are three main approaches for solving
sparse linear systems: direct, iterative, and hybrid, all with different parallelism constraints. Systems
resulting from the discretization of PDEs are generally solved using iterative Krylov subspace methods,
such as Generalized Minimal RESidual (GMRES), Conjugate Gradient (CG), Bi-Conjugated Gradient
Stabilized (BiCGStab) or their different variants preconditioned using various methods like polynomial,
SParse Approximate Inverse (SPAI), incomplete LU, incomplete Cholesky, or Multi Grid [1].

Regarding multi-core architectures, several works have been carried out on direct sparse solvers, such
as SuperLU[2], SLATE[3], Paradiso[4], or PaStix [5]. These solvers try to manage the shared mem-
ory parallelism, through the use of multi-threading technologies like OpenMP, or DAG-based runtime
systems like StarPU[6] approaches. For sparse iterative solvers on heterogeneous multi-core systems
(CPU+GPU), several studies in different libraries suggest various approaches, such as Hypre, Ginkgo,
and Trilinos. Hypre proposes a strategy based on the BoxLoop loop abstraction [7], while Ginkgo [8]
uses different programming models (CUDA, HIP, SYCL, OpenMP) through the notion of ’Executors,’
which determine where the operations will be executed. Trilinos [9] addresses different programming
models using the Kokkos ecosystem [10].

The main contributions of this paper are as follows: First, we analyze the critical performance con-
cerns for x86 and ARM architectures when handling non-symmetric sparse matrices. Second, through
the proposed software architecture, we demonstrate how to manage different programming models and
architecture-specific features in a portable way without compromising performance. Afterwards, we
examine how to exploit available computing resources most efficiently and assess whether all levels of
parallelism can be fully leveraged. Finally, we show the performance evaluation using systems arising
from hyperbolic-elliptic equations. The rest of this paper is organized as follows. Section 2 summa-
rizes target hardware architecture characteristics and describes the key technological innovations and
optimization strategies. Section 3 details how we take into consideration hardware architecture charac-
teristics in preconditioned iterative sparse linear solver context, while Section 4 details our experiments.
Section 5 concludes with an outline of potential directions for future research.

2 Hardware Architecture

Modern parallel computing resources allow us to exploit multiple levels of parallelism. For example,
distributed memory parallelism with MPI, shared memory parallelism with OpenMP, Cilk, Pthreads, or
task-based execution systems, and at the most granular level, vector parallelism using SIMDs intrinsic
instructions. Additionally, Instruction-Level Parallelism (ILP) where compilers play a crucial role, and
parallelism specific to accelerators using CUDA, HIP, OpenACC, etc. represent further levels of paral-
lelism. However, it is important to note that this work does not address the last two levels of parallelism.

Let’s begin by examining how to efficiently exploit shared memory parallelism at the CPU level.
This can be achieved in several ways: (i) implicit parallelization through multithreaded libraries, (ii)
parallel and distributed extensions of the C++ language [11], (iii) task-based runtime systems like TBB,
StarPU[6], OmpSs[12], (iv) loop parallelism using directive-based models like OpenMP, and (v) domain
partitioning with threading models such as OpenMP and Pthreads. With the mentioned programming
models, there are no dependencies on hardware architectures. However, the core level parallelism with
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SIMD capability suffers from a lack of portability on different hardware architectures (x86, ARM) and
the possibility to use different instruction sets (SSE, AVX, AVX2, AVX-512, NEON, SVE, SVE2). This
level of parallelism allows to perform the same operation on multiple data simultaneously. The size of
the hardware SIMD registers and the type of data can determine this amount of data. The size of the
hardware SIMD registers may vary from one architecture to another. Their size, along with the type of
data, can determine the amount of data to be processed. This level of parallelism is an important aspect
to study for memory-bound applications. Due to its lack of portability, several programming approaches
have been explored to deal with the different and specific types of instructions [13]. These approaches
can be classified into four categories: auto-vectorization, done by the compiler, the use of a dedicated
language such as OpenMP (guided vectorization), the direct use of intrinsics, or a dedicated library such
as Boost-SIMD or MIPP [14].

Besides managing different levels of parallelism and the associated programming models, we are also
constrained to use other aspects such as advanced memory hierarchies, and various tunable parameters
that impact performance. These parameters include data locality, memory-aware thread-binding policies,
data representation, and synchronization overhead, among others. Regarding data locality, some comput-
ing resources are based on Non-Uniform Memory Access (NUMA), where the cost of memory access
varies depending on the memory’s proximity to the processor. In NUMA-based architectures, each core
memory address access has a different cost depending on its relative location. Memory localization is
then an important issue, particularly on architectures with multiple NUMA nodes with a large number
of cores per socket.

3 Preconditioned Sparse Iterative Linear Solvers

This section describes how to exploit hardware architecture specifications to achieve a portable and
efficient iterative linear algebra library for sparse matrices.

3.1 Software Architecture and Programming Models

The proposed software architecture focuses on decoupling the core numerical algorithms from the
back-end components specific to the target architecture. By doing so, it simplifies the development of
new solvers and preconditioners, enabling developers to concentrate on algorithm design without dealing
with the complexities of the underlying hardware. This approach allows for the creation of new solver
or preconditioner classes by combining the relevant building blocks. Additionally, there is no specific
vector type required; the only constraint is that the vector must have a continuous memory layout. This
flexibility permits the use of different floating-point arithmetic operations. One question could be the use
of solutions like Raja, SYCL, or SYCL through Raja. These mentioned high-level programming models
permit to improve the programming productivity on various hardware architectures. Their additional
programming layers also allows for implicit data management and movement which can be considered
an advantage. However, as far as we know, we cannot control low-level parallelism, use customized syn-
chronization and reduction operations, specific memory allocation and manage data movement. Kokkos
library designed to manage parallelism across various hardware architectures, provides more direct con-
trol over memory management and thread synchronisation compared to the previously mentioned solu-
tion [10]. Kokkos will be integrated into the proposed software design as an additional programming
model, enabling future performance comparisons between Kokkos and the proposed solution. Listing 1
provides an example of how to construct the necessary components for implementing a preconditioned
linear solver in a manner that is both portable and abstract.
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Listing 1: Preconditioned linear solver with appropriate algebra, sparse matrix-vector product, and pre-
conditionner
template<typename AlgebraT , typename MVOperatorT ,

typename PrecOpe ra to rT>
c l a s s BiCGStabSolver
{
p r i v a t e :

AlgebraT : : Vec torType u ;
AlgebraT : : Vec torType pp ;
AlgebraT : : Vec torType r0 ;
AlgebraT : : Vec torType p ;
. . .

p u b l i c :
BiCGStabSolver ( c o n s t i n t v e c s i z e ,

AlgebraT& a l g e b r a ,
c o n s t i n t m a x i t e r ,
c o n s t double r e s i d u a l ) ;

˜ BiCGStabSolver ( ) ;
void s o l v e ( MVOperatorT* mv , P r e c O p e r a t o r T * prec ,

c o n s t AlgebraT : : Vec torType& rhs ,
c o n s t AlgebraT : : Vec torType& s o l )

{
. . .
f o r ( i =0 ; i<m m a x i t e r ;++ i )
{

. . .
p rec −>y Fx ( p , pp ) ;
. . .

mv−>y Fx ( pp , u ) ;
a l p h a = m a l g e b r a . d o t ( u , r0 ) ;
. . .
}

}

This proposed software architecture is designed to be easily extendable to new hardware architectures by
accommodating their unique constraints, features, and programming models, thereby ensuring adaptabil-
ity and efficiency across diverse platforms. We follow three distinct approaches to maintain easy portabil-
ity: template-based object-oriented programming, code generation, and specific library usage. The tem-
plate parameter allows instantiating different Sparse Matrix-Vector products (SpMV) ”MVOperatorT”,
different preconditioners ”PrecOperatorT ” and different basic vector level linear algebra operations
”AlgebraT” corresponding to the target hardware architecture, implemented by its specific programming
models/instructions described above. The proposed architecture also allows for the combination of dif-
ferent programming models to handle various levels of parallelism and evaluate them easily. We utilize
shared memory parallelism at the CPU level, and more precisely at the NUMA node level. If the use
of MPI is an obvious choice with distributed memory, to manage shared memory, several runtimes and
approaches (task, static, etc.) are available and discussed. To evaluate some of these approaches in the
context of sparse iterative linear solvers, we use a code generation approach to create the correspond-
ing Kernel implementations. From the list of target operators, the developed Pythonic generator can
currently generate several kernels as OpenMP, OpenMP-task or OmpSs.

In the context of sparse iterative linear solvers, synchronizations and memory access are the main
issues. They have a low ratio of floating-point operations to memory accesses compared to direct methods
and ones used for dense matrices. This fact makes using task-based runtime systems less attractive. To
take advantage of better parallelism and to avoid as much as possible synchronization cost, which is a real
bottleneck, loop-level parallelization in shared memory should be avoided. Our solution involves using a
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domain decomposition strategy per NUMA node. The local data for each core can be parallelized using
the available SIMD instructions. At the core level, we evaluate two different approaches to leverage
vectorization. First, we added specific kernels written by AVX2, and AVX512 intrinsics. This approach
raises flexibility and portability issues. To overcome this, we have opted for the use of specific libraries
with a unified API, such as MIPP. MIPP permits both to avoid increasing SIMD kernel implementations
on the application for other architectures, such as RISC-V or the different extensions and also deals with
mixed precision. For this work, we first enriched the MIPP library with SVE instructions.

3.2 Local Partitioning Effects

Maximizing memory manipulation efficiency is one of the main performance improvement keys,
mainly for NUMA-based systems where the cost of accessing shared memory resources depends on
who is accessing them. Data locality and load balancing are crucial in the context of sparse iterative
linear solvers, characterized by the fact that they are memory-bound. To benefit from all parallelism
levels, we use hierarchical domain partitioning. For both distributed memory (inter node, inter CPU,
inter NUMA node) and shared memory parallelisms (intra node, intra CPU, intra NUMA node) graph
partitioning algorithms satisfy both criteria. In Section 4, we illustrate the gain obtained by using a
multilevel k-way partitioning scheme. In the context of partition decomposition with OpenMP, the best
performance can be achieved if we stay in the same NUMA node, and even better if we manage to stay in
the same cache (see Figure 4). To enforce suitable data locality, we assign one MPI process per NUMA
node. All available cores within each NUMA node then run in parallel using a threading-based parallel
programming model. This strategy allows cores on a given socket to access their local memory.

3.3 Synchronisation Barrier and Reduction Operations

During each iteration of the preconditioned linear solver, several sparse matrix-vector products, dot
products and norm computations are performed. For example, during BiCGStab iterations, two sparse
matrix-vector products, six axpy’s, and five dot products are computed. Since each processor has the
scalars and its corresponding part of the vectors, the saxpy’s can be parallelized without communication.
However, this is not the case for SpMV’s, dot products and norm computations, which require commu-
nication to obtain the desired results. Such operations cause scalability issues and severe performance
degradation. In the case of the shared memory context, these communications are transformed into syn-
chronization barriers and reduction operations. To address this problem in the shared memory context,
the synchronization cost can be reduced by replacing OpenMP’s native reductions and synchronization
barriers with alternative instructions that offer better performance. In this paper we study a new version
so-called ”linear centralized barrier” which is also combined with the reduction operation.

The principle of this barrier is as follows. When threads reach the fence instruction, they signal
their presence by reversing their synchronization flag, and then they go into a busy wait. This barrier
differs from the ”sense-reversing centralized barrier” [15] (”mcs centralized barrier” in Figure 1) by
choosing one thread to check the incoming and outgoing phases of the barrier. This avoids the use of
atomic operations, which are efficient for the small number of threads. Regarding reduction operation,
we consider a SIMD vector corresponding to a cache line. The first element of the SIMD vector acts as a
synchronization variable. When core 0 writes to this variable, the entire cache line is invalidated on core
1, which is waiting for a change in this variable. As a result, core 1 reloads the cache line with the new
value of the variable and exits the wait loop. Instead of updating a single vector element, we perform
an atomic SIMD write. This ensures that when core 1 exits the wait loop, all elements are correctly
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Figure 1: Efficiency of different synchronization barriers (left) and reduction operations (right) for ARM
Ampere Altra (top) and Joliot-Curie A64FX (bottom) architectures

updated. We compare the proposed linear centralized barrier and reduction operations overhead relative
to OpenMP using the EPCC micro-benchmark suite. We obtained a gain of 2.7 for the synchronisation
barrier and 6.28 for the reduction operation over 80 cores using Ampere Altra system. Regarding A64FX
system, we obtain a gain of 2.9 for the synchronisation barrier and 24.6 for the reduction operations using
48 cores. Figure 1 shows, the efficiency of the discussed operations on the Ampere Altra and A64FX.

4 Performance Results

In this section, we present our experiments and discuss the performance and scalability results for
different architectures.

4.1 Platforms and Study Cases Description

The performance evaluations are performed on five different architectures described below.

Ener440: Supercomputer at IFPEN has 240 bi-socket compute nodes, based on Intel SkylakeX G-
6140@2.3 GHz (AVX, AVX2, AVX512) CPUs with 18 compute cores and one NUMA node. The
nodes are connected through the Intel Omni-PAth interconnect.

Topaze: Supercomputer at CCRT has 864 bi-socket compute nodes, based on AMD Milan@2.45GHz
(AVX2) CPUs with 64 compute cores and 4 NUMA nodes. The nodes are connected through HDR-100.

Joliot-Curie: Supercomputer hosted by TGCC with several partitions. The ARM partition is based
on Fujitsu PRIMEHPC FX700 technology 1 with 48 compute cores, 2.0 GHz, Armv8.2-A SVE (512)
instruction set and 4 NUMA nodes. The 80 single-socket ARM A64FX are connected through Mellanox

1Fujitsu: https://www.fujitsu.com/global/products/computing/servers/supercomputer
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Matrix Rows Block size Nonzero block elems Matrix collection

Cage8 1015 1 11,003 Florida matrix collection
PqDM1 2,660 3 14,427 Three phase flow Black-oil model
Canta 8,016 3 57,187 Three-phase flow Compositional model
Poisson3Db 85,623 1 2,374,949 Florida matrix collection
GCS 185,498 3 1,094,385 Three-phase flow Dual-medium model
PAB 4,223,128 3 25,111,743 Three-phase flow Black-oil model

Table 1: Main characteristics of the evaluated matrices and their origin (matrix belonging).

EDR InfiniBand. The Rome partition contains 2292 dual-processor AMD Rome (Epyc) compute nodes
at 2.6 GHz (AVX2) with 64 cores per processor. The nodes are connected through HDR-100.

Ampere Altra: One 64-bit multi-core ARM CPU with 80 ARM compute cores up to 3.30 GHz maxi-
mum and one NUMA node. The used technology is Armv8.2+ with Neon instruction set architecture.

We demonstrate the performance of the proposed work through two series of experiments. The first
series consists of a set of non-symmetrical matrices given in Table 1. Some systems are obtained from
different representative models of dynamic Geoscience applications at different time steps and others
from the Florida collection. They illustrate the obtained behaviour relative to the key points mentioned
in the previous sections to obtain a more efficient calculation at the node level and discuss multiple nodes’
performance. Due to a lack of space, we do not show the obtained results for all the configurations. The
second series demonstrates the scalability of the solution proposed in the ShArc application 2. ShArc is
a mini-application of Geoxim permitting simulation of CO2 geological sequestration. For the presented
results we use the K-way partitioning proposed by Metis, and double-precision arithmetic for most of
the computation and mixed-precision during the incomplete LU preconditioning phase (the computation
phase in double precision and the storage of results in single precision). The results were obtained using
the BiCGStab solver, preconditioned with block Jacobi and incomplete LU with zero levels of fill-in. For
all numerical experiments, the tolerance for relative residual error is set at 1e-06. The following common
software environments are used for the computations: GCC/11.2.0, OpenMPI/4.1.1, hwloc/2.5.0, Open-
BLAS/0.3.22, and ParMETIS/4.0.3. Using OMP WAIT POLICY environment variable set to ACTIVE
and OMP PROC BIND to TRUE, and we assume to have a memory-aware thread-binding policy.

4.2 Detailed Results at Node Level Computations

In this section, first, we evaluate the impact of core-level parallelism with SIMD capabilities, and
then discuss the different aspects to be considered at the node level. Figure 2 and Figure 3 illustrate the
vectorization performance gains achieved using i) auto-vectorization, done by the compiler (using fvect-
cost-model, loop and slp vectorizer ), ii) handwritten intrinsics and iii) the MIPP library. The numerical
experiments are evaluated using different matrices (very small, small, scalar and block matrix) on two
different hardware architectures (x86 Intel SkylakeX and ARM A64FX). We don’t illustrate the results
using Neon intrinsics because the obtained results can’t be much given the size of the register. Auto-
vectorization, done by the compiler (using fvect-cost-model, loop and slp vectorizer ) is represented
by the compiler-vec label. The handwritten intrinsics is labelled AVX512. The explicit vectorization

2Sharc: https://github.com/arcaneframework/sharc
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with MIPP library which handles the choice of intrinsics at compile time is tagged with MIPP-AVX512
and MIPP-SVE. Depending on whether we use intrinsics (manual implementation or using the MIPP
wrapper), we employ the BCSP layout, an adaptation of the Sell-C-σ [16], which allows efficient SpMV
implementations using various SIMD intrinsics, instead of BCSR.
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Figure 2: Ener440 Intel(x86): the performance of BiCGStab using vectorization for different size of
systems
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Figure 3: Joliot-Curie A64FX (ARM): the performance of BiCGStab using vectorization for different
size of systems

no vec compiler vec MIPP-SVE

number of iterations 2,40E+01 2,40E+01 3,00E+01

time(sec) 4,02E-02 3,46E-02 2,56E-02

Table 2: Joliot-Curie A64FX (ARM): the time-to-solution, using vectorization, of preconditioned
BiCGStab with incomplete LU factorization of the PqDM1 system

The results presented in Figure 2 and Figure 3 are obtained using a non-preconditioned BiCGStab
solver. In fact, vectorization of the sparse triangular systems resolution resulting from incomplete LU
factorization is a challenging task. Mohamed El Maarouf et al. in [17] present an approach based on a
specific multi-coloring ordering which provides enough fine-grain parallelism for SIMD computational
units. Table 2 illustrates the behaviour of preconditioned BiCGStab solver with incomplete LU factor-
ization using the proposed solution by Mohamed El Maarouf et al. in [17] using a single core. The
number of iterations may increase a bit, but the performance gain remains interesting. How to manage
the different levels of parallelism in this context will be addressed in future work. The presented exper-

8



Ani Anciaux-Sedrakian, Raphael Gayno, Thomas Guignon and Aboul-Karim Mohamed El Maarouf

10 20 40 80
0

200

400

600

800

Number of Cores

1/
tim

e
(s

ec
−
1

)

10 20 40 80
0

10

20

30

Number of Cores

OMPLegacy OMP OMP-Metis MPI

Figure 4: Ampere Altra (ARM): the performance for the solution of the PqDM1 system (1/time to
solution) (left), Canta system (right)

iments demonstrate the benefits of core-level parallelism (vectorization) on Intel SkylakeX and A64FX
processors, highlighting the performance gains achieved on these architectures. Since the obtained per-
formance via the MIPP library usage is comparable to that of handwritten, for the ARM-based architec-
ture and other upcoming ones we enrich the MIPP library. The other important result to highlight is the
performance gap achieved with ARM-based architecture and with Intel SkylakeX on common software
environments. The authors in [18] mention how the choice of compiler and libraries can greatly affect
simulation speed and energy efficiency. These experiments demonstrate that the excepted performance
gains cannot always be guaranteed when using vectorization on every architecture.

The performance results shown in Figure 4 confirm the approach described in Section 3.1. The differ-
ence between OMPLegacy and OMP results lies in the use of reduction operations and synchronization
barriers. In OMPLegacy, we use OpenMP’s built-in reduction and barriers, while in OMP, we use the
approach discussed in Section 3.3. The number of iterations remains constant in these experiments.

4.3 Detailed Results Using Multiple Nodes

In this section, we focus on the efficient use of multiple nodes and evaluate whether all levels of
parallelism can be considered. The obtained results using ARM and x86 architectures are given in
Figure 6. Both exhibit the potential gain that can be expected from fine-grained calculations and data
localities. In fact, in the context of domain decomposition with OpenMP, as shown in Figure 5 the best
performance can be achieved if we stay in the same NUMA node.
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Figure 5: Topaze (AMD x86): the performance (1/time to solution) for PAB system (left), the efficiency
relative to one core (right)
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Regarding exploiting multiple levels of parallelism, Figure 7 illustrates performance variations when
using all levels of parallelism for Intel SkylakeX and A64FX architecture. In both architectures, better
performance is obtained when using 8 nodes by considering all the levels of parallelism. The perfor-
mance gain compared to MPI is 2.3 for SkaylakeX and 5 for A64FX. Focusing on one node we notice
different behaviours on these two architectures. Unlike on the A64FX architecture, on a single Intel
SkylakeX node, no performance difference is observed. On one node of A64FX, the performance ratio
compared to MPI using the SVE intrinsics is 2.2. Taking into account the shared memory parallelism,
the gain is 10, and by combining the three levels of parallelism, i.e., distributed memory, shared mem-
ory and, vectorization the gain is 16. Schöne et al. in [19] discuss about the variation of the frequency
and the power consumption when using vector-level parallelism using SIMD intrinsic. This explains the
observed difference in performance gains.
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Figure 6: The performance (1/time to solution) for GCS system using Ener440: Intel x86(left), and using
Julio-Curie: A64FX ARM (right)
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Figure 7: The performance (1/time to solution) of BiCGStab for GCS system using Ener440: Intel
x86(left), and using Julio-Curie: A64FX ARM (right)

4.3.1 Detailed Results Using Unsteady Model

In this section, we present the results obtained from a simulation of the ShArc mini-application of
Geoxim permitting simulation of CO2 geological sequestration. This series is evaluated on the Rome
partition of the Joliot-Curie machine. The addressed problem is a two-phase flow unsteady model where
we simulate 10-time steps on a structured grid of size 8 388 608. This synthetic test case is a gas injection
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in a porous medium containing water. The results in Figure 8 show a good scalability of up to 30 nodes
when the distributed memory parallelism fails to scale after 20 nodes. It illustrates the same behaviour as
the results presented in the previous section. The efficiency presented in this figure is calculated relative
to one full node. Author in [20], presents more comparison of the proposed solution (named MCGSolver)
with other software packages like Petsc, and Trilinos using an Arcane-based application.
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Figure 8: Juloit-Curie (AMD x86): the performance (1/time to solution) for shrac steady model (left),
the efficiency relative to one node (128 cores) (right)

5 Conclusions and Future Work

Getting high performance on the constantly evolving parallel computing resources remains a chal-
lenging task for applications due to the complex hardware architectures and numerous parameters that
significantly impact performance. In this paper, we have discussed a subset of key factors essential for
optimizing performance, with a focus on managing parallelism at various levels, data layout and data lo-
calities for x86 and ARM architectures. This discussion is centered on the use of preconditioned iterative
linear solvers based on Krylov subspace methods for non-symmetric sparse matrices, which arise from
hyperbolic-elliptic equations and are considered memory-bound application. To achieve optimal per-
formance, several levels of parallelism must be carefully studied: intra-core parallelism through SIMD
vectorization, on-node parallelism via multi-threading, and inter-node parallelism using message-passing
techniques. We presented a strategy through a preconditioned linear solver, leveraging object-oriented
facilities that allow for flexibility in dealing with different programming models. This approach offers
an easy extension to new hardware architectures, demonstrating significant performance gains over tra-
ditional MPI solutions. We illustrated that the key issue remains the variation of optimal configurations
across different systems. Identifying the best configuration for each specific system and application is a
difficult task. In future work, we will study the impact of additional hardware parameters and specifica-
tions, such as compiler behavior and optimization, prefetchers, and memory hierarchy, on performance
and energy consumption, and explore how to find the optimal parameters for a target architecture.
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