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ABSTRACT. During geotechnical and geophysical site characterisation for large infrastructure projects, signif-
icant data volumes are being collected which need to be processed and interpreted. Due to the limited budgets
available for site characterisation and the various sources of uncertainty, the interpretation relies on a combination
of data from various sources (e.g. in-situ and laboratory tests), the use of parameter correlations from the litera-
ture and expert judgement. In recent years, modern data science techniques have become increasingly accessible
to practicing engineers and researchers and they offer the possibility to improve several aspects of the site charac-
terisation and parameter selection process. Machine learning models can be trained on high-quality datasets and
expert judgement can also be internalised in the model formulations. In this contribution, the role of data science
and machine learning for geotechnical site characterisation is discussed based on several example applications using
datasets from offshore wind farm projects. The role of data coverage and data quality is discussed as well as the
role of geophysical data for interpolating geotechnical point measurements in a quantitative way. Supervised and
unsupervised machine learning techniques are explained and illustrated on the provided datasets. Finally, a per-
spective is given on the role of the emerging Large Language Models (LLM) for geotechnical site characterisation
applications.
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1 Introduction

In recent years, digitisation has permeated nearly
every aspect of modern society and it is continuing
to transform the way in which people interact with
their environment. Although the digital transforma-
tion is most noticeable in computer science and re-
lated fields, the way in which engineers work is also
being impacted. Building predictive models for phys-
ical processes has always been one of the core tasks of
the engineering practice. Machine learning allows en-
gineers to build more sophisticated predictive models
and to leverage ever larger datasets. While datasets
used for the development of foundation design meth-
ods and geotechnical parameter correlations are gen-
erally relatively small, the increasing availability of
digital data allows engineers to increase the knowl-
edge base on which such models are built. For ex-
ample, the test program which formed the basis for
the development of the widely used lateral pile design
methods by the American Petroleum Institute (API)
consisted of just four model piles (Reese et al., 1974)
(Reese et al., 1975). Digital data from such tests is
much easier to obtain these days due to the availabil-

ity of digital instrumentation. In the determination
of geotechnical parameter correlations from CPT test-
ing, the amount of available data plays an important
role. Jamiolkowski et al. (2003) developed a correla-
tion for the relative density of sand from CPT testing.
The researchers recognised the value of carefully col-
lecting data and storing it in a database for further
analysis. A database of 484 CPT tests in a calibration
chamber was thus obtained which allowed meaningful
data analysis. Database technology has evolved since
those days and the increasing capabilities of personal
computers supplemented by the available of versatile
cloud computing platforms create the necessary pre-
requisites for widespread digitisation. Even though
the required building blocks for a thorough digitisa-
tion are in place, the adoption of data science and ma-
chine learning (ML) in geotechnical engineering is not
ubiquitous. Several researchers and practicioners are
actively exploring these techniques (Phoon and Zhang,
2023) and ISSMGE TC309 provides a platform for
sharing knowledge, but there is no concensus on best
practices for using ML. Moreover, ML can also pro-
duce unreliable models when used without proper un-

1



derstanding of the underlying principles, leading to a
reluctance for introducing these models in daily prac-
tice. Overall, the workflow for geotechnical parameter
selection and foundation design shown in Figure 1 has
not fundamentaly changed and as such, many engi-
neers do not see the necessity to deviate from existing
design guidelines, calculation tools and algorithms.

Figure 1. Flowchart for selection of geotechnical pa-
rameters and foundation design (Stuyts and Suryasentana,
2023)

In this contribution, data science and ML tech-
niques are presented with a view to using them for
geotechnical site characterisation. The paper aims to
show that through a proper understanding of these
novel techniques combined with subject matter exper-
tise, ML models can be a very useful supplement to
the toolkit of the geotechnical engineer. In Section 2,
the relevant aspects of site investigation data for data
science and ML are discussed. Machine learning mod-
els are highly dependent on the data which are fed
to them and having a carefully curated high-quality
dataset forms an essential starting point for any mod-
elling effort. In Section 3, the datasets used in the
examples are presented. Sections 4 and 5 provide the
background for supervised and unsupervised learning
models, two types of ML algorithms which encompass
the majority of models in use today. Large Language
models (LLMs) are described in Section 6. LLMs have
received a lot of attention since the arrival of Chat-
GPT in 2022 (Deng and Lin, 2022) and a perspective
is given on how they might in the geotechnical engi-
neering profession. Finally, applications of supervised

and unsupervised learning are provided in Sections 7
and 8.

2 Site characterisation data

Having appropriate site investigation data is crucial
for any geotechnical assessment. For the use of these
data in ML algorithms, there are a number of consid-
erations which will determine whether ML modelling
efforts can be attempted.

2.1 Data management

The data need to be available to the engineer and
retrievable in a uniform digital format. Although sev-
eral efforts have been undertaken to propose uniform
data sharing standards, there is currently no unifor-
mity in the way in which geotechnical data is trans-
ferred between different stakeholders. The practices
depend very much on the national context.

2.1.1 File-based formats

The Association of Geotechnical and Geoenviron-
mental Specialists (2017) (AGS) has proposed a file-
based standard for the transfer of geotechnical data.
This standard is widely used in the offshore sector and
also onshore in the United Kingdom. It facilitates col-
laboration on offshore wind farm projects and large
onshore infrastructure projects. The standard models
the relations between geotechnical tests and the loca-
tion where they were performed. The standard is also
extensible in case additional data fields or test types
need to be captured. For geotechnical laboratory tests,
summary outputs can be saved but detailed time series
for e.g. oedometer tests or triaxial tests are currently
not supported.

In the United States, the DIGGS standard was de-
veloped by the GeoInstitute of ASCE (Cadden and
Keelor, 2017). This open-source data transfer stan-
dard uses the Geography Markup Language, a geospa-
tially enabled extension of the eXtensible Markup Lan-
guag (XML), to create file-based representations of
geotechnical data. The XML schema has a high level
of detail and supports many different in-situ and lab-
oratory tests. The schema is also being extended to
include foundation tests such as pile load tests. The
creators provide a data conversion tool to allow conver-
sion of AGS files and other file formats to DIGGS. Al-
though file-based transfer is suitable for smaller-scale
projects, files are typically stored in project folders
which are archived after a project’s completion. This



may lead to data loss and reduces the potential to learn
from historical data.

2.1.2 Geotechnical databases

To improve upon file-based data transfer, cloud-
based geotechnical databases can be developed for
the storage of factual and interpreted geotechnical
data. Both commercial and open-source initiatives ex-
ist which all implement the basic relations between
the data types involved in a geotechnical project.
Stuyts et al. (2023) outline the development of a semi-
structured database for geotechnical data and present
the relations between the different entities (Figure 2).
Construction projects encompass one or more geotech-
nical surveys and each surveys has one or more testing
locations where in-situ tests are performed or samples
are taken. On those samples, further laboratory tests
can be performed. These entity relations were imple-
mented by the authors in a PostgreSQL database with
PostGIS extension for geospatial functionality. The
schema of cloud-based databases cannot be altered by
the database user (database fields cannot be added)
so differences in the structure of the data have to be
accomodated in an alternative manner. This can be
achieved by allowing so-called unstructured database
fields in which the user has freedom to store data
with varying structure. JSON fields are used in the
database proposed by Stuyts et al. (2023) to accomo-
date differences in CPT data formats or triaxial test
outputs. To allow further use of the JSON fields, stan-
dardisation of the JSON format is required but this
standardisation is not enforced by the database itself.
The user is then responsible to adhere to agreed data
formatting practices (e.g. always using the column
name qc for storing cone tip resistance listings).

Using a geospatially enabled database allows data
to be stored and retrieved in a structured man-
ner. Data loss is prevented since data from historical
projects remains available in the database for further
use. When the database is stored in the cloud, it is
accessible 24/7 and world-wide allowing all stakehold-
ers to effectively collaborate on the data. To ensure
that the database contains high-quality data, a data
QA/QC process is required. This can either happen
before uploading the data to the database or by cre-
ating versions of the data with different levels of ap-
provals. Only the fully approved data should then be
used in a design process.

Figure 2. Entity relations between geotechnical data
types (Stuyts et al., 2023)

2.1.3 Open data

Several initiatives exist for making geotechnical
data available in the public domain. These initiatives
are often led by governments who disclose the data ob-
tained with tax-payer funds. For students, researchers
and practicing engineers, this data can be a very use-
ful supplement to commercially obtained site investi-
gation data. Various schemes for sharing data in the
public domain exist, ranging from file-based data shar-
ing on web pages to providing access to cloud-based
geotechnical database through XML or GIS interfaces.

The tendering process for offshore wind farm
projects in Europe has played a significant role in mak-
ing more offshore site investigation data available to
the public. Several governments provide geotechnical
survey data as part of the public tender for offshore
wind farm sites. This data is available for the follow-
ing countries:

• The Netherlands (https://offshorewind.rvo.
nl/): Reports and digital file-based data for off-
shore wind farm projects in the Dutch Exclusive
Economic Zone (EEZ).

• Germany (https://pinta.bsh.de/?lang=en):
Reports and digital file-based data for BSH ten-
ders for offshore wind farm projects in the Ger-
man North Sea and Baltic Sea.

• Belgium (https://offshore.digital-database.
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economie.fgov.be): File-based geotechnical
and geophysical data and GIS application for
data viewing for the public tender for the Bel-
gian Princess Elizabeth Zone.

• United Kingdom (https://www.marinedataexchange.
co.uk/): Geotechnical and geophysical data for
offshore wind farm projects which are fully com-
missioned. The offshore wind farm developers
are obliged to submit this data after wind farm
construction is complete.

The Flemish goverment (https://dov.vlaanderen/be)
makes CPT and borehole data for the entire Flem-
ish region available through a web-based viewer or
a XML Application Programming Interface (API).
Such APIs allow geotechnical data to be retrieved
based on complex geospatial data queries and allow
automation of the geotechnical parameter selection
and design workflows. A similar platform is avail-
able for the Netherlands (https://www.dinoloket.nl/
ondergrondgegevens). These data platforms provide
the large datasets which form a pre-requisite for data
science and machine learning tasks.

2.2 Data quality assessments

Before starting a machine learning workflow, the
quality of the data always needs to be checked. Sev-
eral aspects of the data acquisition process can affect
the data quality. Geotechnical testing creates distur-
bances in the soil which will have an impact on the
test results. Sample disturbance during field sampling
can be assessed by measuring the change in void ra-
tio during the consolidation phase of triaxial testing
(Lunne et al., 1998). Where possible, such checks
should always be performed and the the triaxial test-
ing results should be supplemented with meta-data
describing any possible effects of the sampling tech-
nique. For reconstituted samples, the reconstitution
technique can lead to differences in the behaviour dur-
ing testing (Fearon and Coop, 2000). Although the
majority of geotechnical datasets will only contain the
geotechnical parameter which is the result of the test
(e.g. peak drained friction angle), being aware of the
meta-data will allow data to be differentiated based
on the basis of sample quality. Sample quality can
be encoded as a categorical feature. For example, the
sample quality for cohesive samples is subdivided into
four categories by Lunne et al. (1998). However, no
concensus currently exists on a uniform scoring sys-
tem which would apply to all soil mechanical tests.

Even when a dataset is gathered with high-quality
sampling and testing techniques, statistical variations
will still exist within the geological formation. Describ-
ing the statistical properties of the dataset with both
numerical metrics (e.g. mean, median, standard de-
viation) and graphical representations (boxplots, his-
tograms) is recommended to allow the engineer to gain
in-depth knowledge of the dataset they are working
with. Geological formations with large statistical vari-
ations can be discerned from those with more uniform
properties. A good understanding of the site geology is
also relevant in this respect. Low energy depositional
environments with more fine grained material will typ-
ically show a greater uniformity of test results than
high energy environments where more coarse grained
material is present. This is illustrated with a CPT
trace from the Princess Elizabeth Zone (PEZ) offshore
Belgium. This dataset is described further in Section
3. Figure 3 shows that from surface to 11m depth, a
layer of dense to very dense sand with heterogenous
cone resistance is observed. Below 11m, stiff Tertiary
clay of the Formation of Kortrijk with more uniform
cone resistance is identified.

Figure 3. Cone tip resistance trace for a location from
the Belgian Princess Elizabeth Zone.

During the exploration of the dataset, it is also im-
portant to identify correlations between geotechnical
parameters. Pearson’s correlation coefficient is often
used to calculate a metric for the correlation between
features of a dataset. It should however be noted that
Pearson’s coeffcient determines the amount of linear
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correlation between features. If the data shows non-
linearity, the correlation coefficients are misleading.
Rather than calculating correlation coefficients numer-
ically, it is recommended to create a scattermatrix
plotting the feature values against each other. This
reveals non-linear correlations in the dataset. An ex-
ample of such a scattermatrix for the ISFOG pile driv-
ing dataset (Stuyts, 2020) is shown in Figure 4. The
diagonal subplots show a histogram of the individual
features and the off-diagonal subplots reveal correla-
tions between the features.

Figure 4. Scattermatrix for the ISFOG pile driving
dataset (Stuyts, 2020).

The geospatial data coverage also impacts the qual-
ity of a dataset. While sparse datasets may capture
large-scale variations, the statistical properties of such
data may be less relevant when only considering the
soil volume around a small subset of the boreholes.
In addition to conventional statistical analysis, vari-
ograms capture the geospatial uncertainty on the data
(Chiles and Delfiner, 2012). Equation 1 shows the
mathematical formula for an experimental variogram.
For a number of point pairs with separation distance−→
h , the sum of the differences between the values of
the function F at the first points and second points
are taken and divided by the number of pairs. Fig-
ure 5 shows the variogram for axial pile resistance at
30m depth for 2.5m diameter tubular piles at a North
Sea wind farm. The figure shows that at separation
distances less than 1000m, reduced variability is ob-
served. For larger separation distances, the variation
is equal to the variance of the entire site. The deter-
mination of a high-quality variogram is only possible
when a dense site investigation coverage is available.
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Figure 5. Variogram of axial pile resistance at 30m depth
for 2.5m diameter tubular piles at a North Sea wind farm
(Stuyts et al., 2010). The number of pairs are shown for
each spacing.

Machine learning model building should only start
after the engineer has gained a throrough understand-
ing of the dataset in terms of how it was acquired,
which geospatial trends and correlations may exist and
what the inherent statistical variations are.

2.3 Combining data from various sources

When developing the datasets for the determina-
tion of geotechnical parameter correlation, data from
various sources need to be combined. For example,
when developing the database for determining a cor-
relation for effective friction angle data in silts and
clays from CPT data, Ouyang and Mayne (2018) had
to determine the CPT measurements for depths corre-
sponding to the depths of the triaxial testing samples.
Another example is the determination of shear wave
velocity from CPT data using the seismic CPT. In the
offshore environment, the majority of tests is carried
out using a dual-geophone setup (Figure 6). The value
of Vs derived from the signals at the two geophones is
typically assigned to a depth coordinate half-way be-
tween the two geophones. When comparing this shear
wave velocity with CPT data, it should be taken into
account that Vs represents the average wave propaga-
tion velocity in the region between the two geophones.
It is therefore recommended to average the CPT mea-
surements in this depth range. Such scale effects need



to be considered when combining data from different
sources.

Figure 6. Schematic representation of a seismic cone with
a dual-geophone setup.

A good characterisation of the elastic properties of
the seabed through Vs measurements and CPT-based
correlations for Vs allows the use of seismic inversion
techniques. The geophysical data is then used in a
quantitative manner to interpolate the available Vs

measurements. Karkov et al. (2022) describe the use
of amplitude vs offset seismic inversion for obtaining
syntetic CPTs at locations where no geotechnical tests
have been performed.

Another example where data from various sources
has to be combined is when the same geotechnical pa-
rameter is measured using several methods with vary-
ing measurement uncertainty. For example, in offshore
site investigations, undrained shear strength Su may
be derived from offshore laboratory tests with hand-
held tools (torvane, pocket penetrometer and minia-
ture vane tests) or from more accurate onshore labora-
tory tests such as direct simple shear (DSS) or consoli-
dated undrained triaxial (CU) tests. CPT tests results
can also be used to determine Su using the proportion-
ality factorNkt between Su and the net cone resistance
qnet (Lunne et al., 2002). This is illustrated in Figure
7. The dataset on undrained shear strength which is
shown in the figure contains data with varying levels

of confidence. This needs to be taken into account
during machine learning model building. Techniques
such as Multi-fidelity data fusion (MFDF) (Stuyts and
Suryasentana, 2023) can be used to work with such
heterogeneous datasets and still make meaningful pre-
dictions.

Figure 7. Undrained shear strength measurements from
various data sources.

2.4 Data dimensionality

Geotechnical datasets typically contain a large
amount of features to describe soil type, depth range,
raw and normalised CPT parameters, ... . When a
dataset is partioned to look at selected combinations
of soil type, depth range, cone resistance range, ...
the amount of data in the dataset quickly shrinks and
training a machine learning model becomes difficult.

Moreover, when a machine learning model is
trained on a dataset with a large number of features,
model coefficients have to be determined to capture
the influence of each of those features. This is called
the curse of dimensionality and may lead to ML mod-
els that perform poorly. Geotechnical dataset are often
limited in size with hundreds or thousands of samples.
Datasets used for training advanced machine learning
models have millions or even billions of samples. To
make machine learning models perform well, the num-
ber of samples needs to be much larger than the num-
ber of features. When evaluating a dataset, the fea-
tures which have the most meaningful impact on the
model outcome should be isolated and less meaningful
features may be discarded during the model training
process.



3 Datasets

Several machine learning techniques are illustrated
in this paper based on a three example dataset from
offshore wind farm projects. The datasets are sum-
marised in the following sections and are provided
on GitHub: https://github.com/snakesonabrain/

isc7_datasets.

3.1 Downhole PCPT data on a sandy site

CPT testing can be performed in a continuous
manner from the seabed, but if the cone tip encoun-
ters a hard stratum or the friction on the cone rods
becomes too large (typically at deeper depths) refusal
may occur and the test needs to be terminated. To
mitigate this issue, offshore CPTs are often performed
from the bottom of the drillstring. In this downhole
mode, the CPT trace is composed of a number of con-
secutive strokes. Figure 8 shows an example downhole
CPT with strokes of 3m length. When the CPT stroke
is started from the bottom of the borehole, the cone
resistance will have to build up until the soil fails plas-
tically and the cone can advance. This initial phase
of the penetration is characterised by a steep increase
of cone resistance. The initial parts of the stroke are
marked in red for the example CPT in Figure 8. The
initial part of the stroke is not representative for the
actual penetration resistance and needs to be removed
from the CPT trace when using the trace in e.g. CPT-
based pile design methods. In this paper, this dataset
is used to illustrated classification models. The dataset
consists of 80 downhole CPTs in dense to very dense
sand from the German sector of the North sea. The
data is processed to include both the raw CPT data
and the normalised parameters Qt, Fr and Bq. The
soil behaviour type index Ic according to Robertson
and Cabal (2015) is also available. Out of the 80 lo-
cations, 15 are manually labeled to differentiate the
initial part of the stroke from the remainder of the
data in the stroke.

Figure 8. Example downhole CPT from the downhole
PCPT dataset.

3.2 PCPT data from a site with stiff Ter-
tiary clay

The second offshore wind farm zone in Belgium is
called the Princess Elizabeth Zone (PEZ) and will be
developed between 2024 and 2030. The Belgian federal
government procured the geotechnical and geophysical
surveys at the site and made the data available in the
public domain.

An extensive CPT campaign was conducted at
PEZ. Continuous CPT testing from the seabed (so-
called seafloor CPTs) was performed until refusal.
The deeper portions of the site were characterised by
discontinuous downhole CPT testing. An example of
a seafloor CPT and a downhole CPT at the same lo-
cation is shown in Figure 9. The downhole CPT starts
from the depth where the seafloor CPT terminates.

The PEZ site is characterised by a massive layer
of stiff Tertiary clay from the Formation of Kortrijk
which occurs across the entire site. Overlying the
clay layer, there are varying amounts of sand cover.
Within the Kortrijk Formation, certain marker hori-
zons are identifiable from the geophysical data. The
PEZ dataset is used to illustrate the detection of these
marker horizons with anomaly detection algorithms.

https://github.com/snakesonabrain/isc7_datasets
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Figure 9. Example seafloor and downhole CPT for the
PEZ.

3.3 S-PCPT shear wave velocity database

Determining shear wave velocity profiles from CPT
data has been the subject of several studies (Rix and
Stokoe, 1991), (Mayne and Rix, 1993), (Hegazy and
Mayne, 2006), (Andrus et al., 2007). At the offshore
wind farm sites in the Netherlands, extensive S-PCPT
testing was performed which allowed the compilation
of a dataset of 2905 S-PCPT measurements with cor-
responding CPT parameters. All S-PCPT tests in
the dataset were executed with a seafloor CPT rig.
The S-PCPT cone was equipped with a dual geophone
setup. In accordance with the recommendations of the
ISO 19901-8:2014 standard, all points shallower than
5m below seafloor were removed as these points may
lead to inaccurate Vs estimates. Raw and normalised
CPT parameters were compiled and the soil behaviour
type index Ic was also calculated. All CPT parame-
ters were averaged in the depth range between the two
geophones.

Figure 10 shows an overview of the Vs dataset in
terms of the depth, soil behaviour type index and shear
wave velocity of the data. The data shows an increase
of Vs with depth and smaller Ic-values (coarser grained
soils) appear to be associated with higher Vs. The
data shows significant scatter and a number of outliers.
This dataset is used to illustrate regression models and
dimensionality reduction techniques.

Figure 10. Overview of the North Sea Vs dataset.

4 Supervised machine learning tech-
niques

Machine learning algorithms which learn from
known observations are known as supervised learn-
ing algorithms. These have several applications in
geotechnical engineering such as the determination of
soil parameter correlations, data-driven prediction of
foundation resistance or stiffness and learning of foun-
dation installation behaviour from recorded installa-
tion data. In this section, supervised learning tech-
niques are described in terms of the model formulation,
the model quality metrics and the application to the
prediction of continuous and categorical target vari-
ables. Deep learning is also presented here in terms
of supervised learning, although it should be noted
that neural networks can also be used in unsupervised
learning applications.

4.1 Formulation of the supervised learn-
ing problem

In a supervised learning algorithm, the machine
learning algorithm takes a labelled dataset and learns
patterns from this data during the training phase. The
label is a value, also known as the target, which the
user seeks to predict from the input. This target can
either be discrete or continuous. The input variables
on which the predictions are based are also known as
features.

Figure 11 depicts the process of training a machine
learning model using a dataset containing m labelled
samples. This dataset comprises n features and a tar-
get variable y, which is known for the labelled samples.
The primary goal of machine learning is to discover the



relationship between these features and the target, ul-
timately enabling accurate predictions for unseen fea-
tures.

Figure 11. Schematic representation of a supervised
learning problem.

The machine learning model is a mathematical con-
struct that seeks to approximate the true relationship
f between the target variable and the input features x1

to xn with an approximative relation f̂ . The predic-
tion ŷ generated by the machine learning model might
deviate from the true value y of the target. During the
training process, the model coefficients are adjusted
to minimize the error ϵ, ensuring better alignment be-
tween predictions and observed outcomes. This is rep-
resented in Equation 2.

ŷ = f̂ (x1, x2, ..., xn) = y + ϵ (2)

In machine learning, a loss function is minimized to
determine the optimal set of model coefficients. This
optimal fit relies on both the variability (scatter) in
the training data and the model’s capacity to capture
the underlying patterns within the data.

Additionally, the model incorporates a set of hyper-
parameters; parameters that govern the model’s be-
havior. These hyperparameters are fixed before the
training process begins. However, they can be tuned
by the user to enhance the overall performance of the
machine learning model.

The training phase consists of minimising the loss
function by optimising the model coefficients. This
results in a minimal difference between the model pre-
dictions and the known target values of the labeled
training dataset. Once trained, the model can be used
to make predictions on unseen data.

4.2 Continuous target: Regression

When the target is a continuous variable, super-
vised learning is called regression. Basic regression al-
gorithms such as linear regression are used in conven-
tional geotechnical engineering. Modern data science
libraries such as scikit-learn (Pedregosa et al., 2011)
implement a wide variety of regression algorithms

ranging from the linear regression model to more com-
plex tree-based models such as random forests. Al-
though the internal workings and numerical implemen-
tation of the models may be complex, the documenta-
tion of scikit-learn explains the underlying principles.
Any user of such models should be aware of these
principles as they provide an understanding of the
strengths and weaknesses of the models. Discussing
the wide variety of machine learning models types is
beyond the scope of this paper. In the examples, two
regression algorithms are applied to the Vs dataset; a
basic linear regression model and the XGBoost algo-
rithm (Chen and Guestrin, 2016).

The majority of machine learning models predict
a scalar value for the target. The uncertainty on the
estimate can then be derived by comparing the pre-
dicted and observed values of the target on the train-
ing dataset. Certain methods are however capable
of calculating a confidence interval on the estimate.
Gaussian Process Regression is a machine learning al-
gorithm which is very similar to kriging techniques
from geostatistics. Given samples with a certain mul-
tivariate distribution, the algorithm will learn patterns
in the data but will also take into account the gener-
alised distance between samples. The result is a pre-
diction technique which does not only provide an es-
timate of the target but also the uncertainty on this
estimate. These techniques can be very powerful on
noisy datasets which contain non-linearities. Figure
12 shows a Gaussian process prediction of a 95% con-
fidence interval on the shear wave velocity profile de-
rived from CPT data. The algorithm has been trained
on the Vs dataset discussed in Section 3. The estimate
of the expected value of Vs from the CPT is shown
as the green line and captures the typical trends of
Vs reported in the literature (Cha et al., 2014). The
predicted confidence interval shows a large uncertainty
which encompasses the input data. The uncerainty in-
creases at shallow depth, where no data is available.
Gaussian Process Regression is very useful in high-
lighting the areas in which the estimate from a ma-
chine learning model is unreliable.



Figure 12. Prediction of the expected value of Vs and
the associated confidence interval using Gaussian Process
Regression.

4.2.1 Model quality metrics

When the model has been trained, the model accu-
racy can be calculated by evaluating the differences be-
tween the predictions ŷ and the known target valuesy.
Several accuracy metrics exist:

• Mean Absolute Error (MAE): MAE =
1
n

∑n
1 ∥yi − ŷi∥

• Mean Square Error (MSE): MSE =
1
n

∑n
1 (yi − ŷi)

2

• Coefficient of determination (R2): R2 = 1 −∑n
1 (yi−ŷi)

2∑n
1 (yi−ȳ)2

The coefficient of determination R2 is an interest-
ing metric for machine learning models as it is a mea-
sure for the proportion of the variance in the training
data which is captured by the model. The score should
be as close to 1 as possible, in which case the variance
of the model predictions is exactly equal to the vari-
ance of the training data. R2 can become negative if
a model does not capture the underlying trends in the
data.

By using appropriate loss functions, the accuracy
metrics are optimised on the training dataset. How-
ever, this is no guarantee that the trained model will
perform well on unseen data. To perform well on
unseen data, the model must capture the underlying
trends in the dataset and should not overfit the data.
It is said that the model should generalise well. To
evaluate this, a portion of the labelled dataset is with-
held during the training phase. Typically 20% of the
data is retailed as the test data. This test data is then

used to evaluate the performance of the model on un-
seen data. This is called train-test splitting. If the
model generalises well, it should show similar perfor-
mance on the data used for training and on the test
data which was not part of the training phase. The
train-test split can be performed k times in which case
it is called k-fold cross-validation. The accuracy scores
of train and test set for each of the k folds are then
analysed (Figure 13).

Figure 13. Illustration of k-fold cross-validation
(Raschka, 2015).

4.3 Categorical target: Classification

When a supervised learning algorithm is tasked
with predicting a discrete value, the model is called a
classification model. The target is a class label which
needs to be predicted from the feature values. Sev-
eral geotechnical problems are categorical in nature,
such as the prediction of a soil type from CPT data
(Stuyts, 2020). If the number of classes is equal to two,
the classification is called binary classification. Prob-
lems like the prediction of pile refusal during driving
or the identification of the initial part of the stroke of
a downhole CPT are binary classification problems.

Several machine learning algorithms exist such as,
linear classifiers (logistic regression) and decision trees.
These basic classification algorithms are illustrated on
the downhole CPT dataset.

4.3.1 Prediction of the class label

All classification models will predict the class of the
target variable but certain algorithms such as logistic
regression and decision trees will also provide a class
probability for each prediction. For example, in bi-
nary classification, the model will not predict whether
the expected class label is 0 or 1, but it will instead
predict the probability for each of these classes (e.g.
the model will say that a sample has 80% chance of
belonging to class 0 and 20% chance of belonging to



class 1). This allows the user to determine for which
of range the feature values, the model is more reliable.

4.3.2 Model quality metrics

The model quality metrics are different from those
used in regression models. The accuracy score is de-
fined in Equation 3.

Accuracy score =
number of correct predictions

number of samples
(3)

The accuracy of the model can also be displayed
graphically in a confusion matrix. The matrix shows
the true labels as matrix rows and the predicted la-
bels as columns. In case of perfect predictions, all
off-diagonal terms should be zero. This is illustrated
in Figure 14 for a linear classifier prediction the soil
type from CPT data (Stuyts, 2020). In this example,
the model is accurate for soil type 3 (clays) but less ac-
curate in differentiating clean sand (soil type 6) from
silty sand (soil type 5) and silt (soil type 4).

Figure 14. Confusion matrix for a linear classifier of soil
type from CPT data (Stuyts, 2020).

4.4 Deep learning

Deep learning is a subtype of machine learning in
which artificial neural networks are trained to predict
a discrete or continuous outcome. Figure 15 shows
the basic building block of a neural network. The in-
puts (feature values) are multiplied by weights and
summed. This net input is then passed to an activa-
tion function φ to calculate the output. The activa-
tion function is usually non-linear and can be chosen

to coerce the output into a specific format (e.g. the
sigmoid function to ensure that outputs are between
0 and 1 or the RELU function to ensure that outputs
are always positive). This basic buildling block can be
combined multiple times to lead to complex networks
with multiple layers. The training process for such a
model consists of optimising the weights to minimise a
loss function. This is done through back-propagation,
in which the gradient of the loss function with respect
to each weight is calculated. A gradient descent al-
gorithm is then used to iteratively calculate the opti-
mised weights. As neural networks become larger, this
optimisation process can get very computationally ex-
pensive.

Figure 15. Basic building block for a neural network.

Neural networks can be applied to the regression
and classificiation problems described above. They
have been used to learn relations between geophysi-
cal data from seismic reflection surveys and CPT data
(Sauvin et al., 2019). They also have applications in
image or video analysis. In such cases, they use convo-
lutional layers to extract features from the image. The
image is encoded as a grid of pixels with an RGB-value
(encoding the amount of Red Green Blue in the color)
assigned to each pixel. Training a network on each in-
dividual pixel would be very time consuming. The con-
volutional layers apply filters which slide over regions
of the image to extract features. These filters lead to
a reduced set of features which make the training pro-
cess more efficient. The convolutional neural networks
(CNNs) have already been applied to microscope im-
ages of soil grains to identify the different minerals
in a sample without requiring expensive mineralogical
analysis. King et al. (2023) use a pre-trained CNN
to extract the glauconite content of a sample without
having to use the magnetic separator technique.

Neural networks can also be used to learn pat-
terns from timeseries. The model then learns to pre-
dict future behaviour from past observations. LSTM



(Long short-term memory) models are popular for this
type of applications. They are applied to forward pre-
dictions of pile driving by Stuyts and Suryasentana
(2023).

Although deep learning is popular for building very
advanced models from large datasets, geotechnical
problems are often less suitable for their application.
Because the datasets are small (thousands instead of
millions of samples), determining a suitable network
architecture and training the model can be challeng-
ing. The models can easily overfit small datasets and
have more difficulty to learn general patterns from the
data. This could result in model behaviour that is not
physically meaningful. To enforce physically meaning-
ful model behaviour, the governing differential equa-
tions of the physical phenomenon can be taken into
account for the loss function. Model outputs which
deviate substantially from what is physically mean-
ingful are penalised in such Physics-Informed Neural
Networks (PINNs). In any case, the model’s accuracy
and generalisation should be rigorously verified.

5 Unsupervised machine learning tech-
niques

As data labelling may be a labour intensive process
and may not be feasible within a reasonable timeframe
for datasets with millions of samples, extraction of pat-
terns from unlabelled data is often the target of a ma-
chine learning exercise. Two types of algorithms are
discerned, clustering and principal component analysis
which are discussed hereunder.

5.1 Clustering algorithms

For clustering algorithms, the primary goal is to
distinguish clusters exhibiting significantly different
behavior. For geotechnical engineers, this concept is
most tangible when considering the clustering of foun-
dation locations across a project site. These locations
are grouped based on shared geotechnical conditions,
such as depth to a load-bearing stratum or the pres-
ence of soft soil. The number of clusters needed to
capture variations between individual location groups
depends on the geological characteristics of the site.
While geologically homogeneous sites may require only
a few clusters, sites with strong heterogeneity may ne-
cessitate more.

In unsupervised clustering analysis, the feature
space is partitioned into clusters based on similarities
among individual data points. Among various clus-
tering algorithms, the K-means clustering algorithm

stands out as an intuitive choice. It calculates a gener-
alized distance between cluster centers and each data
point (as expressed in Equation 4). Optimal cluster
centers are determined by minimizing the distance be-
tween points within a cluster while maximizing the
distance between cluster centers. However, identify-
ing meaningful clusters can be challenging for datasets
with significant scatter.

n∑
i=0

min
µj∈C

(
∥xi − µj∥2

)
(4)

An example of such a clustering is shown in Fig-
ure 16 for the seafloor CPTs at the PEZ offshore wind
farm site. The data which is associated with the sur-
face sand layer is shown as red diamonds and the data
associated with the stiff clay of the Kortrijk Formation
is shown as blue circles. It is clear that the two soil
type clusters can be discerned by looking at their cone
tip resistance and sleeve friction. Indeed, the clays of
the Kortrijk formation are expected to have a higher
friction ratio.

Figure 16. Clustering of CPT data from seafloor CPTs
at PEZ.

When clusters have been identified, data which lies
significantly outside of the clusters can be identified as
outliers. Outliers detection algorithms are also consid-
ered as a part of unsupervised learning and are closely
related to clustering algorithms. In Section 8, an ex-
ample on the detection of cone resistance spikes will
be illustrated on the PEZ downhole CPT dataset.



5.2 Principal Component Analysis

Geotechnical dataset often contain features which
are correlated, so the dimensionality of the dataset can
be reduced without losing substantial information. In
Principal Component Analysis (PCA), the data from
the original feature space is transformed into a new
feature space with reduced dimension. The new fea-
ture space is identified by calculating a series of or-
thogonal unit vectors which represent the best-fitting
lines through the data points. The unit vectors which
captures the most significant variations are then re-
tained while unit vectors with limited variance can be
discarded.

PCA is illustrated in Section 8 on the shear wave
velocity dataset. The use of Non-Negative Matrix
Factorization (NMF), a technique for extracting phys-
ically meaningful feature combinations from data is
also illustrated there.

6 Large Language Models

6.1 Model internal workings

Large Language Models have led to an acceleration
of the use of AI across a range of applications. While
AI was already widely in use at the time of publish-
ing chatGPT, the user adoption of this model was un-
precedented. GPT stands for Generative Pre-trained
Transformer. These algorithms are able to generate
sequences of meaningful text from a prompt. They
use Transformer network architectures (Keita, 2022),
a complex type of network in which word sequences
are encoded by tokenizing words (assigning a unique
number to a word or word part). The position of the
word in a sentence is also encoded using a context vec-
tor. The Transformer architecture contains attention
mechanisms to capture the contextual relations that
exist between words in a given sequence.

In the pre-training phase, the transformers are
trained using extensive volumes of text sourced from
the internet. For instance, GPT-3 (Brown et al., 2020)
was trained on 45 terabytes of text data and boasts
an impressive 175 billion parameters. The expenses
incurred during the model’s training process are esti-
mated to be approximately 4 million USD. During this
pre-training phase, the algorithm discovers the statis-
tical patterns of a language without ever being exposed
to grammar rules.

Although chatGPT has received a lot of attention
for its ability to create meaninful text output from user
defined queries or prompts, the Transformer architec-
ture is also able to create images or even video from

text-based prompts.

6.2 LLM model enhancements

After the model is pre-trained, it can understand
the basics of a language but it is not yet equipped to
perform detailed tasks. During the model fine-tuning
phase, the pre-trained model is used as a starting point
and is then fine-tuned on a domain specific narrower
dataset.

This fine-tuning often consists of a reinforcement
learning from human feedback phase (Yang, 2023) as
illustrated in Figure 17. In this phase, the pre-trained
model is used to generate several outputs which are
then ranked by a human agent in terms of appropri-
ateness. A separate reward model is trained on this
basis and this reward model is then used to further
optimise the coefficients of the pre-trained LLM.

Figure 17. Explanation of Reinforcement Learning from
Human Feedback (RLHF) (Yang, 2023).

Creating a LLM and fine-tuning it is beyond the ca-
pabilities of geotechnical engineers, but non-specialists
can still increase their effectiveness in using LLMs by
using prompt engineering. For specific example appli-
cations, software platforms exist which allow users to
work with pre-trained LLMs and fine-tune them.

6.3 Prompt engineering

In Prompt Engineering, the user of a LLM algo-
rithm crafts the text of the query which is fed to the
LLM to ensure an optimal response. Although LLMs
have a remarkable capacity for returning appropri-
ate answer for direct questions or so-called zero-shot
prompts, the output of an LLM can be enhanced by
providing specific examples.

When asking Microsoft’s CoPilot the question “
What is the CPT response for silt ”, the response
in Figure 18 is returned. The response is not very tar-
getted and includes elements of liquefaction resistance
assessment which may not be relevant for all users.



Figure 18. Microsoft CoPilot response for zero-shot
prompting.

By providing a couple of example answers to the
LLM, the LLM can be guided to provide a more pre-
cise answer. The question from the zero-shot prompt
was modified as follows: “ The CPT response for
sand is a high cone resistance and hydrostatic
pore pressure. The CPT response for clay is a
low cone resistance and excess pore pressure.
What is the CPT response for silt ”. Based on
this so-called few-shot prompt, the response in Figure
19 is returned. Although the response may still not be
appropriate for all silts, it is much more precise and
returns the information which is desired by the user.

Figure 19. Microsoft CoPilot response for few-shot
prompting.

A full discussion on prompt engineering is beyond
the scope of this paper. The reader is referred to
DIAR.AI (2024) for more details on prompt engineer-
ing techniques.

6.4 LLM fine-tuning for specific tasks

For very specific problems where domain knowledge
is important, the LLMs which are available through
APIs may not be sufficient. In such cases, the model
needs to be fine-tuned by providing domain-specific
knowledge to a pre-trained model and updating its
weights. Domain-specific knowledge can be provided
to an LLM by creating pairs of questions and answers
which capture the knowledge that needs to be learned
by the model. The pairs of questions and answers can

either be specified as a prompt and an output, or ad-
ditional input which contains elements of the answer
can be specified with the prompt. The example below
first shows a prompt and output without additional
input. The second part does contain additional input.

The task of preparing prompt-output pairs can
be quite labour-intensive but if accurate answers are
sought, this may be indispensable.

{

"instruction": "Write a description of the CPT

dissipation test.",

"input": "",

"output": "A dissipation test during CPT testing

examines the decay of excess pore pressure

over time. The cone is kept at a constant depth

and the pore pressure is continuously measured.

The horizontal coefficient of consolidation can

be derived from this test."

},

{

"instruction": "Which of the following tests is

not a laboratory test?",

"input": "CU triaxial, Direct Simple Shear,

Dilatometer, Oedometer",

"output": "Dilatometer"

}

When the additional prompt-output pairs have
been defined, the model can be fine-tuned. The LLM
transforms a text input which can be encoded as a vec-
tor x⃗ into an embedding h⃗. h⃗ is a vector which encodes
the meaning and context of words. This transforma-
tion of inputs to outputs can then be expressed as a
matrix multiplication (Equation 5).

h⃗ = W · x⃗ (5)

When fine-tuning the LLM, the weight matrix can
be updated by summing the weight matrix W of the
pre-trained model with a weight update matrix ∆W .
LLMs can contain billions of weights and therefore the
weight matrix can have a very large rank. Figure 20
shows two strategies for model fine-tuning. In regu-
lar fine-tuning, the weight update matrix ∆W has the
same rank as the weight matrix W of the pre-trained
model. Updating the model weights with this strag-
egy is very expensive in terms of computer time and
resources. The updated embeddings can be expressed
as shown in Equation 6.

To reduce the computational requirements and
make LLM fine-tuning possible on a single Graphical
Processing Unit (GPU), a Low-Rank (LoRa) approxi-
mation can be taken for the weight update matrix. In



this strategy, the weight update matrix ∆W is writ-
ten as the product of two low-rank matrices WA and
WB . If the weight matrix has dimensions n×m, WA

is taken as a n× k matrix and WB as a k×m matrix.
The multiplication of these two matrices yields a n×m
matrix (Equation 7). By choosing a low number for
k, the computational requirements for the fine-tuning
task are significantly reduced.

Figure 20. Explanation of Low Rank adaptation for LLM
re-training (AI, 2023).

h⃗updated = (W +∆W ) · x⃗ (6)

h⃗updated,LoRa =
(
Wn×m +WAn×k

·WBk×m

)
· x⃗ (7)

Implementing LLMs and the code for fine-tuning
them is a very complex task which cannot be under-
taken by geotechnical engineers. However, there are
software platforms such as LitGPT (AI, 2023) and
Hugging Face (Hugging Face, 2023) which allow users
to leverage the capabilities of pre-trained LLMs and
perform model fine-tuning without having to master
the underlying implementations. These platforms al-
low geotechnical engineers to focus on their subject
matter expertise. Engineers can then concentrate their
efforts on preparing high quality prompt-output pairs
for fine-tuning and evaluating whether the fine-tuned
model performs well.

A fine-tuned LLM is currently being developed by
researchers at the Flemish Research Institute Vito.
They are confronted with soil descriptions (in Dutch)
which are highly dependent on the person logging
the core. These descriptions need to be rationalised
into a major and minor soil type in an automated
manner. Because existing algorithms did not provide
good results, the Dutch adaptation BERTje (De Vries
et al., 2019) of the LLM BERT (Bidirectional Encoder
Representations from Transformers) was fine-tuned on
a number of human-processed soil descriptions using
the Hugging Face platform. The initial results look

promising, with superior performance to previously de-
veloped rule-based algorithms.

7 Example applications of supervised
learning

In this section, the machine learning techniques of
regression and classification are illustrated on basic ex-
ample problems. The examples are kept relatively sim-
ple to allow engineers reading this paper to repeat the
analyses themselves. As discussed in Section 3, all
data is provided on GitHub.

7.1 Regression model for Vs

Deriving shear wave velocity profiles from CPT
data is a common task in geotechnical parameter selec-
tion. Several correlations are proposed in the literature
which all formulate a closed-form regression model to
derive Vs (or Gmax) from CPT data. Machine learning
models can be trained on Vs data from S-PCPT with
corresponding CPT measurements.

In this paper, two types of regression model are
evaluated. First, a simple linear regression model is
applied to the data. Because the relation between Vs

and other features such as vertical effective stress is
non-linear, feature transformation is used to linearise
the relation between features and the target. Next, a
more sophisticated XGBoost model is applied. The Vs

dataset described in Section 3 is used for the regres-
sion.

7.1.1 Linearised model

Cha et al. (2014) identify a power-law relation be-
tween Vs and vertical effective stress. Although the
authors make a distinction between the effective stress
in the direction of wave propagation and the direction
perpendicular to it, the relation can also be simpli-
fied in terms of the vertical effective stress as shown in
Equation 8.

Vs = α ·
(

σ′
v0

1kPa

)β

(8)

The coefficients α and β then depend on the pack-
ing density and mineralogy of the soil. Robertson and
Cabal (2015) propose a correlation in which α has a
linear relation with the soil behaviour type index Ic.
The relation between Vs, σ

′
v0 and Ic can be expressed

as shown in Equation 9.



Vs = 10a0+a1·Ic
(

σ′
vo

1kPa

)β

(9)

By taking the logarithm of each term in the equa-
tion, a linear relation between log10(Vs) and Ic and
log10 (σ

′
vo/1kPa) is obtained (Equation 10). A linear

regression machine learning algorithm can be applied
to optimise the coefficients a0, a1 and β.

log10(Vs) = (a0 + a1 · Ic) + β · log10
(

σ′
vo

1kPa

)
(10)

The dataset was partitioned to use 75% of the data
as training data and the remainder as a test set for
checking the generalisation of the model. It should
be noted that the location of the data was not con-
sidered in the partitioning. In many cases, it can be
meaningful to make partitions which are based on the
geospatial location of the data (Stuyts, 2020).

After optimisation, the model coefficients shown in
Equation 11 are obtained as a result of the linear re-
gression. With these coefficients, the R2 score on the
training set is 0.46 and on the test set, R2 = 0.48
is obtained. Although this value is relatively low for
R2, the comparable scores on the training and test set
show that the model generalises well.

Vs = 102.0385−0.0694·Ic ·
(

σ′
vo

1kPa

)0.24669

(11)

The accuracy of the model can also be represented
graphically. Figure 21 shows a scatterplot of the mea-
sured Vs from the training set and the corresponding
predictions. All points are colour-coded in term of the
soil behaviour type index Ic to check for any trends
with soil type. In case of a perfect prediction, the point
lies on the grey dashed line. Inevitably, some scat-
ter around this line is expected. An unbiased model
should have a scatter which is equally distributed along
the parity line. Figure 21 shows that the linear regres-
sion model shows a tendency for underprediction of
higher Vs values. The model does not show any spe-
cific trends with soil types. Points of all colours are
positioned equally around the parity line.

Figure 21. Graphical representation of the accuracy of
the linear regression model for Vs.

The model performance can also be demonstrated
on a single location. Here the CPT data from the lo-
cation IJV171-SCPT from the IJmuiden Ver offshore
wind farm zone is used. This location was excluded
from the training data. The formula from Equation 11
is applied to the CPT data which was first averaged
using a 0.5m moving average window. This averaging
was necessary to take into account the 0.5m spacing
of the geophones. The resulting prediction is shown in
Figure 22 and can be compared with the Vs measure-
ments from the seismic CPT. The predicted trend (in
green) captures the general trend but some deviation
can be observed for individual datapoints. The under-
prediction of Vs for depths greater than 24m is most
noticeable.

Figure 22. Prediction of Vs at location IJV171-SCPT
with the linear regression model from Equation 11.

Even though the model is not too accurate, it still
captures general trends. This was enforced by trans-
forming the features according to the power-law rela-
tion which is known to be physically meaningful.



7.1.2 XGBoost model

The XGBoost algorithm (Chen and Guestrin, 2016)
is a powerful algorithm based on building consecutive
tree-based learners. The principle is illustrated in Fig-
ure 23. Each decision tree is trained to predict the
residuals (difference between measured and predicted
values) of the previous step. To avoid overfitting, regu-
larisation is applied during model training which pre-
vents the decision trees from making too many par-
titions. The user can also specify the maximum tree
depth explicitly as a hyperparameter. The prediction
error terms are not fully applied to the prediction.
Rather, a learning rate hyperparameter is specified by
the user which determines how much of the predicted
residual is taken into account. This prevents overly
agressive corrections to the predictions. The user sets
how many iterations are performed by specifying the
number of trees as a hyperparameter.

Figure 23. Underlying principle of the XGBoost algo-
rithm (Chen and Guestrin, 2016).

For the Vs dataset, an XGBoost model with 50
trees with a maximum depth of 5 was trained. The
learning rate was set to 0.1. The dataset was again
split into a training set containing 75% of the data
and a test set containing the remaining 25%. The
model was trained on the features qc, vertical effec-
tive stress, Ic, depth, fs, u2, Qt, Fr and Bq. Because
the XGBoost model is composed of consecutive deci-
sion trees, it does not have a closed-form mathematical
formula.

The accuracy of the XGBoost model is shown in
Figure 24. This shows a narrower spread along the
parity line compared to the linear regression model.
The R2 score on the training is 0.69 which is higher
than the linear regression model. The R2 score on
the test dataset is 0.49, which suggests that the model
overfits the training data. This mismatch between the
R2 score of the training and test dataset can be re-
duced by e.g. reducing the learning rate or the max-
imum tree depth. This will come at the expense of a
reduced R2 score on the training dataset.

Figure 24. Graphical representation of the accuracy of
the XGBoost model for Vs.

The model can again be applied to predict the Vs

profile at the unseen location IJV171-SCPT. Figure
25 shows that although the model is far more com-
plex, it provides predictions with similar deviations to
the measurements compared to the linear regression
model. Moreover, the model fails to capture the ex-
pected power law trend. This is especially clear for
the depth range from 0 to 5m where no training data
was available. The XGBoost model was not able to
learn the underlying physical behaviour and should
therefore be considered as an advanced interpolator
inside the feature space. When the feature values de-
viate from those contained in the training dataset, the
model will be unreliable. When extrapolation is ex-
pected, building a model which captures known phys-
ical behaviour appears to be the better approach.

Figure 25. Prediction of Vs at location IJV171-SCPT
with the XGBoost model.



7.2 Classification model for the initial
part of the CPT stroke

Identifying which part of the CPT trace in a down-
hole CPT stroke belongs to the initial build-up of re-
sistance is a binary classification problem which can be
used to illustrate machine learning classification mod-
els. The dataset of labelled downhole CPTs is used
for training a linear classifier (logistic regression) and
a tree-based classifier. Each of the techniques is dis-
cussed in the paragraphs below.

Before starting the machine learning modelling,
meaningful features are extracted from the data. The
initial build-up of resistance is limited to the first cen-
timeters of the stroke, so the distance from the start of
the stroke (∆zstroke) is calculated as an additional fea-
ture. Cohesionless soils typically have higher stiffness
than cohesive soils, so the soil behaviour type index
Ic is also adopted as a feature. The absolute value of
cone tip resistance also plays a role. At deeper depths,
the build-up of resistance will go up to higher qc val-
ues, so qc is also retained as a feature. Finally, the
initial part of the CPT stroke shows a steep increase
of qc with depth. Therefore, the cone resistance gradi-
ent with depth ∆qc/∆z is calculated and retained as
the final feature. The target of the classification model
is a boolean which determines whether a point has to
be removed from the stroke or not. A value of 1 is
assigned if the point has to be removed, a value of 0
if the point is a meaningful part of the cone resistance
trace which should be retained.

Figure 26 shows how the labeled data is separated
in the feature space. The top panel shows that points
with steeper cone resistance gradients are more likely
to belong to the initial part of the stroke. In the
center panel, a reduced distance for cone resistance
build-up is noticed for more cohesive soils (higher Ic).
The bottom panel shows that higher qc values require
larger mobilisation distances. A linear boundary is a
reasonable approximation for separating the points in
∆qc/∆z-∆zstroke space and in qc-∆zstroke space. In the
Ic-∆zstroke space, the boundary appears to be curved
and a non-linear classifier will be required.

For the training of all classification models, the la-
belled data is split into a training set with 80% of the
data and a test set with the remaining 20%. When
performing the partition, one should ensure that there
are sufficient samples for each class in the training and
the test set.

Figure 26. Overview of the labeled data for the classifi-
cation problem.

7.2.1 Logistic regression

Although the name suggests otherwise, the logis-
tic regression algorithm is actually a linear classifica-
tion algorithm. For a binary classification problem,
the probability of the class 1 P (yi = 1|Xi) is given in
Equation 12. During the training phase, the weights
w and intercept w0 are optimised to maximise the ac-
curacy of the model. Equation 12 immediately shows
how the logistic regression algorithm provides proba-
bilistic estimates of each class. The actual prediction
of the algorithm is taken as the class for which a prob-
ability of more than 0.5 is obtained.

p̂(Xi) =
1

1 + exp (−Xiw − w0)
(12)

The predicted class is shown in Figure 27 for the
training set. The predictions are shown in ∆qc/∆z-



∆zstroke space. Because the true class is known for
this data, separate points can be plotted for the fol-
lowing cases:

• True positives: Samples correctly classified as
belonging to the initial part of the stroke;

• True negatives: Sample correctly classified as
not belonging to the initial part of the stroke;

• False positives: Samples incorrectly classified as
belonging to the initial part of the stroke;

• False negatives: Samples incorrectly classified as
not belonging to the initial part of the stroke.

The figure shows clear clusters of points belonging
to the initial part of the stroke and others not be-
longing to it. A region can also be identified on the
boundary of the regions with true positives and true
negatives where the algorithm is less certain of the
predictions. Nevertheless, the model reveals a high
accuracy on both the training and test set of 0.975
and 0.970 respectively. It should be noted that this
number is slightly misleading because the majority of
the data belongs to the non-initial part of the stroke.
Hence, there are a lot of true negatives which increase
the accuracy score. Figure 26 shows that the initial
part of the stroke always happens within 0.6m from
the start of the stroke. If the accuracy score is only
calculated for this data, accuracies of 0.860 and 0.847
are obtained for the training and test set. As the scores
are close together for the training and the test set, it
can be said that the model generalises well.

Figure 27. Results of the logistic regression classification.

The region where the model is less certain can be
visualised even better by plotting the probabilistic pre-
diction with the logistic regression model. Figure 28
shows which probability the ML model assigns to each
sample in terms of belonging to the initial part of the
stroke. Each point is color-coded with the calculated
probability. A probability of 1 means that the point
certainly belongs to the initial part of the stroke, a
probability of 0 means that the point certainly does
not belong to the initial part of the stroke. The plot
clearly shows the transition between the two regions
which is seen as a gradual changing of the colors in the
region of overlap between the two clusters.

Figure 28. Probabilistic results of the logistic regression
classification.

The model can be evaluated on an example CPT
trace. Figure 29 overlays the probabilistic prediction
of whether a point belongs to the initial part of the
stroke with the actual CPT trace. The figure shows
that the model performs well, especially when there is
a sharp contrast between ∆qc/∆z in the initial part of
the stroke and the remaining part. When the transi-
tion is more gradual, the model will assign an interme-
diate probability to the points. This is clearly visible
in the final stroke.



Figure 29. Probabilistic results of the logistic regression
classification applied to a single CPT trace.

7.2.2 Decision trees

In a decision tree classifier, a tree is built where the
data is split according to a splitting criterion which
is aimed at dividing the data into two homogeneous
groups. The splitting criterion is determined as the
one which maximises the information gain. Informa-
tion gain is high when the groups of data which re-
main after splitting are homogeneous, ideally contain-
ing only samples of one class. Unless specified other-
wise, the splitting will continue until perfectly homo-
geneous groups are obtained. The user can control a
number of hyperparameters of the tree building. For
example, the maximum depth of the tree (the number
of times splitting is performed) can be specific as a
hyperparameter.

A decision tree model with a maximum depth of
3 and another model with a maximum depth of 5 are
built for the downhole CPT dataset. The decision tree
with maximum depth of 3 is displayed graphically in
Figure 30. The first split checks whether the distance
from the top of the stroke is less then 0.28m. It parti-
tions the data into two nodes which are then split fur-
ther until the maximum depth of the tree is reached.
The nodes at the end of the decision tree are called
leaves. A class is assigned to each leaf based on which
class label forms the majority of samples in the leaf.
When looking at the deeper splits, it can be seen that
they happen either on the distance from the top of

the stroke or on ∆qc/∆z. Points with a distance from
the top of the stroke less then 0.28m and ∆qc/∆z >
37.137MPa/m are most likely to belong to class 1 (part
of the initial build-up of resistance in the stroke). The
gini score shown in the tree in Figure 30 is a measure
of the impurity of the node. If all samples at a node
are contained in one class, the gini value is low. If the
samples are evenly distributed between both classes,
the gini score is close to 0.5 and the node is said to
be impure. Figure 30 reveals several leaf nodes which
still have a high impurity.

Figure 30. Decision tree with maximum depth of 3.

Figure 31 show the results for the training set for
each model. The accuracy for the model with a maxi-
mum depth of 3 is equal to that of the logistic regres-
sion model. For the model with a maximum depth of 5,
the accuracy score is only marginally improved. Com-
paring Figure 31 and Figure 27 shows that the false
negatives are located in a narrower band for the deci-
sion tree models. The accuracy scores for the model
with maximum depth of 3 are 0.975 and 0.973 for the
training and test set respectively. For the model with
maximum depth of 5, the accuracy score is equal to
0.982 for the training set and 0.973 for the test set.
Although the model with maximum depth of 5 has a
higher accuracy on the training set, it does not im-
prove on the test set. It can be concluded that this
model slightly overfits the data.



Figure 31. Results of the decision tree classification.

8 Example applications of unsuper-
vised learning

When datasets are not labeled, meaningful discov-
eries can still be made from the data. In unsupervised
learning, patterns will be learned from the data. An
example of anomaly detection from CPTs is provided
as well as an example of the extraction of meaningful
information from the S-PCPT dataset.

8.1 Detection of cone resistance spikes in
the PEZ dataset

The stiff clays which form the majority of the foun-
dation subsoil for the Princess Elizabeth Zone are rela-
tively uniform in terms and strength. The CPT traces
show relatively uniform qc profiles (e.g. Figure 9).
However, in the geophysical surveys (GeoXYZ and
G-tec, 2023), reflections are noticed which could be
marker horizons in the Kortrijk Formation. To check

whether the reflectors can be correlated to higher re-
sistances in the CPT trace, it is necessary to identify
which cone resistance values in the Kortrijk Forma-
tion are significantly higher than the cone resistances
for the surrounding clay. This is a task of outlier de-
tection for which specific machine learning algorithms
exist.

Isolation forests (Liu et al., 2012) are a type of ma-
chine learning model which randomly builds a large
number decision trees. The trees select random fea-
tures for the splitting and then select a value between
the feature minimum and feature maximum for the
split. The splitting continues until individual sam-
ples are isolated. The underlying assumption is that it
will take a large amount of random splits to separate
samples which belong to the normal part of the pop-
ulation. Outliers will however be split off relatively
quickly. This is illustrated in Figure 32. In the exam-
ple in the figure, the outlier is split off with just one
partition. Splitting off the normal point marked in red
requires four partitions.

Figure 32. Illustration of the principle of Isolation Forests
(Mavuduru, 2021).

Although outlier detection is relatively straightfor-
ward in two-dimensional space, identifying outliers in
larger dimensional spaces can be challenging. For cer-
tain features, the values for a given sample may be
within the normal range of values whereas for oth-
ers, they may deviate significantly. Outlier detec-
tion techniques provide a way to identify anomalies
in higher dimensional spaces. For the Princess Eliza-
beth Zone CPT data, outliers are identified in a seven-
dimensional space using qc, fs, u2, Qt, Fr, Rf and Ic
as features. It should be noted that depth below mud-
line is not used as a feature, as the clay formations
starts at varying depths due to the varying amounts
of sand cover.

Isolation forests can be built for the CPT dataset
from the Princess Elizabeth Zone. First, the data in
the Kortrijk Formation is identified by assessing at
which depth the soil behaviour type index Ic becomes
larger than 2.7. The proportion of the CPT profile
below this depth is retained for further analysis. Since



the data is downhole CPT data, the initial parts of the
stroke are removed using the logistic regression classi-
fication algorithm discussed in the previous section.

Next, the isolation forest trees are built. The model
has four hyperparameters which can be set to obtain
good quality results:

• Contamination: Sets the threshold for anomaly
scores. The highest percentage of anomaly scores
are retained as outliers. For the PEZ CPT
dataset, the contamination was set to 0.005;

• Number of estimators: The number of trees
which are built by the algorithm. As the PEZ
dataset is quite large with 117732 samples, this
hyperparameter is set to 1000;

• Maximum number of samples: Individual trees
can be trained on a subset of the dataset. This
randomisation avoids certain samples having too
much weight in the tree-building process. This
hyperparameter is set to 0.9 to retain 90% of the
data for each tree;

• Maximum number of features: The number of
features which is used for building the trees can
also be changed for each tree. Randomising
the selected features avoid one particular feature
from having too much weight. For the example,
four out of seven features are retained for each
tree.

The algorithm identifies 589 outlier which can be
visualised in qc-z space (Figure 33). The plot shows
that the majority of outliers have qc values which are
higher than the normal population. However, a num-
ber of outliers exist which display normal qc values.
These samples would have to be inspected by an en-
gineer to check if they have to be removed from the
trace or not. These points are less likely to correspond
to a hard layer. There are also a number of outliers
which lie below the normal qc range. These points
correspond to samples which are in the initial part of
the stroke but which were incorrectly classified by the
classification model.

Figure 33. Visualisation of outliers identief in the PEZ
CPT dataset.

Location-specific cone resistance traces can be plot-
ted to check the effectiveness of the outlier detection
algorithm for identifying hard layers. Figure 34 shows
the results for three selected locations. These results
show that the algorithm can make a distinction be-
tween anomalies of varying amplitude. Larger spikes
are detected as outliers whereas smaller spikes are
treated as normal data. This shows that Isolation
Forests can be used as a technique to rationalise the
identification of outliers. When done by a human, the
identification of samples as outliers would vary from
person to person.

Figure 34. Visualisation of outliers identief in the PEZ
CPT dataset.

8.2 Reduction of dimensionality on the S-
PCPT dataset

When datasets contain a large number of correlated
features, the information contained in the dataset can
be expressed in a space of reduced dimensions. Trans-
formations are applied to the features to identify Prin-
cipal Components, a set of orthogonal components
which explain the maximum amount of variance. As
the dataset which relates Vs with associated CPT fea-
tures contains several correlated features (depth be-



low mudline, qc, qt, fs, u2, Qt, Fr, Bq, Ic, verti-
cal total stress, vertical effective stress and total unit
weight), Principal Component Analysis (PCA) can be
performed on the data. In this technique the covari-
ance matrix of the data is computed and the eigenvec-
tors of this covariance matrix are the Principal Com-
ponents. Although the example PCA explained in this
section works with the data without transforming it,
any non-linear correlations between features will com-
promise the results. Feature transformation could be
considered to linearise the correlations.

For the 11 features of the S-PCPT dataset, 11 prin-
cipal component are calculated and the variance asso-
ciated with each component is plotted in Figure 35.
The results show that the majority of the variance is
contained in the first five components.

Figure 35. Variance for each of the principal components
of the S-PCPT dataset.

The data can then be transformed to the space of
the principal components and the first five components
can be retained as a representation of the data with re-
duced dimension which still preserves the majority of
variance. A scatterplot of the data in terms of the first
two PCA components is shown in Figure 36. When
comparing the data in the PCA feature space with the
data in the original feature space, reduced scatter can
be observed in the PCA feature space. The scatter is
however still significant which can be explained by the
non-linear correlations between the features.

A PCA transformation can be a useful step when
working with large datasets. By using a reduced num-
ber of PCA features, building classification or regres-
sion models with the transformed data is less compu-
tationally expensive.

Figure 36. S-PCPT data plotted in the original and PCA
feature space.

One of the drawbacks of PCA is that the PCA
components are not straightforward to interpret. The
physical meaning of PCA features cannot be directly
understood from the PCA output. Alternative tech-
niques exist which do allow a physical interpreta-
tion of the output. Non-Negative Matrix Factorisa-
tion (NMF) is a technique which approximates a non-
negative feature matrix with the product of two non-
negative matrices. If the feature matrix has n sam-
ples and m features (an n ×m matrix), the two non-
negative matrices are a n×k and k×m matrix, where
k is the selected number of NMF components. To al-
low this technique to be applied, features that have
negative values need to be transformed. A min-max
transformer assigns a value between 0 and 1 for each
feature where 0 corresponds to the minimum of the
feature and 1 corresponds to the maximum. The ad-
vantage of NMF is that the importance of each original
feature in the NMF features is a direct output of the
algorithm. Figure 37 shows the importance of the fea-
tures of the S-PCPT dataset in the four selected NMF
features. Not only can the feature importance be ob-
served, the physical meaning of the NMF features is
often directly interpretable. In the example, the fol-
lowing physical meaning can be assigned to the NMF
features:

• NMF feature 1: High importance of the features
depth below mudline, vertical effective and total
stress. Cone resistance terms and Ic are repre-
sented to a lesser extent. This feature can be
associated with the stress conditions for a con-
sidered point;

• NMF feature 2: High importance of the cone
resistance terms qc and qt. Lesser but non-
negligible importance is observed for fs (which is
often highly correlated with qc) and Qt and Bq,
which both contain a cone resistance component



in their formula. This feature is associated with
cone resistance;

• NMF feature 3: High importance for the soil be-
haviour type index and other features which al-
low the distinction between soil types (e.g. u2

and Bq allow for a distinction between cohesion-
less and cohesive soil). This feature is associated
with the soil type;

• NMF feature 4: High importance for the total
unit weight and lesser importance for Qt, Ic and
Bq. The physical meaning of this feature is less
clear. Often the interpretability reduces with in-
creasing NMF component number. Determining
a suitable number of components is often an it-
erative process.

Figure 37. Interpretation of the NMF features in terms
of original features.

Similar to PCA, the data can be transformed to
NMF feature space to obtain an approximation of the
data with reduced feature dimension.

9 Conclusions

As geotechnical site investigations are data-
intensive campaigns which provide data of varying
quantify and quality, machine learning techniques have
a wide range of application. When properly used,
these techniques can help the geotechnical engineer to
discover patterns in the data or to build predictive
models based on site investigation data. In this con-
tribution, an overview of machine learning algorithms
for supervised and unsupervised learning is provided.

The techniques are illustrated using problems from
offshore geotechnical site investigations. Geotechnical
engineers can choose between a wide range of available
algorithms. The engineer should understand how to
formulate a problem involving site investigation data
as a machine learning problem and how to select the
best available techniques for the task at hand.

When building machine learning models, the engi-
neer should combine insight in the underlying princi-
ples of the machine learning model with subject mat-
ter expertise and a good understanding of the data.
The quality and quantify of available data will deter-
mine whether a machine learning modelling exercise
will be successful. Careful evaluation of the model
quality metrics will also allow the engineer to judge
whether a model is fit for purpose or not. Machine
learning models may or may not capture the under-
lying physical behaviour of a problem and the model
output should be checked to see if this is the case.
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