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Abstract. This paper introduces a novel approach that combines the Unscented Kalman Filter 

with the Hunt-Crossley force model to accurately estimate the stiffness and damping 

characteristics at the contact point of a grinding process conducted by a flexible manipulator. 

The Hunt-Crossley force model is proposed for the force contact considering the flexibility of 

the manipulator structure and is written in a state form as functions of the contact stiffness and 

damping. Leveraging the Unscented Transform to linearize the nonlinear measurement 

functions, the Unscented Kalman Filter effectively estimates and updates the stiffness and 

damping parameters based on the state model. This method is put into practice in a real grinding 

scenario employing a flexible manipulator. Its practicality and convenience make it a promising 

technique for estimating operational machining parameters and developing an efficient 

vibration control strategy for machining applications. 
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1 INTRODUCTION 

Robotic machining offers a promising alternative to conventional machining tasks, thanks to its 

advantages including high flexibility, cost-effectiveness, and productivity. However, the 

relatively low stiffness of flexible robots can significantly impact their positioning accuracy, 

resulting in reduced machining quality and production efficiency. This issue becomes 

especially critical when the robot is tasked with highly dexterous and adaptable operations in 

diverse and uncertain conditions [1, 2]. Therefore, precise estimation of contact damping and 

stiffness is essential for the successful operation of robot-related tasks regarding explicit force 

control. Identifying the dynamic characteristics of the contact environment can greatly enhance 

the autonomy of the robot system [3-5]. Despite the considerable progress in robotic system 

research made possible by advanced software and powerful computer hardware, the modeling 

and control of constrained robotic operations remain challenging [6]. Extensive research has 

explored this area, and various approaches can be categorized based on the assumed contact 

models, methodologies, and the interaction control system, utilizing measured data. For instant, 

The Kevin-Voigt model [7] simplifies the relationship between contact bodies' penetration and 

contact force using a parallel arrangement of a linear spring and a viscous damper, with 

subsequent developments integrating surface dynamics and introducing related models like 

Maxwell [8] and Kelvin-Boltzmann [9]. Nonetheless, these linear models describe forces that 

do not correspond to their natural behavior, which can compromise the accuracy of estimation 

solutions and fall short in capturing the nonlinear characteristics of tool interaction [10, 11]. To 

precisely discern environmental and contact dynamics, focus has also shifted towards 

estimating parameters within nonlinear contact models. In the context of robotic tasks, energy 

dissipation during the contact process must be taken into consideration to accurately describe 

the nonlinear nature of the process [12] . Consequently, in the scope of this paper, we introduce 

an online algorithm that combines the nonlinear Hunt Crossley contact model [13] with the 

Unscented Kalman Filter [14] algorithm (UKF) to determine the contact parameters for a rigid 

single-point interaction. This proposed approach simplifies the implementation process and can 

be achieved through the utilization of unscented transformation. We have validated the method 

accuracy through experiments on the SCOMPI robot, conducted via a series of tests under 

varying grinding power conditions. The effectiveness and resilience of this parameter 

estimation approach were confirmed by contrasting it with a traditional Recursive Least Squares 

algorithm [15]. 

2 HUNT-CROSLEY FORCE MODEL 

In this paper, since the specific task of a SCOMPI robot is grinding in contact with a stiff 

workpiece, the contact events thus consider only one contact point, and the manipulator end 

effector motion under grinding operation is in the normal direction to the workpiece. The Hunt 

Crosley concept will be utilized for a better demonstration of damping parameter, which aligns 

with physical intuition, and represents energy lost during impacts. 
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Figure 1: Single point contact of SCOMPI robot 

A single-stage nonlinear contact model is presented in Figure 1. The nonlinear model is shown 

to have a good agreement with physical environments. The normal force 
( )tF  acting on a body 

is a function of displacement x of the body at the contact point. Within this framework, the 

spring symbolizes the elasticity of the contacting objects, while the damper represents the 

dissipation of energy at the contact point. Upon the manipulator's interaction with the 

environment, a contact force emerges. The H-C model enhances the linear amalgamation of the 

springs and dampers, resulting in the subsequent nonlinear equation: 

( ) ( ) ( ) ( )+= n n

t
h t b t tF x x x  (1) 

In this context, 
( )tF  denotes the contact force, ( )tx  signifies penetration into the environment 

and ( )tx represents the rate of displacement; h and b correspond to the environmental stiffness 

and damping parameters; ( )nh tx stands the nonlinear elastic force and  ( ) ( )nb t tx x represents 

the nonlinear elastic force. The parameter n typically takes on positive scalar values, generally 

falling within the range of 1 to 2, and its variation is influenced by the material properties and 

geometric characteristics of the contact. For b = 0, this model degenerates into Hert’s model 

which is limited in application to modeling impacts which elastic deformation during hard 

contact [16]. 

By consider system noise ( )tε , the model become. 

( ) ( ) ( ) ( ) ( )+= +n n

t
h t b t t tF x x x ε  (2) 

To address the nonlinearity of equation (2), the Unscented Kalman Filter is introduced in the 

following section. 
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3 UNSCENTED KALMAN FILTER 

In this section, we will outline a method employing the Unscented Kalman Filter (UKF) for the 

estimation of contact force parameters. The UKF method is based on the well-established 

principles of the Kalman filter. However, the approach utilizes the Unscented Transform (UT) 

to calculate the prior probability distribution before executing the measurement update step. 

Unlike the Extended Kalman Filter (EKF), the UKF avoids relying on a linearization-based 

approximation for the nonlinear system. This model is constructed by a meticulous selection of 

Sigma points, designed to encapsulate the genuine mean and covariance of a specific 

distribution. Consequently, the UKF is capable of accurately estimating posterior means and 

covariances with a high degree of precision. 

3.1 Unscented Transformation (UT) 

The system state equation for online contact force characterization is based on the H-C model, 

and it is formulated as follows: 

( )

( )

1

, ,

+ = +


= = + +

k k k

k k k k k k k k

f

g h b

X X v

Z X x x x x x e
 (3) 

where, the system state is represented by  =
T

k k bX , f(.) denotes the system function and 

kv represents the system noise or modeling error, kZ signifies the measurement of system, g(.) 

is the measurement function defines the connection between the system state and the 

measurement, and ke  is measurement noise. We assumed that vk and ek are both uncorrelated 

Gaussian distributions, with the following statical characteristic. 

 

 

;
0

,
0

=
= 



=
= 



k

k s

k

k s

k s

k s

k s
k s

k s

Q
E v v

R
E e e

 (4) 

Where Qk and Rk represent the covariances of vk and ek respectively 

Employing the Unscented Transform to linearize the nonlinear measurement function

( ), ,k k kg X x x . These non-linear functions are embodied as discrete points known as sigma 

points, meticulously selected to capture their mean x  and covariance xP . Subsequently, these 

sigma points undergo a nonlinear transformation. This allows for the derivation of the mean 

and covariance, providing a statistical estimate of the non-linearly transformed variable x. 

The L dimension random variable x with mean x  and covariance xP  is portrayed using a matrix 

χ comprising 2L+1 sigma vector iχ , and its respective weight 
i

W  as follows: 
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0 =χ x  (5) 

( ) ; , ,= + + =i x
i

L i 1 Lχ x P  (6) 

( ) ; , , 2
−

= − + = +i x
i L

L i L 1 Lχ x P  (7) 

( )( )

0 / = +mW L  (8) 

( ) ( )( ) 2

0 / 1   = + + − +cW L  (9) 

( )( ) ( ) 1/ 2 1, ,2= = + =m c

i iW W L i L  (10) 

where ( )+ x
i

L P  is the ith row or column of the matrix representing the square root of 

+ xL P , this can be achieved via Cholesky decomposition. ( )2  = + −L L  represents a 

scaling parameter, α controls the dispersion of the sigma points around x  and is typically 

assigned a small positive value, like 0.003, ς represents a secondary scaling parameter, typically 

set to zero, and β is employed to integrate prior knowledge about the distribution of x (For a 

Gaussian distribution, the optimal value for β is 2 [14]). 
( )m

iW  and ( )c

iW  represent the weights 

associated respectively with the ith means and covariance. 

When each sigma vector undergoes transformation via the nonlinear function, it results in: 

( ) 0, 1, 2, , 2= =i ig i Ly χ  (11) 

The means and covariance for y can be respectively determined as below: 

2 ( )

0=

L m

i i
i

Wy y  (12) 

( )( )
2 ( )

0=
 − −
L Tm

y i i i
i

WP y y y y  
(13) 

3.2 Implementation of UKF 

Under these circumstances, the stochastic properties parameter is expanded to include the noise 

factors, effectively redefining it as the combination of the initial state, system perturbation, and 

measurement error: 

  =  
T

T T T

k k k kx x v e  (14) 

The following algorithms outline the execution of the UKF: 

Initialization: 

 0 0= Ex x  (15) 

( )( )0 0 0 0 0
 = − −
 

T
EP x x x x  (16) 
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0 0 0 0 0   = =   
a a TEx x x  (17) 

( )( )
0

0 0 0 0 0

0 0

0 0

0 0

 
  = − − =
   
  

T
a a a a aE

P

P x x x x Q

R

 (18) 

For k = 1, …, ∞, the computation of signa points takes place: 

( )| 1 1 1 1− − − −
 =  +
 

a a a a

k k k k kLχ x x P  (19) 

Time update equation: 

( )| 1 | 1 | 1,− − −=x x v

k k k k k kfχ χ χ  (20) 

( )2

, | 1
0

−

−
=
=
L m x

k i i k k
i

Wx χ  (21) 

( )2

, | 1 , | 1
0

− − −

− −
=
    = − −   

TL c x x

k i i k k k i k k k
i

WP χ x χ x  (22) 

( )| 1 | 1 | 1,− − −= x e

k k k k k kgZ χ χ  (23) 

2 ( )

, | 1
0

−

−
=
=
L m

k i i k k
i

z W Z  (24) 

Measurement update equations: 

( )2

, | 1 , | 1
0

− −

− −
=
    = − −   

TL c

z z i i k k k i k k kk k i
WP Z z Z z  (25) 

( )2

, | 1 , | 1
0

− −

− −
=
    = − −   

TL c x

x z i i k k k i k k kk k i
WP χ x Z z  (26) 

1−= x z z zk k k k
K P P  (27) 

( )− −= + −k k k kx x K z z  (28) 

−= + T

k k z zk k
P P KP K  (29) 

where ( ) ( ) ( ) =
  

T
T T T

a x v e
χ χ χ χ , L represents the dimension of the augmented variable, Q 

denotes the covariance of process noise, and R represents the covariance of measurement noise. 

4 APPLICATIONS TO SCOMPI GRINDING 

4.1 Description of the test structures 

The subject of this research was a SCOMPI (Super COMPact Ireq) robot with a prismatic joint 

and five rotating joints. This robot was designed for automating on-site repair tasks, including 

grinding, welding, and hammer peening [17, 18]. Robotic grinding relies heavily on the 

interplay between the material removal process and the dynamic behavior of robots, directly 
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influencing both surface quality and material removal efficiency. Consequently, it is imperative 

to model the contact force, not only for controlling the material removal rate but also for 

guaranteeing task accuracy. 

  

Figure 2: The configuration of the SCOMPI robot during the grinding process 

Figure 2 illustrates the structure of the SCOMPI robot and its grinding performance on 

hydraulic turbines. Carrying out the grinding task at a high material removal rate (MRR) 

presents notable challenges for the robot, resulting in substantial vibratory responses at the end 

effector. In this study, we investigated deeper into this aspect by modeling the robot and its 

contact environment, with the goal of identifying the unknown contact properties at the contact 

point during grinding operations. 

4.2 Measurement test setup 

To illustrate the proposed contact identification concept, an experimental test was conducted 

using the SCOMPI robot. Figure 3 shows the robot during a grinding operation. To prevent the 

measurement of system disturbances, both a dynamometer and workpiece were securely 

attached to a sturdy table, which had a first natural frequency exceeding 1.2 kHz. Three PCB-

352C34 piezoelectric sensors were installed at the robot’s end effector to record the 

accelerations in X, Y and Z directions. 

 

Figure 3: Experimentation conducted on the SCOMPI robot during grinding operations. 
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Meanwhile, a 3-axis Kistler dynamometer of type CH8408 was positioned beneath the 

workpiece to measure the grinding contact force. The measured accelerations were taken using 

the LMS data acquisition system for a continuous period of 20 seconds, and a sampling 

frequency of 512 Hz. The SCOMPI robot underwent a series of tests, configured for maximum 

stability to mitigate any adverse dynamic or vibration effects. Throughout all grinding 

experiments, motion control was employed to ensure precise tracking of the predefined path. 

Acceleration data were collected at various grinding paths to conduct a comprehensive 

investigation. The wheel's rotational speed was set at 3225 rpm, with an average axial grinding 

depth of 0.008 cm. Within the typical power range for grinding tasks, tests were conducted at 

five different levels: 500W, 1500W, 2000W, 2500W, and 3000W. Single-groove experiments 

were executed along a length of 17.3 cm. The experiments were replicated three times to ensure 

measurement consistency. A workpiece made of hard steel AISI 1081, with a 71 HRC hardness 

and dimensions of 20.32 × 25.4 × 2.54 cm. At the moment when the end effector came into 

contact with the workpiece, impact forces were generated. This contact was then sustained until 

the robot was directed to disengage at t=20s. In this experiment, the identification algorithms 

were executed exclusively during end effector contact periods.  

Table 1: Grinding condition of SCOMPI robot 

Experiment Parameters 

Grinder Norton BlueFire 4NZ16QB-X406 

Grinding cup diameter 12,7 (cm) 

Workpiece material AISI 1081 

Workpiece dimensions 20.32 x 25.4 x 2.54 (cm) 

Power 500, 1500, 2000, 2500, 3000 (W) 

Speed 8 (cm/s) 

Length of cut 16.2-18.5 (cm) 

Width of cut 1-1.55 (cm) 

Depth of cut 0.0158-0.00165 (cm) 

Grinding direction Normal direction 

Rotation speed 3225 (rpm) 

Angle of grinding cup 10 (degree) 

Grinding condition Dry grinding, single pass 

5 COMPARE WITH LEAST SQUARE RESULTS 

The vibration data collected during the grinding experiments were utilized to determine the 

contact force parameters for each power level, demonstrating the applicability of the proposed 

method in a real-world grinding scenario. The comparison results between the Recursive Least 

Squares (RLS) and Unscented Kalman Filter (UKF) methods under various grinding contact 

environments are shown in Figure 4, while Table 2 presents the estimated contact damping and 

stiffness directly obtained from the SCOMPI grinding experiment for different grinding powers 

of 500 W, 1500 W, 2000 W, 2500 W, and 3000 W. 
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Table 2: Estimated contact damping and stiffness results 

P (W) 
Estimated damping (N.s/m) Estimated stiffness (N/m) 

RLS UKF RLS UKF 

500 224.3 222.2 1.65×104 1.64×104 

1500 268.5 257.8 1.79×104 1.79×104 

2000 311.3 310.2 1.80×104 1.83×104 

2500 353.5 346.8 1.99×104 1.97×104 

3000 445.2 373.2 2.16×104 2.19×104 

 

Throughout the experiment, it was noted that the estimated values for contact damping and 

contact stiffness increased with the power levels. A comparative analysis of two methods, 

Recursive Least Squares (RLS) [15] and Unscented Kalman Filter (UKF), was conducted under 

various grinding contact conditions. The ultimate findings are depicted in Figure 4, illustrating 

that the vibration and instability phenomena were considerably more pronounced when 

employing the RLS method compared to the UKF method. 
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Figure 4: Estimated contact damping (left) and stiffness (right) with varying grinding power 

Across a broader spectrum of initial conditions, it was anticipated that the UKF method 

would exhibit lower estimation errors when compared to the RLS method, highlighting the 

robustness and stability advantages of UKF over RLS. The stiffness estimation exhibited a 

shorter settling time compared to the damping estimation. The study revealed that increasing 

the power resulted in higher contact forces, which could potentially lead to surface damage, 

such as burning. Therefore, it is suggested that the grinding power should be selected below 

2000 (W) when operating the robot to avoid surface damage. Moreover, given the linear shape 

of each grinding path, it was reasonable to assume a single contact point. The contact force, 

influenced by contact stiffness and damping, played a pivotal role in determining grinding 

performance indicators, such as workpiece quality and grinding accuracy. 

6 CONCLUSIONS 

This paper introduces a novel online identification technique that utilizes an enhanced version 

of the Kalman filter to estimate contact damping and stiffness parameters at the interaction point 

between a robot and its surrounding environment. The study presents the outcomes of an 

identification process designed to estimate the parameters related to contact stiffness and 

damping in scenarios where robots interact with stiff environments. The utilization of the 

Unscented Kalman filter (UKF) with the Hunt Crossley nonlinear single-point contact model 

was introduced to characterize contact parameters between the grinding wheel and its 

environment. The experiment results and comparative analysis demonstrate that the proposed 

methodology, employing the Unscented Kalman filter (UKF), can effectively identify contact 

force parameters with significantly higher accuracy than traditional Recursive Least Squares 
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estimation. Furthermore, online estimation of stiffness and damping can enhance force tracking 

in explicit force control systems. 
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