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Abstract. An anisotropic adaptive algorithm to solve the Stokes problem is presented.
The algorithm is based on an a posteriori error indicator justified in [10]. Numerical
experiments in flat domains show that the error indicator is sharp. The adaptive algorithm
is then used in the framework of aluminium electrolysis. Given the force field, a simplified
Stokes problem is solved and an anisotropic adapted mesh is produced. The adapted mesh
is then used to solve the industrial fluid-flow problem. Numerical experiments show that
the CPU time is reduced while keeping the same accuracy than the standard non adapted
mesh.

1 INTRODUCTION

Aluminium electrolysis is a multiphysics problem (heat and fluid flow, electromag-
netism, chemistry) which involves multi-scale features (from meters to millimeters). The
goal of this work is to construct anisotropic meshes for the fluid-flow problem arising
from aluminium electrolysis. Given the force field, a simplified Stokes problem is solved
and an anisotropic mesh is produced on the basis of an error indicator justified in [10].
The adapted mesh will then be used to solve the industrial fluid-flow problem. With this
approach we aim to reduce the CPU time while controlling the precision of the solution.
The outline will be the following: first we introduce the anisotropic adaptive algorithm
for the simplified Stokes problem. Then we will present numerical results corresponding
to aluminium electrolysis.
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2 AN ANISOTROPIC ADAPTIVE ALGORITHM FOR THE STOKES PROB-
LEM

Consider Ω ⊂ R3 a polyhedral domain. Let µ > 0 and f : Ω → R3, we search for
u : Ω→ R3 and p : Ω→ R such that

−µ∆u +∇p = f , in Ω, (1)

∇ · u = 0, in Ω, (2)

u = 0, on ∂Ω. (3)

Let V = (H1
0 (Ω))3 and Q = L2

0(Ω) the variational problem reads: look for (u,p) ∈ V ×Q
such that for all (v, q) ∈ V ×Q we have

a(u, p; v, q) = F (v, q),

where

a(u, p; v, q) =

∫
Ω

(
µ∇u∇v − p∇ · v − (∇ · u)q

)
dx and F (v, q) =

∫
Ω

fvdx.

For any 0 < h < 1 let Th be a conforming mesh of Ω̄ into tetrahedra with diameter
less than h. For any tetrahedron K ∈ Th we define its size λi,K in the stretching direction
ri,K with i = 1, 2, 3 as in [4, 5]. We consider continuous, piecewise linear stabilized finite
elements and define the corresponding finite dimensional subspace Vh×Qh ⊂ V ×Q. We
are therefore looking for (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh we have

ah(uh, ph; vh, qh) = Fh(vh, qh),

where we define

ah(uh, ph; vh, qh) = a(uh, ph; vh, qh)

−
∑
K∈Th

α
λ2

3,K

µ

∫
K

(−µ∆uh +∇ph)(−µ∆vh +∇qh)dx

and

Fh(vh, qh) = F (vh, qh)−
∑
K∈Th

α
λ2

3,K

µ

∫
K

f(−µ∆vh +∇qh)dx,

the parameter α being dimensionless and set once for all by the user. The problem is
stable and convergent in the framework of anisotropic meshes, see [7]. We introduce now
the anisotropic error indicator for the Stokes problem, for which an upper bound has been
proved in [10]. The local error indicator η2

K is defined as

η2
K = ρKωK(u− uh), (4)
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where

ρK = || 1
µ

(f −∇ph) + ∆uh||L2(K) +
1

2
√
λ3,K

||[∇uh · n]||L2(∂K),

ω2
K(v) =

3∑
i,j=1

λ2
i,K(rTi,KGK(vj)ri,K),

(GK(vj))k,l =

∫
∆K

∂vj
∂xk

∂vj
∂xl

dx, k, l = 1, 2, 3.

Here [·] denotes the jump across an internal face and n is the unit edge normal. Estimator
(4) still involves the continuous solution u. Thus we still need to approximate the quantity
ωK(u− uh). In practice we apply Zienkiewicz−Zhu (ZZ) post-processing techniques [14,
15, 16], which consist in replacing the first order partial derivatives of (u − uh) by their
L2(Ω) projection onto Vh, for details we refer to [8, 11, 9].

We briefly present an adaptive algorithm based on the above anisotropic error indicator.
The MeshGems software [2] is used to generate anisotropic meshes, details can be found
in [3]. The objective of the algorithm is to construct a mesh such that

0.75TOL ≤
( ∑

K∈Th

η2
K∫

Ω
µ|∇uh|2dx

)1/2

≤ 1.25TOL. (5)

For (5) to hold, we equidistribute the error in each tetrahedron K ∈ Th:

1

Nh

0.752TOL2

∫
Ω

µ|∇uh|2dx ≤ η2
K ≤

1

Nh

1.252TOL2

∫
Ω

µ|∇uh|2dx,

where Nh is the number of tetrahedra in Th. As in [3] we equidistribute the error com-
mitted for each tetrahedron in each stretching direction ri,K , i = 1, 2, 3. In particular for
each K ∈ Th and i = 1, 2, 3 we require

1

3N2
h

0.754TOL4
( ∫

Ω

µ|∇uh|2dx
)2 ≤ η4

i,K ≤
1

3N2
h

1.254TOL4
( ∫

Ω

µ|∇uh|2dx
)2
, (6)

where we set

η4
i,K = ρ2

K

3∑
j=1

λ2
i,K(rTi,KGK(vj)ri,K).

The strategy consists in (i) aligning each tetrahedron (its stretching directions) with
the eigenvectors of GK and (ii) based on (6) update the mesh size λi,K . This process is
repeated until (5) is satisfied.
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3 VALIDATION AND APPLICATION TO ALUMINIUM ELECTROLYSIS

3.1 Numerical study of the effectivity index for the Stokes problem on flat
domain

We want to check the quality of our error indicator. Thus we define the so called
effectivity index eiA,

eiA =

( ∑
K∈Th

η2
K

)1/2

( ∫
Ω
µ|∇(u− uh)|2dx

)1/2
.

In order to verify the quality of the ZZ post processing, we define the ZZ effectivity index
eiZZ ,

eiZZ =

(∫
Ω

|∇uh − ΠZZ
h ∇uh|2

)1/2

||∇(u− uh)||L2(Ω)

,

where ΠZZ
h ∇uh is the post processing of ∇uh.

Consider problem (1)-(3) with a flat domain as in a Hall-Héroult cell: let Ω = (0, 10)2×
(0, 0.5), µ = 1 and f be such that the exact solution of the problem is

uex(x, y, z) =
1

253
[4(y − 10)2y(x− 10)2x2(y − 5),−4(x− 5)y2x(y − 10)2(x− 10), 0].

We choose a structured initial mesh of size h1, h2, h3 = 1, 1, 0.25. The effectivity indices,
the maximum and the average aspect ratio are reported in Table 1 when using several
tolerances TOL (ar denotes the aspect ratio λ1,K/λ3,K). The ZZ error estimator is asymp-
totically exact (column four) and the error indicator presented does not dependent upon
the mesh aspect ratio (column five). A cut at x = 5 of the mesh with computed solution
at TOL= 0.125 is reported in Figure 1.

Table 1: Numerical results adaptive algorithm

TOL # vertices error H1 eiZZ eiA max ar average ar
1.0 406 0.9.96 0.95 3.15 36.85 9.02
0.5 1838 4.09 0.96 3.01 67.69 9.23
0.25 7199 2.35 0.97 3.21 124.90 8.97
0.125 26524 1.18 0.98 3.25 183.79 9.50
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Figure 1: Cut of the adapted mesh when TOL= 0.125

3.2 Industrial application to an electrolysis cell

We now present numerical experiments of the industrial fluid-flow problem correspond-
ing to aluminium electrolysis. The fluid domain is composed by two domains, one con-
taining liquid aluminium and one containing liquid electrolyte (the so called bath). The
velocity satisfies

ρ · (u · ∇)u−∇ · (2µε(u)) +∇p = F in Ω, (7)

∇ · u = 0 in Ω, (8)

where ρ the density and µ the viscosity, are piecewise constant in the bath and in the
aluminium, and

ε(u) =
1

2
(∇u +∇uT ).

The force term F acting on the fluids arises from gravity and Lorentz forces. A Smagorin-
ski law is used to model turbulence. The model is implemented in the Alucell industrial
software, see [13, 12, 6, 1] for details.

Given the force field F, we solve the simplified Stokes problem (1)-(3) with µ = 1 and
adapt the mesh with the algorithm presented above. The obtained mesh when TOL= 0.5
is reported in Figure 2. The adapted mesh is then used to solve the fluid-flow problem
(7)-(8). A cut of the standard non adapted mesh and the adapted mesh are shown in
Figure 4. The standard mesh has approximately 320000 vertices, while the adapted mesh
has only 31000 vertices. The CPU time needed to solve problem (7)-(8) with the standard
mesh is about 13 hours, while it is only 2 hours for the adapted mesh. Both computations
lead to a comparable velocity.

4 CONCLUSIONS

An anisotropic adaptive algorithm, based on a posteriori error indicator for the Stokes
problem has been introduced. Numerical experiments on flat domains show the robustness
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Figure 2: Adapted mesh when TOL=0.5

Figure 3: Cut at x = −1 of the adapted mesh when TOL=0.5

of the method. The method is then applied to aluminium electrolysis. The CPU time is
reduced of a factor of 6.5 when using an adapted mesh while keeping the same accuracy.

We are studying the theoretical extension of this adaptive algorithm to the turbulent
Navier-Stokes equations.
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Figure 4: Cut at z = 0.3. Left: standard non adapted mesh. Right: adapted mesh when TOL= 0.5.
Colors represent the velocity amplitude

Figure 5: Cut at y = −1 of the adapted mesh when TOL=0.5
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