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Summary. Computational Fluid Dynamics (CFD) represents a powerful tool to study blood
flow in cardiovascular districts. Commonly, CFD simulations are based on the rigid-wall as-
sumption, which has effects on the hemodynamic results. Instead, Fluid-Structure Interaction
simulations are computationally expensive and need additional information concerning vessel
wall and thickness. This work aims to develop a new image-based method to set-up moving
boundaries CFD simulations (CFDMB) of the entire thoracic aorta (TA). Starting from medical
images, we built models of the TA and of the left ventricle (LV) for 20 phases of the cardiac
cycle through a custom multi-label 3D U-net. Firstly, the TA 3D models were morphed on the
baseline mesh (0%), employing an in-house non rigid registration algorithm. The wall displace-
ment was then used to set-up the CFDMB. Inlet flow conditions extracted from the LV volumes
were imposed. Hemodynamic results were compared with those obtained from rigid-wall CFD
simulations run on the baseline mesh (CFD0). For the CFDMB approach, the shift of the flow
waveform was computed and used to estimate the aortic stiffness by applying the principle of the
pulse wave velocity. The developed simulation strategy copes with TA morphological changes
during the cardiac cycle and highlights differences in hemodynamic parameters, with respect to
CFD0 approach, overcoming the limitations of state-of-the-art simulations.

1 INTRODUCTION

The role of hemodynamics and mechanobiology in the onset and progression of thoracic aorta
(TA) pathologies is well-established [1, 2]. The long term interaction between altered blood
flow and endothelial cells can result in changes of the arterial wall homeostasis, thus promoting
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different cardiovascular diseases [3]. The assessment of TA hemodynamics can support clini-
cians in the diagnosis of TA diseases and in the understanding of the pathophysiology behind
TA disease. In this regard, the combined usage of medical images and Computational Fluid
Dynamics (CFD) represents a consolidated method to study blood flow patterns and related
parameters in a patient-specific manner [4]. However, to successfully translate the use of numer-
ical simulations in the clinical practice low computational times and high accuracy are required.
Thus, modelling assumptions and computational set-up have a pivotal role in turning the CFD
approach clinically affordable.
Commonly, CFD simulations rely on the rigid-wall assumption to simplify and speed up the
numerical approach. However, since the TA undergoes large deformations as a result of the
systolic and diastolic loading and unloading associated to the contraction of the left ventricle
(LV), such a hypothesis may affect the reliability of the simulation results [5, 6]. Instead, Fluid-
Structure Interaction (FSI) method has high computational times and requires the definition
of the mechanical behaviour of vessel wall, which is difficult to be achieved from in-vivo data
[7]. This lack of information introduces the needing of strong assumptions, such as in terms of
the wall thickness and stiffness, thus representing the major source of uncertainties of the FSI
approach [5, 8]. Recent studies introduced moving boundary methods (MBM) in the cardiovas-
cular field, also thanks to the current images techniques, particularly electrocardiogram gated
computed tomography (ECG-gated CT) images, able to acquire time-resolved anatomies with
high resolution [9]. The embedding of CT-based MBM in CFD simulations allow to model the
effect of the in-vivo deformations of anatomical structures on the hemodynamics, overcoming the
complexity of the FSI approach. In the context of TA, only a few studies are based on MBMs.
Capellini et al. [10, 11] embedded the Radial Basis Functions (RBF) mesh morphing technique
into CFD simulations to capture the effect of the ascending TA morphological variations on
fluid dynamics. Calò et al. [12] applied the just mentioned approach to investigate the impact
of ascending TA wall displacement on large-scale flows. Nevertheless, these studies are limited
to the ascending region of the TA and showed some intrinsic discontinuities that could not be
bypassed considering that the MBM is based on a commercial tool.
The reliability of numerical simulations is also related to boundary conditions. In the TA sce-
nario, the inflow conditions affect hemodynamic parameters [13, 14, 15]. Even if spatial and
temporal flow variation are available in case of time-resolved three-dimensional phase-contrast
magnetic resonance imaging acquisition, in case of CT scans the spatial information is lacking
and simplified plug or parabolic profiles are applied as inlet boundary condition [11, 16, 17].
Indeed, the temporal flow information can be retrieved from ECG-gated CT dataset by calcu-
lating the left ventricle volume variation.
This work aims to develop a new CFD environment, fully based on ECG-gated CT images, to
set-up moving wall boundaries condition and to apply a patient-specific inlet temporal waveform.

2 MATERIALS AND METHODS

2.1 AI-based image processing

Image acquisition – Images were acquired with a dual source CT scanner using a iodine-
containing contrast medium and presented a pixel size of 0.311 x 0.311 mm and a slice thickness
of 1 mm. A retrospective ECG-gated protocol was employed. Images were reconstructed at
every 5% phase, between two R-R intervals from 0% to 95% (20 phases). CT acquisition was
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performed on a 43-year-old male subject with a tricuspid aortic valve (TAV) and no evidence of
aortic and valvular pathology.
Image segmentation – A custom multi-label 3D U-Net, based on the nnU-Net deep learning
framework [18] was employed to automatically extract the labelmaps of the TA and the LV for
each acquired phase of the cardiac cycle, as shown in Figure 1. The net was trained on a total
of 50 semi-automatically segmented CT scans with a pixel size of 0.571 ± 0.086 mm and a slice
thickness of 0.651 ± 0.807 mm. CT images were resampled to a voxel size of 1.865 x 1.865 x
0.950 mm and underwent a z-score normalization. Data augmentation, including rotation, scal-
ing, additive gaussian noise, gaussian blur, multiplicative brightness and contrast and mirroring
was applied. We employed a combination of equally weighted Dice score and cross-entropy as
loss function. Training was performed on anisotropic patches 112 x 224 x 96 with a batch size
equal to 2 and run for 1000 epochs.

Figure 1: AI-based image segmentation: the 3D U-Net architecture is made up of consecutive encoding
blocks and decoding blocks; ECG-gated CT images are used as input; labelmaps of the TA (red) and LV
(green) are the outputs.

To evaluate the net performance a stratified K-fold cross-validation (K=5) was performed. We
split the entire dataset into equally-numerous and balanced K groups, sorting the data of each
fold according to the z-spacing of the original images. For each fold we trained the net on K-1
partitions and used the remaining one as validation set.
3D models creation – Starting from the predicted labelmaps achieved from the 3D U-Net for
image segmentation, we reconstructed 3D surface models of the TA and the LV for each phase
through a marching cubes algorithm. To remove the common block-like appearance derived from
the contours generation a low-pass Taubin surface smoothing filter was applied. Consistently
for each phase we clipped the TA geometries at the aortic inlet, descending aorta (DAo) and
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supra-aortic vessel outlets (brachiocephalic artery (BCA), left common carotid artery (LCCA)
and left subclavian artery (LSA)) in a direction orthogonal to the vessel centerline.

2.2 CFD simulations

In this work two types of CFD simulations were performed: i) a rigid wall CFD simulation on
the 0% phase model (CFD0); ii) a moving boundary CFD simulation (CFDMB) based on a mesh
morphing technique. To implement the CFDMB and include the actual motion of the TA during
the cardiac cycle in the numerical approach we developed a dedicated simulation strategy. For
both the CFD simulations, the governing Navier-Stokes equations were solved in ANSYS Fluent
by applying a finite volume method.
Moving boundary set-up – Firstly, we built the computational grid of the 0% phase, selected
as baseline configuration (Figure 2a). The grid, hereafter referred to as source mesh (MS), was
made up of tetrahedral elements with an average edge size of 1 mm and 5 near-wall refining
layers of wedge elements with a growth rate of 1.2 and a total thickness of 1.35 mm. Then,
we employed an in-house non rigid registration algorithm [19] in single-scale modality to map
the MS wall on the target geometries of each phase of the cardiac cycle. The registration
process was performed on open 3D models to exploit the aortic inlet and outlets boundary edges
as anatomical constraints (Figure 2b). To preserve the inflation layers and enforce the mesh
at the TA caps during the CFDMB open morphed models were closed. To this purpose the
node-by-node wall displacement was evaluated for each registered phase with respect to the MS

(Figure 2c) and interpolated in every point of the Euclidean space R3 using Gaussian RBF. The

Figure 2: Moving boundary set-up. Computational grid of the baseline configuration (a). Non-rigid
registration of the open baseline wall mesh on each N% open target geometry (N = 5, 10, . . . , 95%).
Boundary edges (B) are shown in red (subscript refers to the corresponding cap; superscript refers to the
phase) (b). Node-by-node wall displacement field between each N % phase and the baseline wall mesh
(N = 5, 10, . . . , 95%) (c).

so obtained displacement field was applied to the MS caps. To ensure the coplanarity of points
on each cap, we projected nodes onto the plane that best-fitted the corresponding boundary
edge. Coordinates of each node of the morphed wall and caps meshes, isotopological to MS,
were extracted for each phase along the x, y, z direction. A low-pass filter in the frequency
domain, based on the fast Fourier transform, was implemented to cut high-frequency noise. We
employed cubic splines to reconstruct time-continuous nodes trajectories from discrete nodes
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coordinates associated to each phase of the cardiac cycle. Finally, surface nodes trajectories
were prescribed in the CFDMB simulation through an in-house developed user-defined function.
The update of volume mesh was handled automatically by the solver on the basis of the new
positions of the wall and caps by enabling the dynamic mesh tool.
Numerical simulation – In both the two simulation strategies, blood was assumed as a Newtonian
fluid in laminar conditions with a constant viscosity of 0.0035 Pa·s and a density of 1060 Kg/m3.
Figure 3 shows the imposed boundary conditions. Regarding the inlet, we applied a patient-
specific flow-velocity. The waveform was obtained computing the systolic volume change of
the LV 3D models over time and scaling an idealized diastolic flow to adapt it to the subject
stroke volume and cardiac cycle length. A truncated-cone 3D shape was used to mimic the
space-distribution of blood velocity in a healthy TAV at the peak systole [15, 20, 21]. We set
the ratio between the truncated cone upper area (Atop) and lower area (Abase) to 0.44 based on
the patient-specific aortic valve opening. In terms of outlet boundary conditions pressure was
imposed through a lumped 3-element Windkessel model (3EWM).

Figure 3: Numerical simulation set-up: inlet and outlet boundary conditions.

A time-step of 0.001 s was used with a maximum of 35 iterations per time-step. Three cardiac
cycles were performed and results were evaluated at the last cycle to avoid initial transient effects
and obtain converged solutions.
Hemodynamic analysis – For both the performed simulation, results were studied in terms of
the velocity magnitude at different cross-sections and times and hemodynamic indices.
The wall shear stress (WSS) evaluation included the time-averaged WSS (TAWSS) and the
oscillatory shear index (OSI). The TAWSS represents the average WSS magnitude over the
total time of a cardiac cycle (T) and was computed as follows:

TAWSS =
1

T

∫ T

0
|WSS(s, t)| · dt (1)

The OSI measures changes of direction of the WSS vector from a predominant blood flow
direction during the cardiac cycle. It is a dimensionless metric that ranges between 0, when the
direction of WSS is consistent during the cardiac cycle, and 0.5, when WSS frequently changes.
The OSI was defined according to the following equation:
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OSI = 0.5

1−

∣∣∣∫ T
0 WSS(s, t) · dt

∣∣∣∫ T
0 |WSS(s, t)| · dt

 (2)

The helical structures of blood flow were measured in terms of the localized normalized helicity
(LNH), averaged along the cardiac cycle (LNHavg), which ranges between -1, denoting left-
handed rotation and +1, denoting righ-handed rotation. The LNH was defined as the cosine of
the angle between the vorticity vector (ω) and the velocity vector (V) as follows:

LNH(s, t) =
V(s, t) · ω(s, t)

|V(s, t)||ω(s, t)|
(3)

For all the hemodynamic indices, results were provided in terms of map distributions; for TAWSS
and OSI the median value and interquartile range (IQR) were also evaluated.
Wall stiffness – The TA wall stiffness was evaluated in terms of the pulse wave velocity (PWV),
according to the following equation [22]:

PWV =
L

∆TD
(4)

where L is the distance along the centerline between the aortic inlet and the DAo outlet cross-
sections and ∆TD is the time delay between flow waveforms at the two TA locations, measured
by maximizing the cross-correlation function. Under the assumption of a linear elastic model,
given that small deformations occur between the diastolic and the systolic configurations [6],
the Young’s modulus of the aortic wall (EW ) was evaluated by applying the Moens-Korteweg
equation according to [22]:

PWV =

√
EW · h
2rρ

(5)

where h is the wall thickness (set to 2 mm), r is the vessel mean radius and ρ is the blood
density.

3 RESULTS

3.1 AI-based image processing

Three-dimensional models of both the TA and the LV were successfully reconstructed for all the
phases of the cardiac cycle by means of the multi-label 3D U-Net. Table 1 shows the K-fold
cross-validation results of the neural network for the TA and LV segmentation in terms of Dice,
precision and recall scores.

3.2 CFD simulations

The CFD0 and CFDMB simulations were successfully carried out. The MS showed respectively
a maximum skewness and an averaged skewness equal to 0.767 and 0.159 that reached peak
values of 0.830 and 0.163 along the cardiac cycle in the CFDMB approach.
Figure 4 shows the comparison between the two performed simulations in terms of the velocity
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Table 1: 3D U-Net cross-validation results, computed as mean ± standard deviation, over all folds

Set Dice [%] Precision [%] Recall [%]

TA
train 97.74± 0.09 97.79± 0.13 97.70± 0.12

validation 96.01± 0.32 96.11± 0.89 96.09± 1.11

LV
train 97.02± 0.07 96.90± 0.04 97.18± 0.12

validation 94.98± 0.06 94.69± 0.42 95.33± 1.14

magnitude (v) at different cross-sections on the ascending aorta (S1), aortic arch (S2) and
descending aorta (S3). Three time of interest are presented to cope with the velocity distributions
at the maximum acceleration time (t1), the peak systole time (t2) and the maximum deceleration
time (t3). Significant differences in the velocity patterns were reported at t1 for the three
cross-sections. Regarding velocity peak values the major discrepancy was presented at t2 in the
descending aorta section: the maximum velocity was equal to 0.76 m/s and 1.20 m/s respectively
for the CFD0 and the CFDMB results.

Figure 4: Velocity magnitude for the CFD0 and CFDMB simulations at specific cross-sections.

Figure 5 shows the time delay between the flow waveform computed at the aortic inlet and
the flow waveforms computed at the DAo outlet for the CFD0 and the CFDMB. As we can
observed, in case of CFDMB, the time delay between inlet and DAo outlet flow waveforms was
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more significant (equal to 0.048 s). By applying Equation 4 between inlet and DAo outlet (L
= 0.31 m) the associated PWV value was of 6.44 m/s. Consequently, the Young’s modulus
resulting from Equation 5 was equal to 0.5 MPa.

Figure 5: Flow waveforms at the aortic inlet (IN) and descending aorta outlet (OUT).

The TAWSS, OSI and LNH distributions are shown in Figure 6 for the two performed simulation
strategies. The differences in TAWSS patterns were more pronounced in the ascending aorta.
However, discrepancies in TAWSS values were found in the entire TA. The CFDMB approach
resulted in an overall median TAWSS which was 16.87 % lower with respect to the CFD0. The
median TAWSS was of 1.66 Pa (IQR = 1.51 – 2.07 Pa) for the CFDMB and of 1.94 Pa (IQR =
1.73 – 2.33 Pa) for the CFD0. For both the simulation strategies the WSS presented inconsistent
directions over the cardiac cycle mainly in the aortic root, at the supra-aortic bifurcations and
in the distal descending aorta. The CFDMB showed an increase of the median OSI of 4.16 %,
compared to the CFD0. The CFDMB an the CFD0 showed median values respectively of 0.25
(IQR = 0.16 – 0.35) and of 0.24 (IQR = 0.15 – 0.33).
Regarding the helicity analysis, both the approaches highlighted counter rotating flows, with
balanced right-handed and left-handed structures. Neverthless, consistent differences in the
LNHavg profiles at different cross-sections were highlighted in the CFDMB, compared to the
CFD0 simulation.

4 DISCUSSION AND CONCLUSIONS

In computational studies of the TA, commonly, CFD simulations assume rigid walls. This
hypothesis speeds up the numerical approach, but neglects how wall motion affects the flow. In-
stead, FSI simulations compute the interaction between the compliant aorta and blood, but they
demand high computational times and mechanical information on the vessel wall that introduces
uncertainties in the method. Given that TA undergoes large deformations due to LV function,
the effects of aortic geometrical change on hemodynamics are recognized to be non-negligible
[23]. Moreover, usually, CFD approaches impose literature-derived boundary conditions, affect-
ing the patient-specific feature of methods.
In this study we developed and implemented a new approach to set-up accurate and patient-
specific moving boundary CFD simulations, based on a mesh morphing technique. The pre-
sented method, starting from 4D CT scans, modelled the geometrical variations of the entire
TA throughout the cardiac cycle and allowed the setting of patient-specific inflow conditions as
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Figure 6: Hemodynamic results in terms of TAWSS, OSI and LNHavg obtained from the two performed
simulation strategies: CFD0 (a-c) and CFDMB (d-f). Distribution maps are shown in the front and back
views. The LNHavg is plotted as volume maps and at specific cross-sections (S1, S2, S3).

LV volume changes. Computational times are comparable (1.3x) to those of the rigid wall simu-
lation. The embedding of in-vivo measurements in terms of wall displacement and flow waveform
can represent a significant step to overcome the limitation of the state-of-the-art methods.
The comparison of CFD0 and CFDMB hemodynamics highlights significant differences in terms
of velocities, WSS-based indices and helicity parameters. Thus, the geometrical variation of the
vessel during the cardiac cycle represents a determinant in the assessment of the TA hemody-
namics. Finally, the CFDMB simulation results able to compute the time delay which occurs
between the flow waveform along the vessel lumen. This delay, which is an effect of the wall
compliance, can not be captured by the rigid-wall approach and allows an estimation of the TA
stiffness [24].

REFERENCES

[1] Catapano, F., Pambianchi, G., Cundari, G., Rebelo, J., Cilia, F., Carbone, I., Catalano, C.,
Francone, M., and Galea, N.. 2020. 4D flow imaging of the thoracic aorta: is there an added
clinical value? Cardiovasc Diagn Ther 10, no. 4. https://doi.org/10.21037/cdt-20-452

[2] Zhuang, B., Sirajuddin, A., Zhao, S., and Lu, M. 2021. The role of 4D flow MRI for
clinical applications in cardiovascular disease: current status and future perspectives. Quant
Imaging Med Surg 11, no. 9, 4193–4210. https://doi.org/10.21037/qims-20-1234

[3] Humphrey, J. D., and Schwartz, M. A. 2021. Vascular Mechanobiology: Homeostasis, Adap-
tation, and Disease. Annu Rev Biomed Eng 23, 1–27. https://doi.org/10.1146/annurev-
bioeng-092419-060810

9



F. Dell’Agnello, E. Vignali, K. Capellini, M.A. Scarpolini, E. Gasparotti, F. Cademartiri and S. Celi

[4] Ong, C. W., Wee, I., Syn, N., Ng, S., Leo, H. L., Richards, A. M., and Choong,
A. M. T. L. 2020. Computational Fluid Dynamics Modeling of Hemodynamic Parame-
ters in the Human Diseased Aorta: A Systematic Review. Ann Vasc Surf 63, 336–381.
https://doi.org/10.1016/j.avsg.2019.04.032
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