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Abstract. The first objective of this study is to revisit an analytical test by the author that 

helps now for a prediction and explanation for the likely physical existence of twin funnels in 

the fluid crossed by shock wave, under certain conditions. These funnels function like a conical 

hose within shock waves traveling through matter. In terms of the laws of continuity, 

momentum, and energy the classical shock wave model is empowered with a not widespread 

actual function that explains a nonlocal physical phenomenon of matter distribution. The second 

objective is the recognition and application of two almost new analytical boundary conditions 

11 VV S −= and 11 iMM S = , provided in the recent past that open the theory to the, at least, 

analytical existence of hoses or coupled twin funnels. Finally, given that supersonic and 

hypersonic solid cones are related to theoretical, experimental, natural, aeronautical, 

astronautical, geophysical and industrial interests, among others, certain analytical regions 

derived from this recently characterized formulation are shown and hoses or twin funnels 

located among them. These regions can be visualized on the plot of cone angle, shock angle, 

and free-stream Mach number for analogy, comparison, and prediction. 
 

 

 

1 INTRODUCTION 

At the present time, after the names of Ernst Mach (1838-1916) , Busemann (1929), Taylor-

Maccoll 1933, Stone (1952), Hayes-Probstein (1966), Anderson (2003), and their remarkable 

contributions [1-6], it appears it was worthy recent developments for extending analytical 

Shock Wave model to explain potential unobservable phenomena [7-11], or at least, to predict 

some  real unmeasurable events at the time they are happening [12-15]. So, two issues 

motivated this work: First, a new Shock Wave Front model, named SWF model, developed to 

extend the classical Shock Wave model, named SW model, because the novel SWF model was 

needed to deeply connect the Shock Wave phenomena with the new associated formulation and 

predicted phenomena. Second, the recent development of the equations 11 VV S −= and

11 iMM S = , a pair of two almost new boundary conditions inside the SW, had to be well 

founded by using Fluid Mechanics Laws [7-11]. To begin, let us keep in mind what was 
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considered the classical model of a Shock Wave, SW model. In Fig. 1, the classical SW model 

is presented satisfying mass, momentum, and energy equations. 

 

 

 
 

Figure 1:  The SW Classical model. The Mass, Momentum and the Energy Conservation along the horizontal 

direction or flow direction in the Classical model. 
 

 

In Fig. 2, the nonclassical model is presented. A Shock Wave Front had been included in the 

middle of the SW classical model to obtain the new SWF model. At the Shock Wave Front, 

SWF, the Mach number 1M has another important meaning related to the mass and energy 

distribution that was written as 11 iMM S = , where i represents the imaginary unit [8,9].  Also, 

at the shock wave front (upstream), the free stream velocity is 11 VV S −= . The proof of these 

equations derived from the physical laws was the main goal of that works. Although in Fig. 1, 

the conservation Laws of Mass, Momentum and Energy hold between two external points to 

SW (in Fig. 1, the SWF was ignored), a vertical thick line representing the Shock Wave Front 

SWF was added in Fig. 2 (here, the SWF was considered) in order generate a new internal place 

inside SW where 11 VV S −= and 11 iMM S =  take place. This new place is named the SWF.  
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Figure 2. The SWF model:   As a first step, a vertical thick line is assumed in any place into the SW model 

(SW is the classical model) to derive after few steps, the SWF model. 

 

 

Since 11 VV S −=  over the SWF, it is difficult for the flow not to collide. The flow is coming from 

both sides, see Fig. 2, to hold the original direction. The left side is quiet and the flow from the 

right is travelling to the left and colliding with velocity 𝑉1𝑆 or, on the other hand, the right side 

is quiet and the flow from the left is traveling to the right and colliding with velocity 𝑉1. So, 

whatever happens, the concept of one-dimensional flow is considered in Fig.2 neither physical 

nor realistic. This procedure allows developed the proof for the SWF model, which was 

proposed, analyzed, and founded throughout the Laws of Mass, Momentum and Energy 

conservation in both directions (real and imaginary). Thus, these Laws hold not only along the 

flow direction (horizontal direction), but also in the Shock Wave direction (vertical direction). 

In 2016, the Shock Wave Front model was early presented after its effectiveness in analyzing 

new theoretical boundaries [11], but in 2018 and 2020, the Fluid Dynamics Laws were needed 

and applied to provide a more formal proof for the analytical validity of the SWF model, after 

the universality of the Physical Laws.  

For the better lecture of what follows, Table 1 is for nomenclature. 
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Table 1: Nomenclature. 

 

 

 

3 APPLICATION OF THE SWF MODEL  

 There is a genuine interest of analyzing transitions to hyper velocities, also to understand 

processes of a supersonic solid cone that becomes thinner, or thicker, or just changes its size 

during its movement inside a compressible flow and, also to predict or explain complex 

phenomena in related matter. In general, but in simple terms, one state of matter is a limiting 

case of the others. For example, one can think that a solid is a limiting case of liquid or gas. 

One can also predict that inside a complex limiting process what really matters is mass, 

momentum and energy balance, whatever state it is having the matter at the time of analysis. 

Like this one, similar practical ideas are of interest. In this sense, here, the classical equation of 

Taylor-Maccoll is just a starting point for the following derivations. 

3.1 Explicit Formulation for 𝜽𝑪 in the form 𝜽𝑪 = 𝜽𝑪(𝑴𝟏, 𝜽𝑺) 

Table 2 helps to know how the SWF model is applied to the ( )SV   boundary condition of 

the Taylor and Maccoll problem and then for obtaining an explicit formulation for 𝜃𝐶 . The point 

Symbol  Meaning 
 

    [⬚]1   =  property evaluated before the wave 

     [⬚]2  
 

  = property evaluated after the wave 

     [⬚]1𝑆  
 

  = property evaluated at the shock wave front 

     [⬚]1𝐵  
 

  = property evaluated at the shock wave back 

𝑀1   = Mach number of the free flow (dimensionless) 
𝑀1𝑆   = Mach number at the shock wave front (dimensionless) 

𝜃𝐶   = solid cone semi-angle (radians) 
𝜃𝑆   = shock wave semi-angle (radians) 

𝜃   = spherical coordinate, azimuth angle (radians) 

VLím   = highest dimensional velocity that the h0 enthalpy flow can reach (m / s) 

VR   = component of velocity in the radial direction (dimensionless) 

𝑉𝜃   = component of velocity in the tangential direction 

𝑉𝜃𝜃   = derivative of tangential velocity with  as variable (dimensionless) 

V1   = velocity of the free flow (dimensionless) 

Cp , Cv   = specific heats at constant pressure and at constant volume ( J / (kg  K)) 

   = ratio of specific heats,𝐶𝑝/𝐶𝑣
 (dimensionless) 

a   = velocity of sound, m / s. 
    = density function, kg / m3. 

P    = pressure function, N / m2. 

q   = rate of heat added per unit of mass, J / kg 

f    = body force per unit of area, N / m2. 

S   = entropy function, J / K. 
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1𝑆  is adopted to refer the SWF location. As an example, the procedure is shown for  
(𝜃𝑆 − 𝜃𝐶 → 0),  

 

Table 2: Explicit Formulation for  𝜃𝐶 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2

 Transitions to conical hoses or coupled twin conical funnels: Characterization of 

four regions and the limiting curve  SC  =  

In Fig. 3, four new regions and its upper boundaries were found. The four upper boundaries 

are associated with hypersonic flow, higher supersonic flow, lower supersonic flow and the last 

is related to transonic or subsonic flow. The curve SC  = is an unrealistic upper limit condition 

in the (𝜃𝐶 , 𝜃𝑆, 𝑀1) chart. However, Figure 3 shows that higher cone angles cannot reach higher 

Mach numbers and the limiting Mach number condition occurs over SC  = for both 

supersonic and hypersonic flow.  

Step Explanation      The SWF model is applied. 
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4 
11 iMM S =  ( )
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5 Solving for  
( )SV 
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6 Considering ( )SV 

for the case 
( )0→− CS   

 
7 Solving for  
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Figure 3: SWF model. Under (𝜃𝑆 − 𝜃𝐶 → 0) : 𝜃𝐶 = 𝜃𝐶(𝜃𝑆, 𝑀1) at different Mach numbers.  

 

The first region is the region associated with hypersonic flow 51 M after the SWF model, 

but only thin cones, namely 25C ,  can access  to this hypersonic velocity condition at the 

time that hold the same pattern of the physical phenomena (attached Shock Wave SW and zero 

angle of attack in the Taylor-Maccoll problem). The value of  25C  is a horizontal line 

where thin cones start being thick. On the left sector of the chart, over this line, 𝜃𝐶 ≈ 25∘ , there 

is a point where both thick and thin cones share the highest theoretical value of 𝜃𝑆 ≈ 25∘ for 

hypervelocity regime. One can check this point happens for 𝑀1 = 5  and 𝜃𝐶 ≈ 25∘. Now, see 

the chart on the left, where hypersonic region begins from a short horizontal segment between 

beginning on the origin of the reference system, namely point 𝜃𝐶 = 0∘ and  𝜃𝑆 = 0∘ and the 

point 𝜃𝐶 = 0∘ and  𝜃𝑆 ≈ 8∘ over the horizontal axis, more to the right. Above this short 

horizontal segment, the hypervelocity region spreads. The second region is bounded by the 

curves for the Mach numbers of 𝑀1 = 2.2 until 𝑀1 = 5 . So, this second region is the upper 

supersonic region. Due to dimensional consequences derived from the SWF model, the 

distribution of matter and energy also occurs in the Shock Wave direction. In fact, the 

phenomenon of matter distribution by hoses in this region can be generated. The phenomenon 

always exists here, analytically. This is because: 1) the region of hoses is under the physical 

limit SC  = , 2) it involves  higher C  values where it is not possible hypervelocity, 3) this 

region of hoses is below the region of very thick cones where a physical relation among 𝜃𝑆 and 

𝜃𝐶  is full predictable, and finally, 4) the region of hoses is above the superior limit of the 

classical theory for one dimensional supersonic flow, as it can be seen in the next section, where 

only one dimensional phenomena takes place. So, the two-dimensional movement through 
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hoses is possible after it satisfies the mass, momentum, and energy conservation laws. The third 

region is bounded by the Mach numbers of 𝑀1 = 1 until 𝑀1 = 2,2 and is the lower supersonic 

region. Again, the value of  25C  is a horizontal line where thin cones start being thick. 

This horizontal line is, theoretically, the place in the chart where thin cones change to thick 

cones in crossing this line throughout a vertical path from a lower C  to a higher C . Figure 3 

also shows that lower supersonic flow, that is to say 2.21 1 M , is allowed for almost all cone 

angles. On the right sector of the chart, the limit for these curves that satisfies 2.21 1 M , is 

a point. These two regions are the lower supersonic. The transonic region and the lower 

supersonic regions together have a common limit point on the right. The limit point  on the right 

is theoretically associated with a Shock Wave angle of 90=S and a cone angle of 25C . 

Until now, we have described under SWF model, three supersonic regions. 

The fourth region according to SWF is transonic or subsonic and every point in this region 

satisfies 𝑀1 ≤ 1. In the SWF model, notice that for the first, third and the fourth regions an 

horizontal line crosses every curve twice in the chart ),,( 1MSC  , which means that for every 

C on the vertical axis there are two possible values of S for a given Mach number. This fact 

does not happen in the hoses or twin funnels region (the second region) because here even the 

SWF, the closer we have, does not work. Complementarily, this fact happens whenever this 

horizontal line does not touch the lowest boundary curve of the fourth region, where below this 

lowest curve this behavior does not happen anymore in this transition to transonic region. So, 

this is the last horizontal line in the chart with this behavior. The formulation for ( )0→− CS   

obtained from the SWF model generates different regions. In the supersonic case, it means 

regions for very thick cones, for hypervelocity or just regions where transitions to “conical 

hoses” or “twin funnels” are theoretically validated to take place. The Fig. 3 deals with only the 

SWF model. In Table 2 was explained how the formulation for C is derived for very thick 

cones whether the SWF model is applied. The Fig. 4 deals with both SWF and SW models. In 

Table 3, the  limit ( )0→− CS   opens many perspectives. At least the possibility of 

hypervelocity or the posibility of thick cones are considered, but also the C formulations for 

both cases the SWF model and the SW model are shown. After these formulations in Fig. 4, six 

regions are obtained and characterized, but the focus takes place only over those regions that 

lay over the upper limit line  CS  = , which are only three regions of the six regions. In Fig. 

4, the line →1M  of the SW model is applied as a reference line due to the fact that over this 

line only the SWF model can be applied and SW model cannot.  Below this line, both SWF and 

SW can be applied. For instance,  the SW model can be taken into account to draw the chart, 

only whenever 25S . So, in order to analyze upper regions associated with the SWF model, 

the focus is above the line →1M  of the SW model or above the line 51 =M of the SWF 

model, but always below the upper limit line CS  = which is derived analytically by the new 

SWF model. Now, for comparison purposes, both the SWF and the SW models are analyzed. 

Table 3 provides the C formulations for the wide condition ( )0→− CS  , but considering two 

different circumstances: 1) the SWF model is applied (The point S1 is adopted in SWF),  and 
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2) SWF is not applied, but SW (The point 1 is adopted in SW). Note that C for the case 1) is 

derived from SWF model. To this end, the cone angle versus the Shock angle for different Mach 

numbers are shown in Fig. 4. The SWF model generates three new regions little below the 

condition 𝜃𝑆 = 𝜃𝐶 , but above the curve →1M  of the SW. One for very thick cones, in the 

sense of  0→V . Other for hypersonic flow, 𝑀1 > 5 of the SWF. And another region for 

conical hoses or twin funnels, between them.  However, SWF and SW comparison implies more 

details. For instance, note or recall that →1M implies one curve for SWF and one curve for 

SW. The same occurs with other conditions. Naturally, under the curve →1M  of the SW, 

other regions are generated or derived from the analytical comparison between SWF and SW. 

Three of them are illustrated in the chart of solid cone semi-angle as a function of the Shock 

Wave semi-angle for different Mach numbers. In this study, it is suspected that novelty was 

generated after the equations 11 VV S −= and 11 iMM S = , a pair of two recent boundary conditions 

from Fluid Mechanics Laws [7-11]. So, now,  let us focus on new regions above the curve

→1M  of the SW. 

 

Table 3: A comparison between WS and SWF for obtaining  𝜃𝐶 

 

 

 

Coming from the right to the left, the first new region is above the curve →1M of the 

classic SW model in the ),,( 1MSC   chart, where we have very thick supersonic cones 

whenever 2.21 M . This region is derived from the SWF model, but it is not allowed for the 

SW classical model because it is above of its upper limit. The second new region is a very thin 

dual region (in this case it is supersonic from the SWF model, and it is not allowed from the 

SW model). This region touches the line CS  =  along the range 20∘ ≤ 𝜃𝑆 ≤ 75∘. In fact, since 

this region is below 51 =M  of the SWF model, it is supersonic, but it is banned for the SW 

model since it is above its upper limit, which is the curve →1M for the SW model. More 

specifically, this region is the thinner of the three regions above the curve →1M for the SW 
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model. According to what was explained in section 3.2 this part of the region of hoses or twin 

funnels. The third, and the last new region, is placed at the left bottom of the chart in Fig. 4. To 

be on the left, this region satisfies 25S . Also, this region is above the curve 51 =M of the 

SWF model and below the line CS  = . Here, we have that both the SWF model and the SW 

model agree in considering this region as a hypersonic one. Finally, note that these three new 

regions have quite different shapes. 

Also, note that these three mentioned regions are only generated from the SWF analytic 

model. However, as mentioned before, there are other regions, but they are out of the focus of 

this analysis. This is because these other ones are below the curve →1M for the SW model 

and, consequently, they belong to both the SWF and SW models. So, they are out of the focus 

of this study since they can also be obtained throughout the classic SW model as a set of well-

known lower references in the region. However, even three of them are in Fig. 4. 

 

 

Figure 4: New regions from the SWF and SW comparison in the ),,( 1MSC   chart. 

From above to below, the first one below the curve →1M for the SW model is between 

the curves →1M  and 51 =M for the SW model. This is a very thin region below the curve 

51 =M  of the SWF model and above the curve 51 =M for the SW model. So, it is supersonic 

from the SWF model point of view, but it is hypersonic from the SW model perspective. This 

dual behavior is extended along all range of S . The dual behavior is not a real problem since 

it comes from the incompleteness of the classical SW model. The second region out of the focus 

is supersonic 51 1 M and the third one is just subsonic. Note that, see Fig. 4, these three 

regions are the same-shaped three regions in the lower part of the chart (𝜃𝐶 , 𝜃𝑆 , 𝑀1). 
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Now, revisit hoses region. Let us go again above the curve →1M for the SW model and 

below the curve CS  =  for SWF model, and between hypersonic flow region and very thick 

cones region. From one side, hypersonic flow cannot happen “easily” for higher 𝜃𝐶values. From 

the other side, higher 𝜃𝐶  values cannot reach “easily” hypersonic velocities without distribution 

of matter. So, the more accentuated and preserved geometrical transition to conical hoses is 

derived from the SWF-SWB or SWF models proposed in the literature [7-11]. In section, 3.2, 

the hoses region was characterized and bounded by the curves for 𝑀1 = 2.2 and 𝑀1 = 5 among 

the other two mentioned regions (hypersonic and thick cones regions). In this case, we deal 

with an upper supersonic region. Then, after dimensional consequences together with the SWF 

model and combined with the physical laws of conservation, the matter distribution is predicted 

in the direction of the Shock Wave, internally, between the Shock Wave Front SWF and the 

Shock Wave Back SWB, [10,11].  

 

To summarize: 

 

 If:  

  1) the region of hoses is under the physical limit SC  = ,  

2) the region of hoses involves  C  values that are above the  C  values of the 

hypervelocity region, 

 3) the region of hoses involves  C  values that are below the  C  values of the 

region of very thick cones, where a physical relation among 𝜃𝑆 and 𝜃𝐶  is full 

predictable,   

3) in applying the SWF model, a horizontal line does not cross every curve twice 

in the chart ),,( 1MSC  , This fact does happen in the hoses or twin funnels 

region. The hoses region is the only with this property below the SC  = curve.  

4) the region of hoses is above the superior limit of the classical theory for one 

dimensional supersonic flow, incomplete but fully accepted SW theory as it was 

explained in section 3.3, where only one-dimensional phenomena take place. 

That is to say, the region of hoses is above the curve →1M for the classical 

SW model, and finally, 

5) this region of hoses allows at least two-dimensional movement that satisfies 

the mass, momentum, and energy conservation laws. 

 Then:   

a) two-dimensional flow distribution phenomenon exists in 2D flow, and 

b) an axisymmetric flow distribution (matter distribution) by hoses or twin 

funnels exists in 3D flow. 
 

5 CONCLUSIONS 

The boundary conditions 11 iMM S = , and 11 VV S −= , after the Shock Wave Front model, and  

Mass, Momentum and Energy conservation from the field of Fluid Mechanics allow us to 

conclude in the existence of a near axisymmetric flow distribution (matter distribution) by hoses 
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or twin funnels in 3D flow under certain physical conditions. In addition, the SWF model was 

applied to formulations for very thick cones, and four new regions were characterized. Then, a 

comparison between new regions that has been derived from the SWF model and those classical 

who has not, shows that the SWF model provides new more realistic boundaries in the local 

analysis, but in the global. Applications in supersonic cones allows us to find analytical hoses 

or twin funnels that potentially helps the prediction of internal matter or energy distribution. 

Finally, these results are of practical interest since the limit regions for cones has applications 

in industry and the new boundaries that define regions helps in predictions related to 

compressible flow and helps in building new necessary theoretical support. 
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