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Abstract. A primary area of the author’s work with his students is outlined in the present article. 

It regards the estimation of the discretization error with mixed-element and adaptive meshes. 

Use of general hybrid meshes for computational flow simulations is of importance due to the 

complexity of both the geometry and the fields. The meshes can consist of a mix of hexahedra, 

prisms and tetrahedra with pyramids being transitional elements. The discretization error is a 

primary component of the numerical error in flow simulations. Primary factors affecting it are 

the local density of the mesh, as well as its “distortions”, namely the variation in local size and 

orientation (stretching, skewness), the shape of the individual elements (shear, twist), and the 

local change in their type (grid interfaces). Two distinct approaches have been followed in order 

to estimate and control the discretization error. The grid-based (“a priori”) approach assesses 

mesh quality from the analytic expression of the truncation error. The solution-based 

(“a posteriori”) approach monitors approximations of the variation of flow quantities 

(“sensors”). Those are then applied to guide adaptation of the grid to the simulated flow field. 

 
 

1 INTRODUCTION 

Use of general hybrid meshes for computational flow simulations [1] is of importance due 

to the complexity of both the geometry and the fields. The meshes can consist of a mix of 

hexahedra, prisms and tetrahedra with pyramids being transitional elements. Those types of 

elements are arranged in areas of different grid density and directionality according to the local 

flow and geometry features. 

General hybrid meshes necessitate fast and robust techniques for their generation [2-4], 

element-type independent solvers for incompressible [5-7] and compressible flows [8, 9], as 

well as parallel flow simulations [10] with emphasis on partitioning / load balancing for those 

heterogenous meshes [11, 12]. Further, general methods for grid adaptation are required. All 

major techniques for automatically adapting the mesh to the flow field and geometry have been 

pursued [13-15]. Those include local divisions / coarsening, redistribution as well as automatic 

regeneration of the entire mesh. Adapting the mesh to the geometry curvature included use of 
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local curved-edge quadratic elements [16].  

The discretization error is a major component of the numerical error in flow simulations. 

Primary factors affecting it are the local density of the mesh, as well as its “distortions”, namely 

the variation in local size and orientation (stretching, skewness), the shape of the individual 

elements (shear, twist), and the local change in their type (grid interfaces) [17, 18]. 

Two distinct approaches have been followed in order to estimate and control the 

discretization error: the grid-based (“a priori”) methods are employed during grid generation 

(e.g. [19, 20]), while the solution-based (“a posteriori”) ones monitor the simulated flow field 

and guide mesh improvement  (adaptation) (e.g. [21, 22]).  

The grid-based approach utilizes a second order finite volume discretization of spatial 

derivatives. It derives expressions of the truncation error for the most commonly encountered 

“distortions” of the mesh and works with the terms that multiply the solution derivatives (grid 

metrics or error coefficients). The magnitude of those terms is used to guide grid generation 

and post-processing of the initially created grid.  

The solution-based error estimation monitors approximations of the variation of a spectrum 

of flow quantities (“sensors”). Those are then applied to guide adaptation of the grid to the 

simulated flow field.  

The present article is an outline of the author’s work with his students on estimation of the 

discretization error with general hybrid and adaptive meshes. 

 

2 GRID-BASED ERROR ESTIMATION 

It is clear that generation of mixed-type meshes, as well as the use of diverse techniques for 

local adaptation necessitates groundwork on numerical error estimation. A mesh quality index 

is presented that is derived from the analytic expression of the truncation error related to first 

order spatial derivatives. The index was introduced in [19] for two-dimensional meshes and 

was generalized for three-dimensional hybrid grids in [20]. 

 

Figure 1 depicts the control volume of an example local hybrid mesh surrounding the vertex 

O. The truncation error (TE) in the calculation of the first order derivative of the scalar flow 

variable u  at the vertex O is defined as: 

 

 

    ,   
i i

i x x
num

u u i = x, y,z −=  (1) 

where  

 i
x

num
u

  and 
i

xu  are the numerical and analytical values of the derivatives, 

respectively. The subscript i  denotes the direction of the derivative.  

The numerical value of the derivative is calculated with a vertex-centered finite volume 

discretization. A low order discretization is chosen so as to “bring out” the gross error. 

Substituting the numerical expression of the derivative, Equation (1) becomes: 

( )
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     ,   
i

i i f
f

u S u i = x, y,z
V x = −  
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where the summation is over the cell faces ( f ) of the local control volume (V) surrounding the 

grid point of interest and , ,x y zS S S are the projected face-areas on the y z -, x z -, and x y -

planes, respectively. 

 

 

Figure 1: The control volume of a local mesh consisting of hexahedra, tetrahedra, and pyramids employed for 

the calculation of flow gradients at vertex O. 

Using Taylor series expansion for the field variable u , the truncation error is cast in the 

following general form:   

( ) ...  ,  xx xx yy yy zz zz xy xy zx zx zy zye u e u e u e u e u e u i = x,y,z
i

 = + + + + + +  (3) 

The first order error terms (e) contain grid metrics only and will be termed “error coefficients” 

in the following. Their general form corresponding to the derivative approximation in the 

i - direction is: 

( )11 1

1 1
...

( )!p q r

qpp q r r
N iN N

ffx y z

k
X Y Z X Y Z S

V p q r N
e

 
=      + +     + +  

  (4) 

where N  is the number of vertices which participate in the calculation. Also, ,  p q  and r  are 

integers equal to the order of the derivative of u with respect to x, y, and z, respectively. Finally, 

k  is an integer coefficient from the Taylor expansion. 

The error coefficients can then be employed to yield the value of a “mesh quality index” 

( Q ). This is carried out using the absolute values of the first order error coefficients: 

      ,   xx y y z z x y z x zyQ e e e e e e i = x,y,z
i
= + + + + +  (5) 

where i  denotes the calculation of the x, y, or z-spatial derivative of the field function. The 

above expression is normalized with a local characteristic length. It should be emphasized that 

higher values of the index Q  indicate worse quality. The best value is zero, which denotes 

second order of accuracy. 

 

  ( ,  ,  )
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3 ERROR AND MESH QUALITY 

 

A general hybrid mesh for complex geometries and flow fields typically contains elements 

with stretching, skewness, shear, torsion ( Figure 2 ), as well as interfaces between the different 

types of elements. These mesh “distortions” are primary contributors to the discretization error. 

 

(a) (b) (c)
x

y

z

 
 
           

Figure 2: Examples of mesh distortions:  (a) normal stretching of prism stacks, (b) point stretching of tetrahedral 

mesh, (c) skewness of hexahedral stacks.                                              

Each mesh distortion type was directly related to the mesh quality index ( Q ) in [19, 20]. The 

“normal -  to - the - wall” and the “lateral” directions are of relevance for boundary layer grids. 

Indicative examples are presented in this section. For hexahedral and prismatic meshes that 

exhibit stretching ( s ), the corresponding quality indices are: 

1
2

2 ll
Q Q nn

s s= = +  (6) 

where ns  is the “normal -  to - the - wall” stretching parameter and 
l

s  is the “lateral” stretching 

parameter. 

For the skewness case, the mesh quality indices for both the hexahedral and prismatic meshes 

are: 

( )
( )

( )

21 1
cos 1

2 2 1l

sin
Q Q

cosn





= = − +

+
 (7) 

where ω is the skewness angle, defined in Figure 2 (c).  
 

3.1 Hybrid grid interfaces 

Change in the type of the elements creates special interfaces which require examination in 

terms of the local accuracy. The interfaces are encountered in regions of the grid with constant 

or variable number of hexahedral / prismatic layers. Figure 3 shows indicative examples of grid 

interfaces studied in [20], which correspond to boundary layer grids with constant number of 

(a) (b) (c) 
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hs   
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layers. The first two have element type change in the “normal” direction, while the third is an 

example of a “lateral” interface. 
 

                                   

 

Figure 3: Grid interface configurations corresponding to boundary layer grid stacks with constant number of 

layers: (a) hexahedra and (b) prisms for “normal” type of interfaces, (c) mixed hexahedra and prisms ( “lateral” 

interface type ). 

Use of variable number of layers is a common practice when the geometry includes gaps, 

local cavities or singular points. Figure 4(a) shows an example of an interface studied in [18], 

which corresponds to boundary layer grids with variable number of hexahedral layers. That 

example interface has element type change in both the “normal” and the “lateral” direction. The 

mesh quality, as quantified by the index Q
n , can be significantly improved with vertical 

displacement of the central point (O), as shown in Figure 4(b).  

  

                         

 

 

 

 

 

       

 

 

      

 

 

Figure 4: Vertical central point displacement (a) and corresponding quality improvement (reduction in Qn ) (b). 

Case of an interface with variable number of hexahedral layers. 

Table 1 presents the values of the mesh quality index Q
n  for the common hybrid grid 

interfaces of Figure 3 (top three rows of the table). It is observed that calculation of the “normal” 

derivative ( )u n   is less sensitive to the lateral variation of the type of elements. The second 
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part of the table shows appreciably higher values of Qn  for interfaces of meshes with variable 

number of layers. 
 

Table 1: Mesh quality index in the “normal” direction ( )Qn  for different interface types. 

Interface types Qn  

Constant number of layers Hexahedra (“normal”) 0.25 

Prisms (“normal”) 0.25 

Mixed hexahedra and prisms (“lateral”) 0.15 

 

Variable number of layers Hexahedra 0.61 

Prisms 0.28 

 

4 SOLUTION-BASED ERROR APPROXIMATION: FLOW SENSORS 

 

The analytic truncation error expression indicates larger discretization error where the flow 

field derivatives are high. Those derivatives are approximated by flow sensors. The target of 

the sensors is to detect multiple features of different strength in the same flow field. A general 

framework for development and evaluation of flow sensors was introduced in [21] and [22]. 

Evaluation of the sensors is based on their application to “prototype” flow fields. The sensor 

effectiveness ( )effP  is based on the degree of match between the region of the flow features 

and the region of the flow field flagged by the sensor.  

Figure 5 depicts a typical sensor effectiveness diagram. The “cut off” value of the sensor 

above which the local flow region is flagged as containing significant gradients (“detection 

threshold”) is a key factor for accurate detection. The primary characteristics of the 

effectiveness curve are its peak value ( ) , ,eff maxP its area ( )effA  and its sensitivity to the 

threshold value ( T ), i.e. maintenance of high effP  with varying T.  

 

 

 
 

 

 

 

 

 

 

 

 

   

 

 

 

 

Figure 5: Typical flow sensor performance with varying threshold for flow feature detection. 
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4.1 General formulation of the sensors 

The flow sensors are cast into a simple mathematical form that expresses spatial variation of 

a flow quantity ( )q . Specifically, the sensor ( )q  is defined as the difference in the flow 

quantity q  between the endpoints ( i and j ) of a grid edge:  

 -  
ji

q q q =  (8) 

The algebraic combination of two single-quantity sensors  ( ),  q r   leads to a new class of 

flow sensors, termed composite sensors ( ) ,
C

q r  . They are introduced for the detection of 

multiple and interacting flow features of different strength. The composite sensors formula can 

be derived from a second order polynomial: 

( ) ( ) ( )( )
 1 2 3 4 5 6

2 2

,
C a a a a a aq r q r q rq r       

= + + + + +  (9) 

where the constants ( )ia  are derived based on the desired characteristics of the sensor, by 

applying appropriate conditions. Two significant conditions, among others, are the following: 

(i) 
  

  ,  
0 0, ,

C C
q r

q r  = =  . 

Namely, if a feature is properly detected by one of the component sensors, it will also be 

detected by the composite sensor. 

(ii) The composite sensor “switches off” for very strong features. This is quantified as: 

 1,1 0C =  . 

This condition is included so that emphasis is given on weaker features of the flow field.

  

The final equation for the composite sensor, after application of the conditions, is: 

( ) ( )
 ,

1  + 1
     =  −  −

q r
C q r r q  (10) 

Figure 6 represents the above equation. 

 
 

Figure 6: Distribution of composite sensor values ( ) ,
C

q r 
 with respect to its component sensors ( ),  q r  . 
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4.2 Example applications to flow fields with multiple features 

The example cases of this section are drawn from reference [22]. The first case is a 

supersonic flow in a duct with a high ramp angle ( )  of 22 , with the upper wall being 

assigned a “slip flow” condition. A Mach reflection configuration, a boundary layer and a slip 

line are the features encountered. Figure 7 shows the contours of two indicative single-quantity 

sensors, the vorticity ( )  and the pressure difference ( )P , as well as the contour of the 

composite sensor , PC  . The composite sensor is the only one which captures all the features 

of the flow field. 

 

(a) (b) (c)
 

Figure 7: Contours of sensor fields: (a) vorticity ( )  , (b) pressure difference ( )P , (c) composite ( ), .PC   

The composite sensor captures all the flow features. Case of supersonic flow in a duct with a high ramp angle. 

Figure 8 is an illustrative example of the improvement in the effectiveness, when using 

composite sensors. The effectiveness curves of the total velocity sensor ( )U , as well as the 

curves of two indicative composite sensors based on U  are shown. The composite sensors 

exhibit a peak close to that of the single-quantity sensor U , but with significantly less 

sensitivity to the threshold value variation. 

 
 

 

Figure 8: Employment of composite sensors improves the flow feature detection capability of traditional  

single-quantity ones. Case of supersonic flow in a duct with a high ramp angle 

( )42.65,  1.5 10 ,  22 .M Re  = =  =  

U  

, UC   

( ), U UC    
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The next sensors application example involves supersonic flow past a cylinder in a 

“slip-wall” duct. Contours of the total velocity field ( )U  are shown in Figure 9. A bow shock 

is observed, which reflects on the duct walls forming Mach stems and slip lines. A boundary 

layer and a wake behind the cylinder are also formed. 

  

Figure 9: Velocity magnitude contours for the case of supersonic flow past a cylinder in a duct  

( )2.8, 500DM Re = = . The flow field exhibits a bow shock, Mach reflection configurations as well as a 

boundary layer and a wake. 

Table 2 lists the performance of several sensors. The flow parameters involved are the total 

velocity ( )U , the entropy ( )s , the flow change of direction ( ) , as well as the change in 

temperature ( ) . It is observed that both the peak effectiveness ( ),eff maxP  and the area 

under the effectiveness curve ( )effA  are higher for the composite indicators compared to the 

single-quantity sensor ( )U . 

 

 
 

Table 2: Performance metrics of the most effective sensors employed. Case of supersonic flow past a 

cylinder in a duct ( )2.8, 500DM Re = = . 

Sensor ( )
,  %eff maxP  effA  

U  83.6 0.6 

( ) , lns U
C   89.4 1.2 

 ,UC   87.4 1.7 

 ,sC   87.4 1.0 

( ) , lnU U
C   87.1 1.6 

( )  ln ,U T
C   85.5 1.1 
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4.3 Flow statistics and automatic detection threshold 

A primary issue with application of flow feature detection has been the automatic calculation 

of a threshold value for the sensor. A typical setting of its formula follows early work in [13]:  

autoT s a = +   (11) 

where s  is the mean of the sensor values,   is their standard deviation and a  is a coefficient 

which is usually set empirically. 

The correlations observed between the different statistical parameters of the sensors 

motivated their employment for the construction of an automatic detection threshold formula. 

Figure 10 depicts correlations between the statistical parameters of mean value ( )s , standard 

deviation ( ) , skewness squared ( )2
1  and kurtosis ( )2  of the sensor distributions. A 

pattern of linear correlation is observed between the statistical parameters.  
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Figure 10: Correlation study between the sensor distribution parameters of mean value ( )s , standard deviation 

( ) , skewness squared ( )2
1  and kurtosis ( )2  of the sensors. A pattern of linear correlation is observed in 

both graphs.  

 

 

The above correlations led to the proposition of the following formula for the threshold 

parameter a  [22]: 
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5 CURRENT RELATED WORK 

A priori improvement of a general hybrid grid is a current primary effort. It is based on the 

error coefficients and relies on local motions of the vertices of the various elements. The 

emphasis has been on the interfaces between the different types of elements within areas of 

viscous flow. Further, optimum combination of the different grid adaptation techniques 

including adaptive local use of quadratic elements is investigated. 

Finally, a novel error sensitivity analysis is being carried out. Theoretical and numerical 

analysis is employed in order to assess the influence of primary factors of a simulation on the 

error. Those factors include the flow field parameters, the numerical solution itself, the 

boundary conditions, as well as characteristics of the geometry. 
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