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Summary. Here we propose a hybrid PINN model to learn weak solutions of conservation
laws. The entropy flux, which satisfies admissibility condition and, as a consequence, grants
uniqueness to the weak solution, is learned by a fully-connected neural network. The entropy
rate principle is used to compose the PINN residual in our model. The proposed approach is also
extended to problems in the two-dimensional domain. Considering that ensuring convexity of a
deep neural network output is in general not possible, here we combine the learned function with
Kruzkhov entropy. By setting appropriate weights to the Kruzkhov and the learned residuals, we
ensure a valid weak solution under the admissibility criteria at the same time that the learning
process of the entropy provides more flexibility for the model optimizer to search for the most
accurate solution, i.e., weak PDE-informed. The model was validated in the inviscid Burgers’
equation with rarefaction waves, moving shock, and Riemann initial conditions in 2D, as well
as with the linear advection equation with periodic initial data. Our results suggest that the
proposed model is capable of providing qualitatively good solutions with fewer training epochs.

1 INTRODUCTION

Deep neural networks (DNN) have been recently used to solve partial differential equations
(PDE) in the most diverse problems [Raissi et al., 2019, Abreu and Florindo, 2021, Carniello
et al., 2022]. Nevertheless, in most of those studies, they are applied to relatively “well-behaved”
configurations, for example, with continuous initial data and smooth solutions.

Furthermore, several “ad-hoc” mechanisms have been employed, with strategies that can be
applied only to a limited number of scenarios. In this regard, we observe that little theoretical
foundation has been developed and more in-depth discussion is necessary.

Hyperbolic transport models [Galvis et al., 2020, Alibaud et al., 2020] are a challenging
example that has not been sufficiently explored by learning-based methods. Inspired by [De Ryck
et al., 2024], here we explore a hybrid weak PINN formulation in two dimensions. We also
introduce the minimization of an entropy rate as in [Dafermos, 2009] to the PINN neural network.

We test the model in challenging initial conditions, including moving shocks, periodic func-
tion, and rarefaction fan. Our results are qualitatively compared with the exact solution when
available or with reference numerical schemes. Promising performance is achieved if we consider
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that the DNN model used here is reasonably simple. We also observe evidences that the weak
entropic formulation of the functional as in [De Ryck et al., 2024] is beneficial for the solution,
but further improvements are still necessary.

2 RELATED WORKS

Since the seminal work of Raissi et al. [Raissi et al., 2019], physics-informed neural networks
have been widely used in the most diverse applications involving PDEs. This includes, for
example, heat transfer [Cai et al., 2021], power systems [Misyris et al., 2020], fluid mechanics
[Mao et al., 2020], and several others.

When it comes to hyperbolic conservation laws, on the other hand, the number of studies
is significantly reduced and adjustments over the original model are necessary. In [Patel et al.,
2022], the authors propose a reformulation of PINN adopting space-time control volume, ob-
taining in this way a hybrid model that combines the learning-based approach with classical
strategies of numerical analysis. In [Rodriguez-Torrado et al., 2022], the focus is on the network
architecture and attention mechanisms are introduced over the PINN model, which in this case
also is designed using recurrent neural networks instead of the fully-connected architecture in
[Raissi et al., 2019].

Another possibility in these more challenging scenarios is to adapt the problem formulation.
This is explored in [De Ryck et al., 2024], where the deep neural networks is settled up to solve
conservation laws in their weak formulations. Considering that this approach is more natural to
the context of PDE solvers, this is also our choice here to develop PDE-informed PINN solutions
for conservation laws.

3 PHYSICS-INFORMED NEURAL NETWORKS

The basic version of PINN model is proposed in [Raissi et al., 2019] and here we extend it
for two dimensional problems. The partial differential equation to be solved is appropriately
formulated as

ut +D(u) = 0, (x, y) ∈ Ω ⊂ R2, t ∈ [0, T ], (1)

where D(·) is a differential operator and u(x, y, t) is its proper solution. The PINN model
corresponds to a feed-forward neural network Nm : Rd0 → Rdm that is constructed to represent
the solution of the PDE with m layers and dk neurons in the kth layer. The input layer should
be d0-dimensional and the output should have dm neurons. For any 1 ≤ k ≤ m, the output of
the kth layer is obtained by

Ck(zk−1) = Wkzk−1 + bk, for Wk ∈ Rdk×dk−1 , zk−1 ∈ Rdk−1 , bk ∈ Rdk , (2)

where zk−1 represents the outputs from the previous layer, whereas Wk and bk are the learnable
weights and biases, respectively. Denoting the collection of all trainable parameters by Θ =
{Wk, bk}, the neural network output is given by

uΘ(z0) = Cm ◦ σ ◦ Cm−1... ◦ σ ◦ C2 ◦ σ ◦ C1(z0), (3)

where ◦ represents function composition, σ is the non-linear activation function, and z0 in the
neural network input.
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The cost function of the neural network is defined as f , corresponding to the left hand side
of each PDE:

f := ut +D(u). (4)

Two losses are defined over f , u, the initial condition u0, and the boundary condition g:

Lf (u) =
1

Nf

Nf∑
i=1

|f(xif , yif , tif , ui)|2,

Lu0(u, u0) =
1

Nu

Nu∑
i=1

|u(xiu, yiu, 0)− ui0|2,

Lbc(u, g) =
1

Nb

∑
(xi

b,y
i
b)∈∂D

|u(xib, yib, tib)− g(xib, y
i
b, t

i
b)|2,

(5)

where {xif , yif , tif}
Nf

i=1 represents collocation points over f , {xiu, yiu, tiu, ui0}
Nu
i=1 corresponds to the

initial values at specific points, and {xib, yib, tib}
Nb
i=1 are values sampled over the domain boundary,

where the value of the solution is constrained to be g(xib, y
i
b, t

i
b).

x
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Figure 1: Physics-informed deep learning approach illustration.

The solution u(x, y, t) provided by PINN is obtained by jointly minimizing both losses at the
same time:

u(x, y, t) ≈ arg min[Lf (u) + Lu0(u, u0) + Lbc(u, g)]. (6)

A diagramatic illustration of the PINN architecture is depicted on Figure 1.
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4 PROPOSED METHOD

Let Ω ⊂ R2 be the spatial domain and the conservation law

ut +H(u)x +H(u)y = 0 in Ω× [0, T ]
u = u0 in Ω× {0}. (7)

Function u ∈ L∞(Ω× [0, T ]) is a weak solution of (7) with u0 ∈ L∞(Ω) if∫
[0,T ]

∫
Ω
(uϕt +H(u)(ϕx + ϕy))dxdydt+

∫
Ω
u0(x, y)ϕ(x, y, 0)dxdy = 0 (8)

for all test function ϕ ∈ C1
c (R2 × R+) with compact support in Ω× [0, T ].

Nevertheless, weak solutions are not unique. In this scenario, we need extra admissibility
constraints. This is the case, for example, of Kruzhkov entropy:

∂t|u− c|+ (∂x + ∂y)Q[u; c] ≤ 0, (9)

where Q[u; c] = sign(u− c)(H(u)−H(c)) for all c ∈ R.
Equations 8 and 9 can be adapted to the PINN context by the establishment of a new residual

term adapted from [De Ryck et al., 2024], which in two dimensions is given by:

L0(u, ϕ, c) = −
∫
[0,T ]

∫
Ω
(|u− c|∂tϕ+Q[u; c](∂xϕ+ ∂yϕ))dxdydt. (10)

To further explore the role of entropies in weak formulations, we also take into consideration the
rate of change of the total entropy in [Dafermos, 2009]. In the PINN residual, this contributes
with the following extra term:

L1(u, ϕ, c) = L0(u, ϕ, c) +
d

dt

∫
Ω
η(u)dxdy, (11)

where η(u) is a general entropy function as defined in [Dafermos, 2009]. These entropy functions
η are assumed to be C2 and convex. However, following [Panov, 1994], we can consider a specific
case: the Kruzhkov entropy, which is the same entropy used in Eq. (9).

Finally, to stabilize the numerical solution around discontinuities, we add a diffusion term
ϵ∆u (in weak form) for ϵ ∈ R a small constant:

L2(u, ϕ, c) = L1(u, ϕ, c)− ϵ

∫
[0,T ]

∫
Ω
∇u · ∇ϕdxdydt. (12)

In the numerical implementation, functional (12) is discretized by Monte-Carlo:

Rint =

Nint∑
i=1

ϕ(xi, yi, ti)∂t|u(xi, yi, ti)− c|−

Q[u; c](∂xϕ(xi, yi, ti) + ∂yϕ(xi, yi, ti))

+

Nint∑
i=1
ti

∂t

Nint∑
i=1
xi,yi

|u(xi, yi, ti)− c|

− ϵ

Nint∑
i=1

[∂xu(xi, yi, ti)∂xϕ(xi, yi, ti) + ∂yu(xi, yi, ti)∂yϕ(xi, yi, ti)].
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Notice that here the time derivative taken over |u − c| as in [De Ryck et al., 2024] accelerates
the learning process. Following [De Ryck et al., 2024], we also apply L2 normalization by the
test function:

L(uθ, ϕ, c) =
ReLU(Rint)∑Nint

i=1 [∂xϕ(xi, yi, ti)2 + ∂yϕ(xi, yi, ti)2]
, (13)

where ReLU(·) = max(0, ·) is the rectifier linear unit activation function.
Finally, initial and boundary conditions are expressed as usual in the PINN framework, by

adding the respective terms:

Lu0 (u, u0) =
1

Nu

Nu∑
i=1

|u(xi, yi, 0)− ui
0|2, Lbc(u, g) =

1

Nu

∑
(xi,yi)∈∂D

|u(xi, yi, ti)− g(xi, yi, ti)|2. (14)

PINN total loss function is finally provided by:

θ∗ = argmin
θ

max
ϕ

(L(uθ, ϕ, c) + λ(∥Lu0(uθ, u0)∥2 + ∥Lbc(uθ, g)∥2)). (15)

5 SOLVED PROBLEMS

To verify the feasibility of the proposed model to solve challenging PDEs in the real world,
we solve two equations under different conditions: two-dimensional inviscid nonlinear Burgers
and linear advection.

5.1 Burgers

Inviscid 2D nonlinear Burgers equation is given by scalar equation

ut +

(
u2

2

)
x

+

(
u2

2

)
y

= 0. (16)

Here we solve it with discontinuous initial data (a Riemann type problem) for the following
conditions:

• rarefaction fan initial condition:

u(x, y, 0) =

{
−1, x ≤ 0,
1, x > 0,

x ∈ [−5.5, 5.5], y ∈ [−1.5, 1.5], t ∈ [0, 2.5],
(17)

• moving shock condition

u(x, y, 0) =

{
1, x ≤ 0,
0, x > 0,

x ∈ [−1, 1], y ∈ [1, 1], t ∈ [0, 0.5],
(18)

• and the Riemann condition

u(x, y, 0) =


2, x < 0.25, y < 0.25,
3, x > 0.25, y > 0.25,
1, otherwise,

x ∈ [0, 1], y ∈ [0, 1], t ∈ [0, 1/12].

(19)

5



Abreu et al.

5.2 Linear Advection

We also solve the 2D linear advection equation

ut + ux + uy = 0, x ∈ [0, 1], x ∈ [0, 1], t ∈ [0, 1], (20)

with smooth periodic initial condition:

u(x, y, 0) = sin2(πx) sin2(πy). (21)

6 RESULTS

Figure 2 shows the resulting solution for the problems described in Section 5 with a two-
dimensional version of the PINN neural network. That approach is similar to what was employed
in [Carniello et al., 2022]. For the network model, the following settings are used: Nint = 4×106,
4 layers, 20 neurons, 15000 epochs, ϵ = 10−3.

Despite some expected instability on the discontinuity regions, we observe that the neural
network provided acceptable solutions. However, that comes at the price of a high computational
cost, which is a consequence of the large number of sample points (Nint) and epochs. In this
scenario, a natural question arising is whether such relatively precise solutions are worth the
cost when well-established numerical solutions achieve comparable performance at a fraction of
the computational time [Abreu and Pérez, 2019, Abreu et al., 2021, Galvis et al., 2020].

Figure 3, on the other hand, illustrates the solution for the proposed hybrid model, either
with and without the diffusion term. In this case we adopt Nint = 1.6×104, 6 layers/20 neurons
(solution), 4 layers/10 neurons (test function), 1000 epochs, and ϵ = 10−3. Here it is important
to highlight that the number of collocation points is ≈ 250× smaller than in the basic 2D PINN
of Figure 2, whereas the number of epochs is reduced by 1/15.

The role of the diffusion term (on the right in Figure 3) was paramount. This term here
works as a regularizer of the network and, in this regard, it plays in some sense a similar role to
the ensemble modeling in [De Ryck et al., 2024]. Nonetheless, the simple addition of an extra
term to the PDE functional adds much less computational burden to the model. In comparison
with the basic weak model in [De Ryck et al., 2024] we also notice that the extra entropy term
(11) helped to smooth out artifacts on the discontinuity regions. This is particularly evident on
the rarefaction and Riemann problems. Distortions like those on the periodic problem was also
mitigated. This is an interesting observation as it opens the possibility of further studies on the
role of the entropy in the numerical solution. Whilst in [De Ryck et al., 2024] that entropy is
fixed, the approach in [Dafermos, 2009] raises the possibility of learning that entropy by obeying
some specific rules, which are encompassed in the term 11. That might potentially improve the
obtained solution in qualitative terms.

In summary, the qualitative analysis over the obtained numerical solutions present some
promising directions for the development of PINN models focused on the weak formulation of
the PDE. More precisely, the outcomes opens an avenue for an approach that here we name as
“PDE-informed”, where intrinsic properties of the PDE, such as its irregularity and entropic
nature, are further explored by the deep learning model to provide more accurate and robust
numerical solutions. We leverage in this way the power of PINN architectures in the most
challenging scenarios found in the real-world applications of PDEs.

6



Abreu et al.
R
ar
ef
a
ct
io
n

P
er
io
d
ic

M
ov
in
g
S
h
o
ck

R
ie
m
an

n

Basic PINN Basic PINN + Diffusion term

Figure 2: Two-dimensional version of classical PINN (PINN2D).
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Figure 3: Proposed Weak Hybrid model.
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7 CONCLUSIONS AND NEXT STEPS

7.1 Conclusions

In this work, we proposed and investigated a hybrid model to solve PDEs in weak formulation,
following what we call a PDE-informed approach. PDE-Informed solutions are compared with
the pure weak formulation of PINN in [De Ryck et al., 2024].

The general structure of the solution was correctly identified by the proposed DNN in different
benchmark problems, which included nonlinear inviscid Burgers equation and linear advection
with discontinuous initial data. The outcomes are promising considering the complexity of the
PDE solved here and the relative straightforwardness of the DNN model. Our results also
showed evidences that more general entropy formulation and hybrid approaches constitute a
fruitful avenue and deserve more in-depth investigation.

7.2 Next Steps More PDE-Informed

We plan to introduce a more general formulation of entropy as in [Dafermos, 2009]. Going
further, we intend to learn the entropy function by a neural network coupled with the PINN
model.

The entropy is any C2 and convex function η, as in [Panov, 1994]. The entropy η and entropy
flux q (pair entropy-entropy flux) for Eq. (7) should satisfy{

Dq(u) = Dη(u)DH(u)
∂tη(u) + ∂xq(u) + ∂yq(u) ≤ 0,

(22)

in the sense of distribution in Ω× [0, T ]. Second condition represents the dissipation of entropy.
If necessary we add diffusive terms to enforce uniqueness.

Moreover, admissible solutions should also minimize the rate of change of the total entropy:

H =
d

dt

∫
Ω
η(u(x, y, t))dxdy. (23)

We expect in this way to develop a fully-learnable model to accomplish with the entropy
formulation of the PDE. This is also expected to provide more accurate and robust numerical
solutions as the learned entropy may be more favorable to neural network training than a fixed
form as the Kruzhkov entropy employed here and in [De Ryck et al., 2024].
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