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Abstract. This study presents a prediction of plural crack propagation using the discovered 
partial differential equations. 80% of structures fracture due to fatigue failure. Therefore, the 
evaluation of fatigue cracks is essential. Numerical analysis is costly, and machine-learning 
surrogate models have been proposed. Hence, the crack propagation path and remaining life are 
predicted using machine learning. A dataset is obtained from the results of a crack propagation 
analysis using a s-version FEM combined with an automatic mesh generation technique. The 
input parameters are the coordinates of the four crack tips, and the output parameters are the 
crack propagation vector and the number of cycles of 0.25 mm. Also, physics-informed neural 
networks (PINNs) have been widely studied in recent years. Thus, we took inspiration from 
PINNs and added a regularization term of PDE discovered by AI Feynman to the loss. As a 
result, the loss of a validation dataset for training constrained by PDE was reduced by about 
77% compared to the unconstrained loss. The error in crack length decreased from -0.50% to 
0.17%. 
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1 INTRODUCTION 

Fatigue failure is the cause of more than 80% of structural failures. An evaluation of the 
remaining life after detecting fatigue cracks is necessary. The evaluation can be conducted using 
approximate formulae and the reference stress method [1, 2]. Also, fatigue crack growth is 
simulated by numerical computations that consider governing laws and fracture mechanics 
criteria: stress intensity factor, Paris' law, and criterion of crack propagation direction. 
Numerical computations are conducted using various methods, such as the s-version FEM (s-
FEM) combined with automatic mesh generation techniques [3-10]. By setting up the analysis 
model separately for the global mesh (the entire analysis target) and the local mesh, which 
represents the local area, including cracks, s-FEM reduces the computational processing 
required for crack propagation. However, even with the finite element method using s-FEM, it 
takes much time to compute a single crack propagation case. In contrast, machine learning can 
predict interpolated crack propagation path and its rate faster than the finite element analysis. 
Therefore, machine learning can efficiently evaluate a structure's integrity on a site. 

The first report of a previous study demonstrated that in a single crack with an angle, the 
application of the data augmentation technique as regularization reduced the error [11]. The 
second report improved the prediction accuracy by applying crack coalescence conditions in 
plural crack with different levels [12]. Furthermore, in a follow-up report, it was possible to 
predict the crack with different levels in the plural crack with a prediction error of less than 
0.07% by considering the physical quantities [13]. In addition to our study, many other studies 
have been carried out to combine crack propagation and machine learning, such as using 
machine learning to investigate the relationship between crack propagation rate (d𝑎/d𝑁) and 
range of stress intensity factor ∆𝐾 [14]. 

Recently, physics-informed neural networks (PINNs), a framework that adds physical 
information to neural networks, have been studied widely [15, 16]. PINNs can predict with high 
accuracy even on small dataset, preventing neural networks from being black boxes to some 
extent. We were inspired by PINNs and defined by the weighted sum of the prediction loss and 
the PDE loss as a regularization. This regularization requires an equation for fatigue crack 
propagation. An ODE called the Paris’ law can be applied to fatigue crack propagation: 

d𝑎

d𝑁
= 𝐶(∆𝐾)௠ (1) 

where ∆𝐾 is a range of stress intensity factor, 𝐶 and 𝑚 are material properties; however, the 
stress intensity factor is usually obtained by numerical analysis. It is, therefore, challenging to 
measure the stress intensity factor after detecting a crack in a real problem. As ODE and PDE 
composed of parameters that are easy to measure are preferred, PDE was discovered by AI-
Feynman, a symbolic regression algorithm [17, 18]. AI-Feynman runs symbolic regression 
given data on output parameters concerning input parameters that are partially differentiated 
using PyTorch's automatic differentiation package. Compared to the results without 
regularization, we would like to show that this definition of loss using this discovered PDE 
reduces the loss in the validation data set and leads to more accurate predictions. 
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2 FATIGUE CRACK PROPAGATION ANALYSIS BY S-FEM AND GENERATION 
OF TRAINING DATASET 

Static elastic crack propagation analysis was performed using s-FEM. Figure 1 shows the 
specifications for crack propagation analysis. 

 
Figure 1: Specifications of crack propagation analysis using s-FEM. 

Two different level parallel cracks (2a=10mm) are placed near the center of a 100mm x 200mm 
model. The horizontal distance between the two cracks is S=12mm. The vertical distance 
between cracks is variable H mm. The model is exposed to cyclic stress in the vertical direction 
with a stress ratio of 0.1 and a maximum tensile load of 100 MPa. Each crack tip is called Crack 
tip 1 ~ Crack tip 4 from left to right. Since the amount of crack growth in one cycle is extremely 
small, the crack propagation analysis is performed by calculating how many cycles are required 
to reach a minimum mesh size of 0.25 mm at a crack tip. Twenty-one cases are simulated for 
60 steps by modifying the variable 𝐻 from 1 mm to 36 mm according to Equation (2). One step 
was defined as the propagation by a minimum mesh size of 0.25 mm. 

𝐻ே௢ = 1 + 0.25(𝑁𝑜 − 1)  (1 ≤ 𝑁𝑜 ≤ 6) 

(2) 
𝐻ே௢ = 𝐻ே௢ିଵ + ෍ 0.25(𝑘 − 5)

ே௢

௞ୀ଺

  (6 ≤ 𝑁𝑜 ≤ 21) 

The subscript 𝑁𝑜  of 𝐻ே௢  in Equation (2) represents the number of analysis cases; 𝐻ଵଽ 
represents the distance between vertical cracks in analysis case 19, which is 28.25 mm from 
Equation (2). When the cracks are closer together, the crack interaction is so strong that a slight 
change in the vertical crack distance results in very different crack propagation behavior. 
Therefore, there is more data when the cracks are close together than when the cracks are far 
away. 
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Numerical analysis cannot represent crack coalescence. After the crack intersects, a number 
of cycles becomes unstable. Training dataset, including data on a number of cycles after the 
crack intersection, have been proven to have a negative influence on prediction accuracy [12]. 
Equations (3) or (4) are called crack coalescence conditions, and if either is satisfied, the two 
cracks are considered coalescing, and the subsequent dataset is deleted. Equations (3) and (4) 
are defined by the Nuclear Equipment Maintenance Standard by the Japan Society of 
Mechanical Engineers.  

𝑖𝑓 𝑆 ≤ 5 𝑚𝑚, 𝑡ℎ𝑒𝑛 𝐻 ≤ 10 𝑚𝑚 (3) 

𝑖𝑓 𝑆 > 5 𝑚𝑚, 𝑡ℎ𝑒𝑛 𝐻 ≤ 2𝑆 (4) 

Figure 2 shows the training and validation dataset and the number of effective steps after 
applying the crack coalescence condition. ● is the training dataset. ▲is the validation dataset. 

 
Figure 2: Configuration of training and validation dataset and number of effective steps. 

For example, the analysis results for Case 19 are shown in Figure 3. Each crack tip 
propagated vertically in the direction of loading, and the number of cycles required for crack 
propagation decreased with increasing steps. These trends are observed in all other cases. 

 
Figure 3: Analysis results of crack propagation path and number of crack propagation cycles in Case 19. 
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3 CRACK PROPAGATION PREDICTION METHOD 

Input and output parameters are shown in Table 1. 

Table 1: Input and output parameters. 

Input Coordinate 𝑥௜, 𝑦௜ 

Output 
Crack propagation vector 𝑡௫௜

, 𝑡௬௜
 

Crack propagation cycle logଵ଴ 𝑁௜  

The input parameters are the 𝑥௜ and 𝑦௜ coordinates of Crack tip 𝑖. The output parameters are the 
direction vectors 𝑡௫௜

 and 𝑡௬௜
 of the crack propagation of Crack tip 𝑖 and the number of cycles 

logଵ଴ 𝑁௜ required for Crack tip 𝑖 to propagate to the next step. The log of 𝑁௜ to the base ten 
allows for a more linear transition in the number of cycles. Each parameter of the input and 
output is normalized. In predicting crack propagation, instead of predicting the crack path itself, 
the crack tip coordinates are predicted for each sequence of analysis steps using equations (5) 
and (6). 

𝑥௜,௡ାଵ = 𝑥௜,௡ + 0.25 ×
𝑁୫୧୬(௡) 

𝑁௜,௡

×
𝑡௫௜,௡

ටቀ𝑡௫௜,௡
ቁ

ଶ

+ ቀ𝑡௬௜,௡
ቁ

ଶ
 

(5) 

𝑦௜,௡ାଵ = 𝑦௜,௡ + 0.25 ×
𝑁୫୧୬(௡) 

𝑁௜,௡

×
𝑡௬௜,௡

ටቀ𝑡௫௜,௡
ቁ

ଶ

+ ቀ𝑡௬௜,௡
ቁ

ଶ
 

(6) 

𝑁୫୧୬(௡) is the minimum number of cycles among the n-th step Crack tip i. The growth of each 
crack tip is obtained by multiplying the minimum mesh size of 0.25 mm by the number of 
cycles per step 𝑁௜,௡ divided by the minimum number of cycles 𝑁୫୧୬(௡). Each crack tip direction 
is calculated using the crack growth direction vectors 𝑡௫௜,௡

 and 𝑡௬௜,௡
. Firstly, the coordinates of 

each crack tip are given to the predictor. Secondly, the propagation rate and direction are 
predicted by machine learning. Finally, the next crack coordinate is calculated using the above 
equations. A series of these procedures are iterated to predict the crack propagation. 

4 PREDICTION RESULTS WITHOUT ANY REGULARIZATION 

Table 2 shows the configuration of the neural network.  

Table 2: Configuration of neural network. 

Layer Process Input size Output size Layer Process Input size Output size 
1 Input 8 8 10 Liner 10 40 
2 Liner 8 200 11 Activation (SiLU) 40 40 
3 Activation (SiLU) 200 200 12 Liner 40 100 
4 Liner 200 100 13 Activation (SiLU) 100 100 
5 Activation (SiLU) 100 100 14 Liner 100 200 
6 Liner 100 40 15 Activation (SiLU) 200 200 
7 Activation (SiLU) 40 40 16 Liner 200 12 
8 Liner 40 10 17 Output 12 12 
9 Activation (SiLU) 10 10 
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The loss function is given by 

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠ேே = 𝑀𝑆𝐸ேே  (7) 

where at each Crack tip 𝑖(= 1~4) 

𝑀𝑆𝐸ேே = 𝑀𝑆𝐸௧ೣ೔
+ 𝑀𝑆𝐸௧೤೔

+ 𝑀𝑆𝐸ே೔
 (8) 

With N’ is the number of data included in the training dataset, 

𝑀𝑆𝐸௧ೣ೔
=

1

𝑁′
෍ ቀ𝑡௫௜,௝

௧௔௥௚௘௧
− 𝑡௫௜,௝

௣௥௘ௗ
ቁ

ଶ
ேᇱ

௝ୀ଴

 (9) 

𝑀𝑆𝐸௧೤೔
=

1

𝑁′
෍ ቀ𝑡௬௜,௝

௧௔௥௚௘௧ − 𝑡௬௜,௝
௣௥௘ௗቁ

ଶ
ேᇱ

௝ୀ଴

 (10) 

𝑀𝑆𝐸ே೔
=

1

𝑁ᇱ
෍൫𝑁௜,௝

௧௔௥௚௘௧
− 𝑁௜,௝

௣௥௘ௗ
൯

ଶ
ேᇲ

௝ୀ଴

 (11) 

The optimizer is Adam, the batch size is 8, and the learning rate is 1.0 × 10ିହ. The training 
dataset was trained for 200,000 epochs. Figure 4 shows the loss transition, and Figure 5 shows 
the predicted crack propagation path and number of cycles. Table 3 shows a summary of the 
total crack length error and the total number of cycles error. The total crack length in this study 
is the horizontal distance from Crack tip 1 to Crack tip 4. 

 
Figure 4: Transitions of validation and training losses. 
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Figure 5: Predicted crack propagation results for Crack tip 1 in Case 19 (𝐻ଵଽ = 28.25𝑚𝑚). 

Table 3: Prediction result without regularization in Case 19. 

 Total crack length [%] 
Total number of cycles [%] 
Tip 1 Tip 2 Tip 3 Tip 4 

Without regularization -0.50 -5.27 -5.05 -5.14 -3.86 

Figures 5, and Table 3 show that the total number of cycle errors is high and not acceptable 
from an engineering point of view. 

5 DISCOVERY OF PDE BY AI-FEYNMAN. 

The crack tip propagating outwards from the model must be accurately evaluated because 
the length of two cracks predominantly affects the crack propagation rate. Therefore, a PDE 
composed of 𝑥ଵ and 𝑥ସ as input parameters and 𝑡௫ଵ

 and 𝑡௬ସ
 as output parameters is preferred 

in this study. In other words, the PDE represents the crack growth vector concerning the crack 
outer coordinates. For example, Figure 6 shows the transition of 𝑡௫ଵ

 and 𝑡௫ସ
 concerning 𝑥ସ, 

partially differentiated using PyTorch's automatic differentiation package from the results in 
Chapter 4. These are smoothed using a moving average after partial differentiation. It is 
necessary for AI-Feynman to be smoother and more symmetrical to make the equations more 
straightforward to discover. 

 
Figure 6: Partial differentiation of 𝑡௫ଵ

 and 𝑡௫ସ
 concerning 𝑥ସ in Case 15. 
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As shown in Figure 6, the partial derivative is smooth but not symmetric. We considered that 
this was due to the high degrees of freedom of the neural network, so L2 regularization was 
applied, and the neural network was trained again (𝜆௅ଶ = 1.0 × 10ି଺). Figure 7 shows the 
partial derivatives of 𝑡௫ଵ

 and 𝑡௫ସ
 concerning 𝑥ସ  from the training results applying L2 

regularization. Training results applying L2 regularization are compared in Chapter 6. 

 
Figure 7: Partial differentiation of 𝑡௫ଵ

 and 𝑡௫ସ
 concerning 𝑥ସ in Case 15 applying L2 regularization. 

As shown in Figure 7, it is clear that the partial derivative is smoother and more symmetrical 
than without L2 regularization.  

The data composed of the partial derivatives of 𝑡௫ଵ
 and 𝑡௫ସ

 concerning 𝑥ଵ and 𝑥ସ with L2 
regularization applied are given to AI Feynman. AI Feynman can specify the symbols to be 
used. In this study, '+', '-', and 'exp' were specified for the interpretability and continuous and 
integrable nature of the equations to be discovered. The PDE discovered is shown in Equation 
(12). 

𝜕

𝜕𝑥ଵ

൫𝑡௫ଵ
+ 𝑡௫ସ

൯ +
𝜕

𝜕𝑥ସ

൫𝑡௫ଵ
+ 𝑡௫ସ

൯ + 1.2934848×10ି଺ = 0 (12) 

Considering the interpretability of Equation (12), Equation (12) is appropriate because 𝑡௫ଵ
 

and 𝑡௫ସ
 have opposite crack propagation directions and when added together approach zero.  

6 PREDICTION RESULTS OF PDE REGULARIZATION 

The loss function for this regularization is given by 

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠ேே + 𝐿𝑜𝑠𝑠௉஽ா = 𝑀𝑆𝐸ேே + 𝜆௉஽ா × 𝑀𝑆𝐸௉஽ா  (13) 

where 𝑀𝑆𝐸ேே is given by (8), and 𝜆௉஽ா is the weight of the 𝑀𝑆𝐸௉஽ா and  

𝑀𝑆𝐸௉஽ா = 𝑀𝑆𝐸௉஽ா೟ೣ
 (14) 

with 

𝑀𝑆𝐸௉஽ா೟ೣ
=

1

𝑁′
෍ ቆ

𝜕

𝜕𝑥ଵ,௝

ቀ𝑡௫ଵ,௝

௣௥௘ௗ
+ 𝑡௫ସ,௝

௣௥௘ௗ
ቁ +

𝜕

𝜕𝑥ସ,௝

ቀ𝑡௫ଵ,௝

௣௥௘ௗ
+ 𝑡௫ସ,௝

௣௥௘ௗ
ቁ + 1.2934848×10ି଺ቇ

ଶேᇱ

௝ୀ଴

 (15) 
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Figure 8 shows a schematic of the PDE regularization. 

 
Figure 8: Schematic of the PDE regularization. 

The only difference compared to previous training is the definition of loss. The training was 
conducted at 𝜆௉஽ா = 1.5 × 10଼ . Prediction results are compared without regularization in 
Chapter 4 and with the application of L2 regularization in Chapter 5. A comparison of loss 
transitions is shown in Figure 9, and a comparison of the predicted crack propagation path and 
the number of cycles is shown in Figure 10. Table 4 compares the loss of the validation dataset 
and the errors in crack length and number of cycles. These results show that PDE regularization 
reduced the loss of the validation dataset by about 77% compared to without the regularization. 
The crack length error was also reduced to about 1/3 times. The error of the total number of 
cycles was reduced to about 4%, and these errors are acceptable from an engineering point of 
view. In addition, it shows reduced loss and improved prediction accuracy compared to L2 
regularization. 

 
Figure 9: Comparison of training losses and validation losses. 
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Figure 10: Comparison of crack propagation prediction results for crack tip1 in case 19 (𝐻ଵଽ = 28.25𝑚𝑚). 

Table 4: Summary of comparison of errors in crack length and number of cycles. 

 Validation loss Total crack length [%] 
Total number of cycles [%] 
Tip 1 Tip 2 Tip 3 Tip 4 

Without regularization 5.64 × 10ିଷ  -0.50 -5.27 -5.05 -5.14 -3.86 
L2 regularization 1.42 × 10ିଷ  -0.10 2.13 0.29 -0.28 2.35 

PDE regularization 1.27 × 10ିଷ -0.17 4.23 3.31 0.52 3.97 

7 CONCLUSIONS 

- The discovered PDE added to the loss function as a regularization reduced the loss in 
the validation dataset and improved the accuracy of the predictions. It can also reduce 
the validation loss compared to the L2 regularization. The result just shows the 
effectiveness of the simplified equation, we should study a combination of the other 
regularization terms to reduce total validation loss. 
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