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ABSTRACT  

Cone penetration tests (CPTs) can provide quantitative information about the mechanical state of sandy soils. In the 

current state of the art, the soil state is derived from the cone resistance, which is estimated from the cavity expansion 

solution and a calibrated scaling equation. Recently, Martinelli and Pisano (2022) showed that MPM simulations of CPTs 

provide accurate values of the cone resistance in sandy soils when using the critical state NorSand model. This paper 

adopts this framework to develop a predictive equation for cone resistance as a function of the NorSand parameters and 

the state parameter of the soil. This formula is straightforward to implement, and it can be adopted by researchers and 

practitioners to assess soil state in a soil deposits.  
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1. Introduction 

A strong correlation exists in sandy soils between the 

mechanical behaviour and their state, defined by the 

“state parameter” (ψ) - introduced by Been & Jefferies 

(1985) - which compares current void ratio with critical 

state void ratio under the current mean effective stress. In 

the current state of the art, the state parameter is derived 

from the cone resistance, which is estimated from the 

cavity expansion solution and a calibrated scaling 

equation. Examples can be found in Jefferies and Been 

(2016) and Ayala et al. (2022).  

In recent years, significant progress has been made to 

accurately simulate CPT data in both sand and clays, 

using the material point method (MPM) (Ceccato et al. 

2016a, 2016b; Martinelli and Galavi, 2021, 2022). More 

recently, Martinelli and Pisano (2022) demonstrated the 

predictive capabilities of the critical state NorSand model 

when used in MPM simulations of CPT to compute cone 

resistance in sandy soils.  

This study adopts the MPM framework proposed by 

Martinelli and Pisano (2022) with the MPM integration 

scheme described in Martinelli and Galavi (2022) to 

simulate CPT chamber tests of loose to medium-dense 

coarse-grained deposits. These simulations are based on 

the critical state NorSand model, and they were used to 

develop a predictive equation for cone resistance. Apart 

from the soil's state parameter ψ, the other input 

parameters of the equation are the NorSand parameters, 

which can be obtained from calibration against triaxial 

test data of soil samples.  

The idea of this paper is to propose a straightforward 

form of the predictive equation, which can be easily 

implemented by practitioners to relate - for a specific soil 

- the cone resistance with the corresponding state 

parameter ψ, without performing complex and time-

consuming large-deformation calculations based on 

MPM.  

2. MPM dataset of cone resistance  

This section outlines the key characteristics of the 

constitutive model and the MPM framework employed 

for generating synthetic cone resistance data. 

Additionally, it provides a summary of the parametric 

study's details. 

2.1. MPM model 

The MPM code, as outlined by Martinelli & Galavi 

(2022), adopts a dynamic MPM formulation with soil 

acceleration used as the primary unknown variable 

(Jassim et al., 2013). An explicit conditionally-stable 

time integration scheme is used with automatic 

adaptation of the time step size. The cone–soil sliding is 

simulated using the contact algorithm by Bardenhagen et 

al. (2000). The background mesh is composed of four-

node quadrilateral elements with four integration points, 

and the “moving mesh” concept is adopted to ensure fine 

discretization around the cone and accurate performance 

of the contact algorithm (Al Kafaji, 2013). The additional 

computational aspects are discussed in Martinelli & 

Galavi (2022). 

The sand behavior is modeled using the state-

dependent NorSand constitutive model (Jefferies, 1993). 

The formulation adopts a log-linear critical state line, as 

follows: 

𝑒𝑐𝑠 = 𝛤1 − 𝜆𝑒𝑙𝑛(𝑝)   (1) 

 

where 𝛤1 is the void ratio when 𝑝 is 1 kPa, and 𝜆𝑒 is the 

slope. The linear elastic shear modulus (𝐺) is expressed 

by the equation:  

𝐺 = 𝑝𝑎𝐺𝑟𝑒𝑓 (
𝑝

𝑝𝑎
)

𝐺𝑒𝑥𝑝
   (2) 



 

 

Here, 𝐺𝑟𝑒𝑓  is the dimensionless stiffness factor, 𝑝𝑎 

denotes the atmospheric pressure, and 𝐺𝑒𝑥𝑝  serves as the 

exponent characterizing stress-dependency. The plastic 

hardening parameter 𝐻𝑝𝑙  is constant and independent of 

the initial state parameter 𝜓0. Additionally, the NorSand 

model incorporates the volumetric coupling coefficient 

(𝑁), the critical state friction angle (𝜑𝑐𝑠), the Poisson’s 

ratio (𝜈) and the parameter 𝜒, which relates - under 

triaxial reference conditions - the maximum dilatancy to 

the state parameter. 

The implementation of this model in the MPM code 

incorporates explicit Runge–Kutta time integration, 

along with automatic substepping and error control, as 

outlined by Sloan et al. (2001). 

Figure 1 depicts the numerical CPT model, with a 

perfectly rigid cone penetrating an elasto-plastic soil. The 

cone radius (rc) is 17,85 mm. The radius of the chamber 

is 362 mm, which corresponds to a cone-to-diameter ratio 

of about 20.   

 

 
Figure 1: Numerical CPT model: geometry and  background 

mesh for MPM calculations. 

In all CPT simulation scenarios, the stress state was 

initialized with a soil pressure ratio 𝐾0 set to 1, and the 

stress was kept constant on both top and radial boundary 

of the model. To do so, two layers of elastic material were 

introduced, named “surcharge layer” and “soft layer” 

respectively. The surcharge layer applies a vertical stress 

of 100 kPa at the top of the soil domain, while ensuring a 

perfectly smooth contact between the layer and the rigid 

cone. The lateral soft layer is fixed along its outer edge 

and it is very soft with a Young’s modulus of 1 kPa. In 

all simulations, the soil was considered fully saturated, 

but no excess pore pressure was allowed during 

penetration, resulting in drained conditions. 

 

2.2. Parametric study and dataset generation 

In total, 125 MPM CPT simulations have been 

conducted using randomly generated parameters from the 

NorSand constitutive model, employing the hypercube 

approach. The parameter list is summarized in Table 1, 

where some parameters are kept constant while others are 

varied, with their intervals specified in brackets. A total 

of 6 NorSand parameters (𝜆𝑒 , 𝐺𝑟𝑒𝑓,0.5, 𝐺𝑒𝑥𝑝 , 𝜑𝑐𝑠, 𝐻𝑝𝑙 , 𝜒), 

the friction ratio (𝑅𝑐), and the initial condition (𝜓0) were 

randomly varied for this study. The friction ratio is 

defined as the ratio between the tangent of the contact 

friction angle (tan(𝜑𝑐)) and tan(𝜑𝑐𝑠).  

It is worth mentioning that the intercept 𝛤1 of the 

critical state line is set to a constant value, as its variation 

does not impact the results. Additionally, the value of the 

parameter 𝑁 is also kept constant, as it does not have a 

significant contribution to the cone resistance, as pointed 

out by Yost et al. (2023). 

 

Table 1: Range of values used for generating data for the 

NorSand model parameters and the contact friction ratio 𝑅𝑐  

Parameter Values 

𝛤1 0.8 

𝜆𝑒 [0.02 – 0.06] 

𝐺𝑟𝑒𝑓,0.5 [50 – 500] 

𝐺𝑒𝑥𝑝 [0.5 – 1.0] 

𝜈 0.2 

𝜑𝑐𝑠 [30 – 36.0] 

𝑁 0.25 

𝜒  [2.0 – 5.0] 

𝐻𝑝𝑙 [25 – 400] 

𝜓0 [-0.1 – 0.1] 

𝑅𝑐 [0.33 – 0.66] 

 

 

 
Figure 2: example of 10 CPT MPM simulations with 

random realization of the input parameters. The shaded area 

indicates where the qc value is determined. 

𝐺𝑒𝑥𝑝 was varied randomly between 0.5 and 1.0, while 

𝐺𝑟𝑒𝑓,0.5 was varied randomly between 50 and 500. Here, 

𝐺𝑟𝑒𝑓,0.5 is the value of 𝐺𝑟𝑒𝑓  when 𝐺𝑒𝑥𝑝 = 0.5. The 



 

conversion of 𝐺𝑟𝑒𝑓,0.5 to the standard NorSand parameter 

𝐺𝑟𝑒𝑓  was performed with the following equation:  

𝐺𝑟𝑒𝑓 = 𝐺𝑟𝑒𝑓,0.5 (
𝑝𝑟𝑒𝑓

𝑝𝑎
)

0.5−𝐺𝑒𝑥𝑝
   (3) 

This equation ensures that 𝐺𝑒𝑥𝑝 determines the shape of 

the stress-dependent stiffness function, while the 

randomly assigned value 𝐺𝑟𝑒𝑓,0.5 determines the value of 

the stiffness at 𝑝𝑟𝑒𝑓. If 𝑝𝑟𝑒𝑓  is set equal to 𝑝𝑎, then the 

value of 𝐺𝑟𝑒𝑓  is identical to 𝐺𝑟𝑒𝑓,0.5. It is worth noticing 

that, for 𝑝𝑟𝑒𝑓 = 𝑝𝑎, the elastic stiffness can result to 

extremely large values at high stresses when the exponent 

𝐺𝑒𝑥𝑝 tends to 1.0. Given the large stresses induced during 

cone penetration test, in this study, the value of 𝑝𝑟𝑒𝑓  is 

set to 500 kPa to ensure that elastic stiffness does not 

reach unrealistic magnitudes. 

Figure 2 presents the results of 10 CPT MPM 

analyses, illustrating the evolution of the average tip 

stress as a function of cone penetration. The input 

parameter set for each simulation is a random realization 

within the ranges specified in Table 1. In all cases, the 

cone resistance profile tends to plateau after a penetration 

of approximately 35 cm. Therefore, the average value of 

the tip stress reached after 40 cm of penetration was 

chosen as the qc value. 

All 125 qc values are illustrated in Figure 3 as 

function of the initial state parameter 𝜓0. 

 

 
Figure 3: log-linear plot of the normalised cone resistance 

qc
pa

⁄  against initial state parameter ψ
0
. 

3. Predictive equation for qc 

The dataset is used here to calibrate a predictive 

equation for the cone resistance qc. The variables are 

independent; therefore, the proposed equation is written 

as follows:  

 

𝑙𝑛(
𝑞𝑐

𝑝𝑎
) = 𝑙𝑛( 𝐾) − (𝜓0 − 1)𝑚 + 𝜀  (4) 

 

Here, 𝑞𝑐 is the cone resistance, 𝑙𝑛( 𝐾) and 𝑚 are the 

intercept (at the ideal value of 𝜓0 equal to 1) and the 

slope, respectively. Specifically, 𝑙𝑛( 𝐾) =
∑ 𝛼𝑖 𝑙𝑛( 𝐶𝑖)

𝑛
𝑖=1  and 𝑚 = ∑ 𝛼𝑛+𝑖 𝑙𝑛( 𝐶𝑖)

𝑛
𝑖=1 . The value of 

𝑛 denotes the number of dimensionless variables, which 

are 7 in this study, plus a constant (set as 𝑙𝑛( 𝐶8)). These 

variables are listed as follows: 

 

𝑙𝑛( 𝐶1) =  𝑙𝑛 (
tan(𝜑𝑐)

tan(𝜑𝑐𝑠)
) = 𝑙𝑛( 𝑅𝑐) (5) 

𝑙𝑛( 𝐶2) =  𝑙𝑛( 𝐺𝑟𝑒𝑓,0.5) (6) 

𝑙𝑛( 𝐶3) =  𝑙𝑛( 𝐺𝑒𝑥𝑝)  (7) 

𝑙𝑛( 𝐶4) =  𝑙𝑛 (
𝜆𝑒

0.01
)  (8) 

𝑙𝑛( 𝐶5) =  𝑙𝑛 (
6 sin(𝜑𝑐𝑠)

3−sin(𝜑𝑐𝑠)
) = 𝑙𝑛( 𝑀𝑐𝑠) (9) 

𝑙𝑛( 𝐶6) =  𝑙𝑛(𝐻𝑝𝑙)  (10) 

𝑙𝑛( 𝐶7) =  𝑙𝑛(𝜒)  (11) 

𝑙𝑛( 𝐶8) =  𝑙𝑛(100)  (12) 

 

The value of 𝜑𝑐 is the friction angle adopted in the 

simulation to describe the strength at the contact between 

the penetrometer and the soil. The coefficients 𝛼𝑖 and 

𝛼𝑛+𝑖 are determined via linear regression. 

The database depicted in Figure 3 is divided into two 

groups: the training set, represented by empty dots, 

which comprises 80% of the data, and the validation set, 

represented by full dots, which constitutes the remaining 

20% of the dataset. The training set is utilized to 

determine the regression coefficients, while the 

validation set is employed to confirm the accuracy of the 

predictive equation. 

From the training dataset the independent variables 

𝑋𝑖 = ln (𝐶𝑖) (including 𝜓0) are collected, together with 

the dependent variables 𝑌𝑗 = 𝑙𝑛(
𝑞𝑐

𝑝𝑎
). For a single 

simulation, the value of the dependent variable is defined 

as 𝑌𝑗, which corresponds to the data in the training 

dataset, and the estimate of the dependent variable is 𝑌̂𝑗. 

Eq. (4) can be written as follows: 

 

𝑌̂𝑗 = ∑ 𝛼𝑖𝑋𝑖
𝑛
𝑖=1 − (𝜓0 − 1) ∑ 𝛼𝑛+𝑖𝑋𝑖

𝑛
𝑖=1  (13) 

 

This expression can be further simplified into a 

compact form:   

 

𝑌̂𝑗 = 𝑨𝑗𝜶    (14) 

 

where 𝑨𝑗 = [𝑿𝑻 −(𝜓0 − 1)𝑿𝑻]. Here, 𝑿 is a vector 

of size n listing all 𝑋𝑖, and 𝜶  is the coefficient vector 

with size 2n, which lists all coefficients 𝛼𝑖 and 𝛼𝑛+𝑖. 

The compact form that includes all independent 

variables is:  

𝒀̂ = 𝑨𝜶    (15) 

 

The coefficient vector 𝜶  is finally determined as 

follows: 

𝜶 = (𝑨𝑇𝑨)−1𝑨𝑇𝒀  (16) 

 

Eq. (4) is rewritten to explicitly compute the intercept at 

the ideal value of 𝜓0 equal to 0 (instead of 1), as follows:  

𝑙𝑛(
𝑞𝑐

𝑝𝑎
) = 𝑙𝑛( 𝐾∗) − 𝜓0 𝑚 + 𝜀  (17) 

 

where 𝑙𝑛( 𝐾∗) = 𝑙𝑛( 𝐾) + 𝑚. The terms 𝑙𝑛( 𝐾∗) and 𝑚, 

with the coefficients determined by Eq. (16), are written 

as follows: 

 

𝑙𝑛( 𝐾∗) = 0.25 𝑙𝑛(𝑅𝑐) + 0.26 𝑙𝑛(𝐺𝑟𝑒𝑓,0.5) −  

0.16 𝑙𝑛(𝐺𝑒𝑥𝑝) − 0.23 𝑙𝑛 (
𝜆𝐶𝑆

0.01
) +    



 

2.00 𝑙𝑛(𝑀𝐶𝑆) −  0.18 𝑙𝑛(𝐻𝑝𝑙) −   

−0.02 𝑙𝑛(𝜒) + 1.52                (18) 

  

          𝑚 = −0.23 𝑙𝑛(𝑅𝑐) + 1.39 𝑙𝑛(𝐺𝑟𝑒𝑓,0.5) −  

1.42 𝑙𝑛(𝐺𝑒𝑥𝑝) − 0.06 𝑙𝑛 (
𝜆𝐶𝑆

0.01
) +    

3.62 𝑙𝑛(𝑀𝐶𝑆) +  0.33 𝑙𝑛(𝐻𝑝𝑙) +   

4.10 𝑙𝑛(𝜒) − 9.76                (19) 

 

The random error term 𝜀 represents the difference 

between the observed values of the dependent variable 

and the values predicted by the regression equation. The 

random error term for each observation is written as 

follows:  

𝜀𝑗 = 𝑌𝑗 − 𝑌̂𝑗   (20) 

 

It was found that the distribution of 𝜀 can be well 

approximated by a normal distribution, with a mean 

value of 0 and a standard deviation 𝜎𝜀 of approximately 

0.056.  

 

The relative importance of each variable 𝑋𝑖 is 

computed separately for 𝑙𝑛( 𝐾∗) and the slope 𝑚, and 

labeled 𝛽𝑖 and 𝛽𝑛+𝑖, respectively: 

𝛽𝑖 =
𝛼𝑖𝜎𝑋𝑖

𝜎𝑙𝑛(𝐾∗)
   (21) 

𝛽𝑛+𝑖 =
𝛼𝑛+𝑖𝜎𝑋𝑖

𝜎𝑚
  (22) 

 

where 𝜎𝑙𝑛(𝐾∗) and 𝜎𝑚 are the standard deviation of the 

terms 𝑙𝑛( 𝐾∗) and 𝑚 in Eq. (4), and 𝜎𝑋𝑖
  is  the standard 

deviations of the terms 𝑋𝑖. The importance of a parameter 

is high when the value of |𝛽𝑖| or |𝛽𝑛+𝑖| tends to unity, 

whereas the parameter becomes less important when 𝛽  

is close to zero. 

 

 
Figure 4: Relative importance of each variable with respect 

to ln(K∗) and m. 

Figure 4 shows that some variables 𝑋𝑖 have a large 

relative influence on the outputs of the predictive 

equation, while others have a negligible contribution. 

Therefore, to consider only the most contributing 

variables in the predictive equation, some variables 𝑋𝑖 

were excluded from either 𝑙𝑛( 𝐾∗) or 𝑚. Since the 

contribution of these variables is not important, the 

overall standard deviation 𝜎𝜀 remained practically 

unchanged (0.058). 

The reduced terms 𝑙𝑛( 𝐾∗) and 𝑚 of Eq. (17) are 

written as follows: 

𝑙𝑛( 𝐾∗) = 0.25 𝑙𝑛(𝑅𝑐) + 0.26 𝑙𝑛(𝐺𝑟𝑒𝑓,0.5) −   

0.17 𝑙𝑛(𝐺𝑒𝑥𝑝) − 0.23 𝑙𝑛 (
𝜆𝐶𝑆

0.01
) +    

2.03 𝑙𝑛(𝑀𝐶𝑆) +  0.18 𝑙𝑛(𝐻𝑝𝑙) + 1.54    (23) 

 

𝑚 = 1.34 𝑙𝑛(𝐺𝑟𝑒𝑓,0.5) − 1.09 𝑙𝑛(𝐺𝑒𝑥𝑝) +  

3.93 𝑙𝑛(𝜒) − 6.18                  (24) 

 

Rewriting Eq. (23) and Eq. (24) with Eq. (3), provides 

the regression in standard NorSand input parameters:  

 

 

𝑙𝑛( 𝐾∗) = 0.25 ln(𝑅𝑐) + 0.26 ln(𝐺𝑟𝑒𝑓) −   

0.17 ln(𝐺𝑒𝑥𝑝) + 0.42(𝐺𝑒𝑥𝑝 − 0.5) −  

0.23 ln (
𝜆𝐶𝑆

0.01
) + 2.03 ln(𝑀𝐶𝑆) −    

 0.18 ln(𝐻𝑝𝑙) + 1.54                 (25) 

 

𝑚 = 1.34 ln(𝐺𝑟𝑒𝑓) − 1.09 ln(𝐺𝑒𝑥𝑝) +     

2.16(𝐺𝑒𝑥𝑝 − 0.5) + 3.93 ln(𝜒) − 6.18  (26) 

 

The comparison between training data and the 

corresponding values provided by Eq. (17), (25) and (26) 

is illustrated in Figure 5.  

 

 
Figure 5: comparison between training data and the 

corresponding values using Eq. (17). 

The validation data has been used to assess the 

accuracy of the predictive equation. The comparison is 

illustrated in Figure 6. The data are closely aligned along 

the diagonal line, with deviation generally lower than 

20%. It is worth noticing that the standard deviation 𝜎𝜀 of 

the errors is approximately 0.065, which is slightly higher 

compared to the one obtained from the training data. This 

confirms the accurate performance of the predictive 

equation.  



 

 

 
Figure 6: comparison between validation data and the 

corresponding values using Eq. (17). 

4. Conclusions 

This paper adopts the MPM framework proposed by 

Martinelli and Pisano (2022) and the framework of 

Martinelli and Galavi (2022) to simulate CPT chamber 

test data of coarse-grained deposits. Through extensive 

CPT MPM simulations based on the critical state 

NorSand model, a predictive equation for cone resistance 

is developed, accounting for the state parameter of the 

soil and the parameters of the constitutive NorSand 

model. The form of the predictive equation, easy to 

implement, enable practitioners to relate - for a specific 

soil - the cone resistance with the corresponding state 

parameter ψ. The predictive equation can be used for 

soils for which the 𝜆𝑒 , 𝐺𝑟𝑒𝑓,0.5, 𝐺𝑒𝑥𝑝, 𝜑𝑐𝑠 , 𝐻0 fall within 

the ranges of the dataset. Difference may be expected for 

different initial stress conditions. In future work, the 

predictive equation will be validated on experimental 

data, and expended to a wider dataset, which will also 

include the effect of initial stress conditions. 
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