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1 INTRODUCTION

We consider the three-dimensional Poisson’s equation in a rectangle Ω ⊂ R3 with appropri-
ate boundary conditions on ∂Ω

∆φ = f, in Ω (1)

Employing the conventional 7-point discrete Laplacian Lh7φi =
∑2

d=0 φi−ed − 2φi + φi+ed ,
where ed is the unit vector in the d direction, results in a second order accurate scheme. The
Laplace operator can be discretized in a compact fashion in order to obtain high order accuracy
by utilizing compact or so called Mehrstellen discretizations [1], that is stencils of small radius
measured as the maximum distance in points from the stencil’s evaluation point. In the present
study we consider the Lh19 and Lh27 Mehrstellen discretizations of the Laplacian [2, 3]. The
coefficients for both stencils are given by aj = 1

h2
b|j|, where |j| is the number of non-zero

components of j and bk are defined as

b0 = −4, b1 =
1

3
, b2 =

1

6
, b3 = 0, 19-point stencil

b0 = −64

15
, b1 =

7

15
, b2 =

1

10
, b3 =

1

30
, 27-point stencil

The associated truncation errors τhk = (Lhk −∆)φ, k = 19, 27 are given by

τh19(x) =
h2

12
∆2φ(x) +

h4

360

(
∆3 + 2

(
∂4∆

∂x2∂y2
+

∂4∆

∂y2∂z2
+

∂4∆

∂z2∂x2

)
−

12
∂6

∂x2∂y2∂z2

)
φ(x) +O(h6) (2)
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and

τh27(x) =
h2

12
∆2φ(x) +

h4

360

(
∆3 + 2

(
∂4∆

∂x2∂y2
+

∂4∆

∂y2∂z2
+

∂4∆

∂z2∂x2

))
φ(x) +

h6

60480

(
3∆4 + 16

(
∂4∆2

∂x2∂y2
+

∂4∆2

∂y2∂z2
+

∂4∆2

∂z2∂x2

)
+

52
∂6∆

∂x2∂y2∂z2
+ 20

(
∂8

∂x4∂y4
+

∂8

∂y4∂z4
+

∂8

∂z4∂x4

))
φ(x) +O(h8) (3)

and as is evident they are fourth and sixth order accurate for harmonic functions, respectively,
and only second order accurate for a general non-vanishing f . It would be desirable to retain the
high order of accuracy of both stencils when f 6≡ 0. Indeed, as is well known [1, 3], replacing
f with the modified right hand side

f ∗,h = fh +
h2

12
Lhfh (4)

where Lh is any second order accurate approximation of the Laplacian, results in a fourth order
scheme for nonzero f . The aim of the present study is the derivation of a Mehrstellen correction
of f so that the associated numerical solution is sixth order accurate in the case of Lh27. This
has been accomplished in [3] for the special case of analytically known fourth order derivatives
of f . In particular, the following compact scheme is discussed there:

Compute φh using Lh27φ
h = f ∗ where

f ∗ijk = fijk +
h2

12
∆fijk +

h4

360
Bfijk

+
h4

180

(
∂4f

∂x2∂y2
+

∂4f

∂y2∂z2
+

∂4f

∂x2∂z2

)
If the fourth order derivatives of f are known explicitly this scheme is sixth order accurate
as follows from the form of the Laplace operator truncation error in (3). The work in [3] is
extended here to handle the general case where f is given as gridded data, that is, f is known
at grid points and no information regarding its derivatives is available. A sixth order scheme
based on evaluation of f at non-stencil points has appeared in [4, 5], however, in this work we
are considering values of the right hand side at grid points only.

2 SIXTH ORDER MEHRSTELLEN CORRECTION FOR Lh27

In this section we present three forms of a Mehrstellen correction for the Lh27 Mehrstellen
Laplacian that result in an O(h6) truncation error. The truncation error for Lh27 is given by (3)
and can be written as [3, 5]

τh(x) = (Lh27 −∆)φ(x) =
h2

12
∆2φ(x) +

h4

360
∆3φ(x) +

h4

180
D(∆φ)(x) +O(h6)

2
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where D = ∂4

∂x2∂y2
+ ∂4

∂y2∂z2
+ ∂4

∂z2∂x2
. If we denote the second order central discrete derivatives

by Dh
xx, D

h
yy, D

h
zz and define Dh = Dh

xxD
h
yy + Dh

yyD
h
zz + Dh

zzD
h
xx we obtain a second

order approximation to the cross derivatives operator D. Moreover, we note that the discrete
biharmonic operator Bh = LhkL

h
l , where k,l=7,19 or 27 is also 2nd order accurate. Turning our

attention to the discrete Poisson problem

Lh27φ
h = fh

we note that the associated truncation error is given by

τh(x) = Lh27(φh − φ) = −h
2

12
∆f(x)− h4

360
∆2f(x)− h4

180
Df(x) +O(h6)

In the following, we consider suitable modifications of the right hand side that lead to a sixth
order truncation error for φh. Again we emphasize that f is given as a set of values at mesh
points only.

Mehrstellen Correction of type A
If we define the modified right hand side

f ∗,h = fh +
h2

12
Lh19f

h − h4

240
Bhfh +

h4

180
Dhfh (5)

and solve Lh27φ
∗,h = f ∗,h , then the truncation error τ ∗,h = Lh27(φ∗,h − φ) of the modified

problem is sixth order accurate. Indeed,

τ ∗,h = τ +
h2

12
Lh19f

h − h4

144
Bhfh +

h4

360
Bhfh +

h4

180
Dhfh

= −h
2

12
∆f +

h2

12
Lh19f

h − h4

144
Bhfh +

h4

360
(Bh −∆2)f +

h4

180
(Dh −D)f +O(h6)

=
h2

12

[
(Lh19 −∆)f − h2

12
Bhfh

]
+O(h6)

=
h2

12

[
h2

12
∆2f − h2

12
Bhfh

]
+O(h6) = O(h6)

It is noted that Lh27 may also be used instead of Lh19 in the second term of f ∗,h.

Mehrstellen Correction of type B
An alternative form of the Mehrstellen correction is given by

f ∗,h = fh − h2

30
Lh7f

h +
7h2

60
Lh19f

h − h4

240
Bhfh (6)
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The associated truncation error τ ∗,h is again of sixth order. The proof is performed in a similar
way making use of the estimate

h4

180
Df =

h2

30
∆f +

h4

360
∆2f − h2

30
Lh7f +O(h6)

which follows from the form of the truncation error of the 7-point discrete Laplacian

(Lh7 −∆)f =
h2

12

(
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4

)
f +O(h4)

and the identity ∆2f =
(
∂4

∂x4
+ ∂4

∂y4
+ ∂4

∂z4

)
f + 2Df . Again, the discrete operator Lh27 may

be employed in the third term of (6). It is noted that form B for the modified right hand side has
a clear advantage over form A, since fewer operations per point are needed for the computation
of term h2

30
Lh7f

h compared to term h4

180
Dhfh.

Mehrstellen Correction of type C
With infinite domain boundary conditions, that is when the potential satisfies

φ(x) = − 1

4π‖x‖

∫
R3

f(y)dy + o

(
1

‖x‖

)
, ‖x‖ → +∞ (7)

we can first solve with a simpler right hand side and then post-process the resulting solution to
obtain sixth order approximation and further reduce the operation count of Mehrstellen Correc-
tion B. Specifically, we may employ the following scheme:

Solve Lh27φ
∗,h = f ∗,h ≡ fh − h2

30
Lh7f

h

Compute φ̃h := φ∗,h + 7h2

60
fh − h4

240
Lh7f

h

for which we can verify as before that it is sixth order accurate. Furthermore, we only need
values of fh up to and including the boundary of Ω to apply this Mehrstellen correction, in
contrast to forms A and B that require fh values at one additional layer of points beyond.

3 APPLICATION TO THE METHOD OF LOCAL CORRECTIONS

In the following, the sixth order Mehrstellen scheme is coupled with the Method of Local
Corrections (MLC). The MLC method is a parallel, non-iterative, multilevel method with a min-
imal amount of communication for computing volume potentials. We describe here the salient
points of the simplest two-level MLC method. Further details can be found in [6].

We consider Poisson’s equation with free-space boundary conditions given by (7). It is as-
sumed that the support of the charge f is contained in a cube Ω that is further subdivided into
a union of disjoint cubic patches ΩR,i of radius R . We associate with Ω a fine grid Ωh and a
coarse one ΩH with mesh spacing h and H , respectively. The grid Ωh is clearly the union of

4
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the grids Ωh
R,i associated with each patch ΩR,i . The restriction of fh on each subgrid Ωh

R,i is
denoted by f i,h . Also we denote by Ωh

R,i,β the extended patches with radius βR , by Ch,H the
coarsening operator from fine to coarse patches and by IH,h an interpolation operator of order
qI from coarse to fine subgrids. Finally, by P h,H we denote the restriction from a fine grid
with mesh spacing h to a coarse grid with mesh spacing H and by ∆h a discrete Laplacian,
which in our case is Lh19 or Lh27 . After these preliminaries, the MLC method with two levels
proceeds in four steps as follows:

1. Downward pass
We loop over patches Ωh

R,i and using the local charges f i,h we compute the potentials φi,h in
Ωh
R,i,β , that is

φi,h = Gh ∗ f i,h in Ωh
R,i,β. (8)

For the computation of the local convolutions in (16) we are employing Hockney’s domain
doubling algorithm [7, 8]. For each Ωh

R,i we also compute the associated local charges

F i,H [g] =


∆HP h,Hφi,h[g] , g ∈ Ch,H(Ωh

R,i,β)

0 , g /∈ Ch,H(Ωh
R,i,β)

(9)

2. Global Coarse Solve in ΩH

Using the local charges F i,H we compute a global right hand side FH

FH =
∑
i

F i,H

and compute the solution of the global problem ∆HφH = FH , in ΩH :

φH = GH ∗ FH in ΩH

For the global coarse solve we are also applying Hockney’s algorithm.

3. Upward pass
At boundary points g of ∂Ωh

R,i we compute the following short-range local potentials as total
contributions of potentials that have been computed on extended patches Ωh

R,i′,β intersecting
∂Ωh

R,i :

φloc,g[g′] =
∑

i′:g∈Ωh
R,i′,β

φi′,h[g′] (10)
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These local potentials are corrected by adding the contribution of far-field effects. The latter
can be computed using the solution of the global coarse problem. Specifically, we have:

φB,i,h[g] = φloc,g[g] + IH,h
(
φH − (φloc,g)

)
(gh), g ∈ ∂Ωh

R,i. (11)

Details about the interpolation operator IH,h that we are employing can be found in [9]. Using
the latter boundary conditions, we solve the following local Dirichlet problems on the Ωh

R,i

patches using the fast Fourier transform [10]:

∆hφ̃MLC,i,h =f i,h on Ωh
R,i − ∂Ωh

R,i (12)

φ̃MLC,i,h =φB,i,h on ∂Ωh
R,i.

4. Post-processing step
Finally, we apply the fourth-order Mehrstellen correction to the solutions of the local Dirichlet
problems and the values of φMLC,h in each patch Ωh

R,i are obtained:

φMLC,h[g] = φ̃MLC,i,h[g] +
1

12
h2fh[g] , g ∈ Ωh

R,i. (13)

It is noted that in the finest level of the original method, Hockney’s algorithm is applied only
to patches Ωh

R,i,α with α < β . In the remaining annulus regions Ωh
R,i,β \ Ωh

R,i,α the local
potentials are approximated with a discrete convolution of the Legendre projection of the local
charge. Employing Legendre projections of order P − 1 the max-norm error eMLC,h of the
method is given by the estimate

eMLC,h = O(h4) +O

(
1

βq
hP
)

+O
(
h2||f ||∞

1

βqI−2

)
+O

(
||f ||∞

1

βq

)
. (14)

As is evident, by appropriately choosing the order of the Legendre expansions and the param-
eter β the method is fourth order accurate in h and reaches a barrier error given by the last
term in (14). The barrier error can be further reduced by applying larger values of β . Hence the
error of the method is controlled not only by the mesh size but also from the degree of overlap
among neighbor extended patches (parameter β ) which can be thought of as an additional dis-
cretization parameter. To obtain sixth order accuracy and converge more rapidly to the barrier
error we apply the sixth order scheme for the Lh27 Laplacian with the Mehrstellen correction of
type C. The steps of the modified MLC method are as follows:

0. Pre-processing step
At first we define the modified local charges:

f ∗,i,h = f i,h − h2

30
Lh7f

i,h (15)

6
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1. Downward pass
Using Hockney’s algorithm [7, 8] we solve for the local potentials φ∗,i,h in Ωh

R,i,β :

φ∗,i,h = Gh
27 ∗ f ∗,i,h in Ωh

R,i,β. (16)

The local charges in Ωh
R,i are computed by:

F ∗,i,H [g] =


LH27P

h,Hφ∗,i,h[g] , g ∈ Ch,H(Ωh
R,i,β)

0 , g /∈ Ch,H(Ωh
R,i,β)

(17)

2. Global Coarse Solve in ΩH

A global right hand side F ∗,H is computed as follows:

F ∗,H =
∑
i

F ∗,i,H

The following global coarse problem LH27φ
∗,H = F ∗,H , in ΩH is solved by employing Hock-

ney’s algorithm:

φ∗,H = GH
27 ∗ F ∗,H on ΩH

3. Upward pass
Short-range local potentials are computed at boundary points g of ∂Ωh

R,i:

φ∗,loc,g[g′] =
∑

i′:g∈Ωh
R,i′,β

φ∗,i
′,h[g′] (18)

and are modified to include the effect of long-range potentials as follows:

φ∗,B,i,h[g] = φ∗,loc,g[g] + IH,h
(
φ∗,H − (φ∗,loc,g)

)
(gh), g ∈ ∂Ωh

R,i. (19)

The local MLC potentials in Ωh
R,i are computed as solutions to the following Dirichlet problems

via the fast Fourier transform [10]:

Lh27φ̃
∗,MLC,i,h =f ∗,i,h on Ωh

R,i − ∂Ωh
R,i (20)

φ̃∗,MLC,i,h =φ∗,B,i,h on ∂Ωh
R,i.

7
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4. Post-processing step
Further, the MLC local potentials are updated by means of the type C sixth-order Mehrstellen
correction:

φMLC,h[g] = φ̃∗,MLC,i,h[g] +
7h2

60
fh[g]− h4

240
Lh7f

h[g] , g ∈ Ωh
R,i. (21)

With this modification of the MLC method it can be shown using the error analysis in [6]
that the error satisfies the following estimate:

eMLC,h = O(h6) +O

(
1

αq
hP
)

+O
(
h2||f ||∞

1

βqI−2

)
+O

(
||f ||∞

1

βq

)
. (22)

and the method converges to the barrier error at order six with respect to mesh size. We empha-
size once more that the barrier error can be further reduced by increasing the value of parameter
β .

In the sequel, we are applying the modified MLC method to solve the Poisson boundary
value problem with infinite domain boundary conditions:

∆φ = f, in R3, (23)

φ(x) = − 1

4π‖x‖

∫
R3

f(y)dy + o

(
1

‖x‖

)
, ‖x‖ → ∞,

The computational domain is the unit cube Ω = [0, 1]3. The charge function f is the super-
position of three local charges fci whose supports are spheres of radius Ro = 5

100
centered at

points c1 =
(

3
16
, 7

16
, 13

16

)
, c2 =

(
7
16
, 13

16
, 3

16

)
and c3 =

(
13
16
, 3

16
, 7

16

)
:

fci(x) =


1
R3
o
(r − r2)2 sin2(γ

2
r), r < 1

0, r ≥ 1

, r =
1

Ro

‖x− ci‖, γ = 4µπ, µ = 7 (24)

The exact solution of (23) is the superposition of the following potentials:

φci(x) =
1

Ro



− 1
120
− 6

γ4
, r = 0

r6

84
− r5

30
+ r4

40
+ 60

γ6
− 9

γ4
− 1

120
+ 120

γ6r

+
(
− 120
γ6r
− 9

γ4
+ 300

γ6
+ 36r

γ4
+ r2

2γ2
− 30r2

γ4
− r3

γ2
+ r4

2γ2

)
cos(γr)

+
(

12
γ5r
− 360

γ7r
− 96

γ5
+ 120r

γ5
− 3r

γ3
+ 8r2

γ3
− 5r3

γ3

)
sin(γr) , r < 1

(
− 1

210
− 12

γ4
+ 360

γ6

)
1
r

, r ≥ 1
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Figure 1: Log10 − log10 plot of greatest max norm error at all levels against mesh size using the Lh
27 Laplacian

with fourth order Mehrstellen correction and 4 levels [6]. Here fourth order Legendre polynomials are employed
at level 3.

The refinement ratio between successive coarse and fine levels is 4 in the test case we are
presenting and each grid Ωh

R,i has N3 cells where N = 32 . The mesh sizes we are considering
are h = 1

1024
, 1

2048
, 1

4096
, 1

8192
, 1

16384
. The value of parameter β is 3.25. At the finest level (level

3) we are employing Legendre expansions of order 4 and set α = 2.25 . The adaptive grid for
the h = 1

16384
case comprises 7.5 billion elements. For the case of the fourth order Mehrstellen

correction [6] we present in Figure 1 a log-log plot of the scaled max-norm error that is given
by:

‖φMLC,h − φ‖∞
||φ‖∞

(25)

As is evident, the method is fourth order accurate and the barrier error is reached at finest mesh
resolutions. The results obtained with the sixth order Mehrstellen correction are depicted in
Figure 2. In this case the method is sixth order accurate and approaches faster the barrier error.
Our implementation in this work is based on the Chombo scientific computing library [11]. For
the computation of fast Fourier transforms we have employed the FFTW library [12].
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Figure 2: Log10 − log10 plot of greatest max norm error at all levels against mesh size using the Lh
27 Laplacian

with sixth order Mehrstellen correction and 4 levels. Here fourth order Legendre polynomials are employed at
level 3.

4 CONCLUSIONS

We have presented a sixth order compact finite difference scheme for Poisson’s equation in
three dimensions. The scheme has been applied to the MLC method [6] to further improve its
convergence. Extension to the finite volume case has been worked out in [13] for the Lh19

operator. Future work will consider high order compact stencils for other fundamental differ-
ential operators such as the Helmholtz, biharmonic, Cauchy-Navier and Stokes operators and
analogous extensions of the MLC method.
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