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Abstract. This paper explores the dynamic behavior of metamaterial-like structures by inves-
tigating the evolution of their band gap under the influence of geometrical nonlinearities in the
large displacement/rotations field. The study employs a unified framework based on the Car-
rera Unified Formulation (CUF) and a total Lagrangian approach to develop higher-order one-
dimensional beam theories that account for geometric nonlinearities. The axis discretization is
achieved through a finite element approximation. The equations of motion are solved around
nonlinear static equilibrium states, which are determined using a Newton–Raphson algorithm
combined with a path-following method of arc-length type. The CUF approach introduces two
key innovations that are highly suitable for the evolution of the band gap:
1) Thin-walled structures can be effectively represented using a single one-dimensional beam
model, overcoming the common limitations of standard finite elements. This is crucial as
three-dimensional solid elements would result in significant computational costs, and two-
dimensional elements pose limitations for this type of investigation. Finally, employing one-
dimensional finite elements usually requires a combination of elements, leading to additional
mathematical complexities in their connections and lacking geometric precision.
2) CUF enables the use of the full Green-Lagrange strain tensor without the need for assump-
tions, as is the case with von Kármán nonlinearities.
The paper specifically compares results obtained with linear and nonlinear stiffness matrices,
highlighting the differences. Numerical investigations are conducted on thin-walled structures
composed of repeatable cells, assessing mode changes under traction and compression load-
ing. The findings emphasize that the band gap is an inherent property of the equilibrium state,
underscoring the necessity of a proper nonlinear analysis for accurately evaluating frequency
transitions.
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1 Introduction

Metamaterials stand out due to their unique properties that differ from those found in na-
ture, providing unmatched control over wave propagation in both electromagnetic and acoustic
fields. Unlike conventional materials, which are constrained by natural properties and exhibit
predictable behaviors, metamaterials allow designers to tailor responses to specific inputs. The
band gap plays a crucial role in determining how metamaterials interact with and control waves,
presenting exceptional opportunities for customization in various applications.
An essential part of designing the band gaps and structural behavior of metamaterials is nu-
merical simulation. Traditional methods typically rely on three-dimensional (3D) and two-
dimensional (2D) simulations, which face challenges due to high computational costs and sig-
nificant nonlinear approximations, respectively. This study presents a solution involving the
application of the Carrera Unified Formulation (CUF) [1, 2]. CUF offers two significant ad-
vancements ideal for metamaterials analysis: the capability to efficiently represent them using
a singular one-dimensional (1D) beam model and the incorporation of the complete Green-
Lagrange strain tensor. The first innovation addresses the typical constraints of standard finite
element methods, significantly reducing the computational cost associated with solid finite el-
ements and surpassing the limitations of both 2D and 1D models. The second key feature
effectively overcomes nonlinear assumptions, particularly in scenarios involving von Kármán
nonlinearities, as seen in 2D elements. Moreover, the proposed approach allows for the im-
plementation of any nonlinear assumption to evaluate the accuracy and reliability of different
theories.
The research delves into the examination of thin-walled structures and metamaterials, emphasiz-
ing the alteration of band gap characteristics as these materials undergo significant displacement
and changes in mechanical properties. This study extends to include a comprehensive nonlinear
analysis, integrating the complete Green-Lagrange strain equations, which is critical for accu-
rately assessing the behavior of these materials. Practical examples are provided to illustrate
the evolution and development of band gaps in these structures. A key aspect of this research is
the comparison of results obtained from this comprehensive approach with those derived from
von Kármán approximations. This comparative analysis highlights the enhanced accuracy and
relevance of incorporating full Green-Lagrange strains in understanding the dynamic properties
of thin-walled and metamaterial structures.

2 Refined one-dimensional finite element

The three-dimensional (3D) displacement field of a generic one-dimensional (1D) beam
structure can be written in a vectorial form, and it reads:

u(x, y, z) = {ux uy uz}T (1)

where x, y and z are the coordinates of a Cartesian reference system. Assume that y is the
direction of the beam axis, whereas x and z are the coordinates of the cross-section. The Carrera
Unified Formulation (CUF) and the Finite Element Method (FEM) allows the 3D displacement
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field to be expressed as follows:

u(x, y, z) = Fτ (x, z)Ni(y)uτi τ = 1, 2, ...,M i = 1, 2, . . . , Nn (2)

where Fτ (x, z) are the cross-section expansion functions in the x and z directions, where Ni

stands for the ith shape function in the y direction, M represents the number of the terms used
in the expansion, Nn stands for the number of the nodes on the beam axis and uτi is the vector
of the nodal unknowns. Lagrange Expansions (LE) are used as cross-sectional functions. They
can ensure linear (L4), quadratic (L9), and cubic interpolation (L16), allowing the implementa-
tion of linear to higher-order kinematics. Carrera and Petrolo [3] provided more details about
LE beam theories.
Let us consider a thin-walled structure made of repeatable cells. Three types of modeling are
ensured by commercial software. Figure 1 shows them, i.e. the use of 3D, 2D and 1D Finite
Elements (FEs). While the former stands out as the most accurate solution, it falls short in

(a) (b) (c)

beam
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beam
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3
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(d)

Figure 1: Different approaches for the thin-walled structure made of repeatable cells (a), i.e. the use of 3D (b), 2D
(c) and 1D (d)FEs.

terms of computational efficiency. As emphasized in [4], a reliable through-thickness analysis
requires the utilization of at least three to four solid elements. The thin nature of the compo-
nents, coupled with the aspect ratio constraints inherent in 3D Finite Elements (FEs), results
in a substantial number of degrees of freedom. Conversely, while opting for 2D Finite Ele-
ments (FEs) may seem reasonable given the slim profile of the structure, these elements lack
the capacity to capture through-thickness strain and stress components, which can be pivotal
from a design perspective. Similar conclusions apply to the final modeling approach involving
1D FEs. In this scenario, the structure is represented as multiple beams, typically relying on
classical theories within commercial software. However, the drawbacks of classical theories,
such as the omission of shear strain and lack of geometric exactitude, persist in this modeling
technique. Figure 2 shows the proposed mathematical modeling approach based on CUF. In this
instance, the structure is represented as a single beam. As illustrated in Fig. 2, the cross-section
of the beam lies in the plane x−z and is delineated in red, while the beam axis, depicted in blue,
aligns with the y direction. The discretization of the cross-section is achieved using high-order
Lagrange polynomials, enabling the accurate depiction of both local and global deformations
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Figure 2: Proposed mathematical modeling approach based on CUF.

and providing an exact representation of the geometry. With this approach, displacement conti-
nuity between elements and sudden geometric changes are automatically ensured by the shared
Lagrange points.

2.1 Geometrical and constitutive relations

The stress, σ, and strain, ϵ, components are expressed in vectorial form with no loss of
generality,

σ = {σxx σyy σzz σxz σyz σxy}T
ϵ = {ϵxx ϵyy ϵzz ϵxz ϵyz ϵxy}T

(3)

As far as the geometrical relations are concerned, the Green-Lagrange nonlinear strain compo-
nents are

ϵ = ϵl + ϵnl = (bl + bnl)u, (4)

The 6 × 3 bl and bnl matrices are the linear and nonlinear differential operators as defined in
[5]. As far as the constitutive relation is concerned, linear elastic metallic shell structures are
considered in this work. Consequently, the constitutive relation reads as:

σ = Cϵ (5)

where C is the material elastic matrix, whose explicit form can be found in many books, see
[6, 7]. Finally, introducing the CUF and FEM relations into Eq. (4), the strain vector can be
written in algebraic form as follows:

ϵ = (Bτi
l +Bτi

nl)qτi (6)

where Bsj
l and Bsj

nl are the linear and nonlinear algebraic matrices with CUF and FEM formu-
lations. The explicit form of these two matrices is not reported here for the sake of brevity, but
they are reported in [5].
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3 Nonlinear free vibration

This section provides a brief introduction to vibration analysis. The principle of virtual
displacements is employed to derive the nonlinear governing equations, stating that the virtual
variation of the internal strain energy and inertial forces is equal to the virtual variation of the
external forces.

Kijτs
S qτi = psj (7)

Here, Kijτs
S and psj represent the FNs of the secant stiffness matrix and the vector of nodal

loadings, respectively. These equations are solved using the Newton–Raphson method with the
arc-length approach [8, 9]. Similarly, the FNs of the mass matrix are derived from the virtual
variation of the inertial loads:

δLint = δqT
sjM

ijτsq̈τi (8)

in which Mijτs represents the FN of the mass matrix and q̈τi indicates the nodal acceleration
vector; the dot stands for time derivative. As the modal behavior of a structure is not solely
determined by its geometric and mechanical characteristics but is inherently tied to the state of
equilibrium, eigenfrequencies and eigenmodes may experience sudden aberrations in deep non-
linear regimes [10]. To explore this aspect, vibration analysis is conducted around a linearized
equilibrium state along the nonlinear path. Through the linearization of the virtual variation of
the nonlinear strain energy, the tangent stiffness matrix (KT ) is introduced.

δ(δLint + δLine − δLext)

δqT
sj(K

ijτs
0 +Kijτs

T1 )qτi + δqT
sjK

ijτs
σ qτi + δqT

sjM
ijτsq̈τi

δqT
sjK

ijτs
T qτi + δqT

sjM
ijτsq̈τi = 0

(9)

In deriving Eq. (9), it is assumed that the mass matrix is linear, and δ2Lext = 0 (loading is
conservative). Here, Kijτs

T represents the FN of the tangent stiffness matrix, Kijτs
0 indicates the

linear component of Kijτs
T , Kijτs

T1 = 2 Kijτs
lnl + Kijτs

nll + 2 Kijτs
nlnl denotes the nonlinear contribution,

and Kijτs
σ is the geometric stiffness, a function of the linear (Kσl

ijτs) and nonlinear (Kσ
ijτs
nl )

pre-stress state, where:
σ = σl + σnl = C(ϵl + ϵnl) (10)

Finally, the full global stiffness matrices are obtained by assembling the FNs versus the indexes
τ , s = 1, ..., M and i, j = 1, ..., p + 1. For more details about the expansion of the FNs and the
finite element assembly procedure in the framework of CUF, the readers are referred to Carrera
et al. [2].
The displacement variations in Eq. (9) are considered small, allowing for the assumption of
harmonic vibration. Consequently, the system can be solved as a linear eigenvalue problem. In
summary, vibrations around nonlinear equilibrium states can be conducted as follows:

• Initially, the static geometrical nonlinear problem is resolved using the Newton–Raphson
method based on the arc-length approach.
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• Subsequently, after computing the nonlinear equilibrium curve, the tangent stiffness ma-
trix is determined at each state of interest.

• Following this, by taking into account the incremental linearized equilibrium condition
of Eq. (9) and assuming harmonic motion around nontrivial equilibrium states,

δqτi(t) = δq̃τie
iωt

δq̈τi(t) = −ω2δq̃τie
iωt

(11)

The equations of motion are simplified into a linear eigenvalue problem, allowing the
evaluation of natural frequencies and mode shapes:

(Kijτs
T − ω2Mijτs)q̃τie

iωt = 0 (12)

Here, ω represents the natural frequency, and q̃τi is the eigenvector. Additionally, for
clarity, it is crucial to emphasize that the nonlinear vibrations exhibit low amplitudes,
and small increments of amplitudes are considered when determining the nonlinear vi-
bration modes. Consequently, it is legitimate to employ linearization around the state of
equilibrium for problem resolution.

Usually, a resolution based on a linear approach is standard in most literature. Therefore, this
work emphasizes the comparison between linear and nonlinear approaches, highlighting the
necessity of adopting a complete nonlinear formulation for accurate analyses. Through lin-
earization around the trivial equilibrium state, the tangent stiffness matrix is expressed as:

KT = K0 + λKσl (13)

Here, λ represents the progressively increasing load factor. This simplified linearized approach
is executed by substituting Eq. (13) into Eq. (9), wherein KT1 tends to zero due to the small
values of δu.

4 Numerical results

The results of numerical analyses performed on thin structures composed of repeatable cells
are reported in this section The geometry of the structures is reproduced following the data
reported in [13]; in the present case, the structure is composed of repeatable cells having the
same dimensions, as shown in Fig. 3. A modal analysis performed by means of the proposed
numerical model outlined in Section 2 is discussed; namely, the natural frequencies and the
evolution of the band gap is commented on when varying the traction load P.

4.1 Single-cell structure

The first case involves the one-cell structure shown in Fig. 3. The nonlinear equilibrium
curve, depicting the response to a traction force P , is illustrated in Fig. 4, along with se-
lected fully nonlinear deformed configurations. The assessment also includes the examination
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Figure 3: Analyzed structures with repeatable cells. t = 10mm and w = 100 mm.
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Figure 4: Linear and nonlinear static curve of the one-cell structure. Nonlinear curve is evaluated using the full
Green-Lagrange strain tensor, vK with the von Kármán nonlinearities. Depicted deformed configurations are at
nonlinear equilibrium states.
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of the curve with von Kármán nonlinearities (refer to [12] for details on modeling von Kármán
nonlinearities within the CUF framework). Clear distinctions are observable among the three
curves, encompassing variations between the complete nonlinear curve and those incorporating
von Kármán nonlinearities. Those distinctions are more evident in Fig. 5, where the mode
evaluation between the full nonlinear and the von Kármán solutions are presented. Therefore,
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Figure 5: Mode evolution of the one-cell structure, using full nonlinear (Full NL) and von Kármán (VK) solutions.

employing the complete nonlinear matrix is essential and will be used for all subsequent analy-
ses, referred to as the nonlinear configuration.
The natural frequencies are assessed at various equilibrium states. This process is carried out
for both linear and nonlinear solutions, with the corresponding outcomes presented in Fig. 6.
The first ten frequencies are computed, and in Fig. 6, each curve corresponds to a distinct mode
shape. Four distinct band gaps are evident from the mode distribution, and each is individu-
ally examined, comparing the linear and nonlinear solutions. Focusing on the first band gap,
detailed in Fig. 7, three values of ux/w (0.69, 0.85, and 1.01) are considered. In the linear
solution, the band gap diminishes as ux/w increases, disappearing entirely at ux/w = 1.01. In
the nonlinear domain, the band gap is situated between modes 3 and 4 for ux/w = 0.69and
0.85 while it shifts to modes 2 and 5 for ux/w = 1.01. This shift results from mode alterations
and aberrations in the nonlinear field. The corresponding mode shapes in the nonlinear field are
presented in the same figure.
The frequencies corresponding to the previously examined band gap are provided in Table 1.
The substantial difference in range between the linear and nonlinear solutions is significant
and cannot be overlooked. Consequently, it is imperative to incorporate the nonlinear stiffness
matrix in the assessment of band gaps within the large displacement field.
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Figure 6: Mode evolution of the one-cell structure, using linear (a) and nonlinear (b) stiffness matrix.
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Figure 7: First band gap evolution with linear (a) and nonlinear (b) stiffness matrix. One-cell structure case.

Band gap ux/w f1n mode
lin - f2n mode

lin f1n mode
nl - f2n mode

nl % range diff.
0.69 0.4543 - 1.4794 0.7003 - 1.8634 12%

1 Fig. 7 0.85 0.4583 - 1.1794 0.6723 - 1.9474 43%
1.01 — 0.7322 - 1.9095 —

Table 1: Values of frequency limits of the one-cell structure case band gaps. Frequencies expressed in [kHz]. flin
stands for frequency evaluated using linear stiffness matrix, fnl using nonlinear stiffness matrix. % range diff. is
the percentage difference between the band gaps evaluated using linear and nonlinear stiffness matrix.
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4.2 Multi-cell structure

This section proposed the results of the band gap evaluation of multi-cell structure with five
cells of the same geometry shown in Fig. 3. Figure 8 shows the linear and nonlinear static
behavior of this structure. The deformed configuration at ux = 3.2 is reported in the same
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Figure 8: Linear and nonlinear static curve of the five-cell structure. Depicted deformed configurations are at
nonlinear equilibrium states.

figure. Figure 9 reports the mode change of such structure, including the first six modes using
a full nonlinear approach. The band gap between modes 3 and 6 is analyzed hereafter and
the related frequency values are reported in Table 2. Clearly, this band gap arises from both
linear and nonlinear solutions for ux = 2.2, 2.7 and 3.2, and it remains between modes 3 and
6. However, as underlined by Table 2, the % difference between the two band gaps is high,
especially in the far nonlinear regime, reaching values of 51% and 47% for ux = 2.2 and 2.7,
respectively.

Band gap ux/w f1n mode
lin - f2n mode

lin f1n mode
nl - f2n mode

nl % range diff.
1.70 0.1033 - 0.1456 0.1333 - 0.1686 -20%

Fig. 9 2.20 0.0973 - 0.1236 0.1243 - 0.1776 51%
2.70 0.0823 - 0.1116 0.1133 - 0.1846 47%

Table 2: Values of frequency limits of the five-cell structure case band gaps. Frequencies expressed in [kHz]. flin
stands for frequency evaluated using linear stiffness matrix, fnl using nonlinear stiffness matrix. % range diff. is
the percentage difference between the band gaps evaluated using linear and nonlinear stiffness matrix.
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Figure 9: Mode trend of the multi-cell structure, using nonlinear stiffness matrix.

4.3 Multi-cell structure with different material

In contrast to the previous study case, where the structure was made entirely of aluminum,
this study evaluates the natural frequencies and mode evolution for a multi-cell repeatable struc-
ture composed of alternating aluminum and titanium components, as shown in Fig. 10. This

Figure 10: Materials considered for the multiple-cell structure: blue = aluminium, red = titanium.

investigation aims to preliminarily assess the influence of the material properties on the dy-
namic characteristics, natural frequencies, and band gap evolution under various equilibrium
conditions. The materials used in these analyses have the following properties: an elastic mod-
ulus of 75 GPa and 116 GPa, and a density of 2700 kg/m3 and 4500 kg/m3 as aluminum and
titanium alloys, respectively. The two configurations shown in Fig. 9 will be referred to as
’ABAB’ and ’AABB’ in the subsequent analyses. The static curves, both linear and nonlinear,
are reported in Fig. 11. Figure 12 shows the results of the trend of the natural frequencies as
the equilibrium condition changes, i.e. as the load P increases, for the ABAB configuration;
the x-axis reports the axial displacement u of the force application point, normalized by the cell
characteristic length w. It can be observed that the use of a different combination of materials
for the considered thin-walled structure introduces an alteration of the natural frequencies, and
consequently of the band gap. Moreover, using a material with increased elastic modulus and
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Figure 11: Static linear and nonlinear curves for ABAB and AABB configurations.
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Figure 12: Mode and band-gap evolution for the ABAB configuration. Linear and nonlinear solutions.
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density, as the titanium, leads to an increase in stiffness and mass of the structure; in this spe-
cific case, the second effect has a larger prevalence, consequently leading to a decrease of the
natural frequencies compared to the aluminum case (Fig. 9). As discussed in [13], an evolution
of the band gap is observed as the load increases, highlighting that the natural frequencies are a
inherent property of the equilibrium. It is observed that the band gap between the sixth and fifth
modes changes substantially as the axial deformation, and hence the load, increases. In partic-
ular, considering the notation of Fig. 12, at point 1 the band gap is the smallest, and identifies
a frequency difference between mode 5 and mode 6. As the load increases, the gap increases,
up to point 2 where there is a switch between mode 5 and mode 3. The same conclusions could
be drawn by analyzing the dynamic characteristcs shown in Fig. 13, which shows the mode
evolution of the AABB configuration.
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Figure 13: Mode and band-gap evolution for the AABB configuration. Linear and nonlinear solutions.

5 Conclusions

This study explored the dynamic behavior of metamaterials, specifically examining the evo-
lution of their band gaps within the context of large displacements and rotations. The research
utilized a unified model based on the Carrera Unified Formulation (CUF), which enabled the
development of higher-order one-dimensional beam theories. These theories account for geo-
metric nonlinearities through cross-sectional expansion functions, while the axis was discretized
using a finite element approximation. The equations of motion were solved around nonlinear
static equilibrium states in a total Lagrangian scenario, identified using a Newton-Raphson al-
gorithm combined with an arc-length path-following method.

The paper provided a detailed comparison of results obtained with both linear and nonlin-
ear stiffness matrices, highlighting the differences between them. Numerical investigations
focused on thin-walled structures composed of repeatable cells, assessing mode changes under
traction and compression loading conditions. The results clearly indicated that adopting the full
Green-Lagrange strain tensor is essential. Additionally, the study introduced a more complex
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metamaterial-like structure. The findings emphasized that the band gap is inherently a property
of the equilibrium state, underscoring the need for a thorough nonlinear analysis to accurately
evaluate frequency transitions.
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