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Abstract: Thin-walled structure of CFRP laminates is widely utilized in the assembly of 

aircraft wings. The deformation field generated during the assembly process can impact the 

assembly performance of the structure, thereby influencing the product quality and operational 

performance of the wings. The geometric deviations on the critical mating surfaces of the 

laminate and physical parameters are key factors influencing the deformation fields during the 

assembly process. Analyzing the mapping relationship between fusion assembly data and 

deformation field plays a crucial role for assessing the assembly results. The traditional analysis 

methods only consider the impact of simple directional deviations on assembly results and do 

not comprehensively account for the multi-source input. This paper proposes a multi-source 

assembly input -deformation analysis framework for CFRP bolted joints in aircraft wing 

assembly. Taking the parameters representing the geometric deviations and physical parameters 

as input and deformation field as output, a conditional generative model is employed to learn 

the influence pattern of the geometric deviations on the deformation field. The framework 

establishes a prediction model from the deviation field to the deformation field and introduces 

specific accuracy metrics. Corresponding simulations demonstrate that the proposed method 

can predict assembly deformation field more efficiently than traditional numerical methods. It 
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exhibits excellent performance on the accuracy metrics, enabling accurate and efficient field-

to-field predictions. The predicted results can serve as a research framework for predicting other 

physical fields. 

 

1 INTRODUCTION 

Advanced composite materials, due to their high strength, high stiffness, high corrosion 

resistance, and designable mechanical properties, are extensively used in the structures of 

aircraft. However, the assessment and control of the assembly quality of composite structures 

largely rely on engineering experience and lack corresponding assembly design theories and 

methods. To balance the geometrics and performance in composite material structures used in 

mechanical products, it is necessary to explore the interaction laws between geometric 

quantities and the mechanical performance parameters during the assembly process[1].  

Modeling variables during the assembly process is an essential component of high-

performance assembly for composite materials, which can be categorized into geometric 

variables and performance variables. Researchers have developed various methods for 

geometric characterization, including modal decomposition models, deformation grid models, 

and skin model shape method. Huang et.al. [2] proposed the statistical models to generate 

geometric deviations, decomposing the deviation field into a limited number of fundamental 

deformation modes and employing modal decomposition to approximate the description of 

geometric deviations on surfaces. Franciosa et.al. [3] utilized a grid-based deformation method 

to describe geometric deviations in thin-walled parts. Anwer et al. introduced the concept of a 

skin model shape, which focuses on the detailed representation of surface deviations. Building 

on this, Scheich et.al. [4] developed an assembly deviation characterization and design 

framework based on the skin model shape. This framework integrates contact constraint 

optimization and the definition of differential surface, proposing a novel assembly simulation 

method grounded in skin model shape. This method aims to enhance the accuracy of simulating 

and predicting assembly processes, particularly in terms of managing and mitigating deviations, 

thereby improving overall assembly quality and performance. On the other hand, performance 

variables primarily include the physical performance parameters that influence the assembly 

outcome during the process. Modeling the flexible assembly process of composite material 

mechanical products requires a detailed understanding of these performance variables. Many 

scholars have focused on modeling the multi-station assembly process. Lin et.al. [5] combined 

the sub structuring method with statistical sampling techniques to reduce the calculation time, 

thereby accelerating the prediction efficiency of assembly deviations. Yi et.al. [6] further 

integrated error propagation theory and state space models to construct a framework for the 

error transmission and accumulation in multi-step assembly processes of complex products. 

The aforementioned methods have thoroughly investigated the impact of multiple factors on 

assembly outcomes. However, they rely on linear superposition approaches, which overlook 

the complex coupling relationships between geometric and performance variables. 

Consequently, they fail to achieve the construction of precise and efficient physical mapping 

models for composite material assembly under the influence of multiple input variables. 

The deformation field resulting from the assembly process is a crucial factor in evaluating 

the physical field of the assembly system and is an important indicator of the geometric 

characteristics of the assembly outcome. Currently, many scholars have conducted in-depth 
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research on data-driven solutions for complex physical field prediction. the Generative 

Adversarial Networks (GANs), has demonstrated superior image reconstruction capabilities 

compared to other models [7]. By constructing a generator and a discriminator and training 

them simultaneously within a game-theoretic framework, the generator learns to "deceive" the 

discriminator's data distribution predictions, making it an effective tool for data inference. Yang 

et.al.[8] effectively applied this method to estimate stress and strain in complex composite 

material structures and proposed an end-to-end model construction method using cGAN to 

replace finite element calculations. Nie et.al. [9] also used the cGAN model to predict the 

impact of geometric shapes, loadings, and boundary conditions on the stress field. On the other 

hand, with the rise of Transformer models in the field of image processing, they have also been 

employed for generating physical fields. Jiang et. al. developed TransCFD [10] as a decoder to 

predict flow field results under aerodynamic shape parameters. Buehler et. al. [11] constructed 

FieldPerceiver based on an enhanced Transformer model, capable of effectively predicting 

physical field in microscale mechanics. However, current methods for predicting physical fields 

primarily focus on areas such as Computational Fluid Dynamics and microscale mechanics. 

There is a need to develop a framework suitable for predicting physical fields in composite 

material assembly. To address this, this paper establishes a framework for analyzing the 

deformation field of composite bolted joints under multiple sources of assembly factors. It 

proposes a data-driven deformation field prediction network called General characteristic-Multi 

modal-GAN (GC-MM-GAN), which achieves end-to-end prediction of composite bolted joints 

deformation fields for the whole assembly process. The effectiveness of the framework is 

validated through a case study of CFRP bolted joints used in wing assembly. 

2 DIGITAL TWIN-ORIENTED PART SURFACE MODEL 

During assembly, geometric errors may exist in the surface topography of parts. Geometric 

deviations at different scales can affect assembly results. Traditional deviation representations 

typically use tolerance interval constraint methods. The methods cannot consider the specific 

influence of morphology on assembly results, nor can they incorporate multi-scale geometric 

features into assembly analysis. Therefore, based on the skin model shape method, this paper 

constructs the geometric model of assembly components. 

 The modeling process for the component skin model shape mainly includes four steps: 

extraction of key mating surfaces from the nominal model, discretization of the surface, 

superposition of deviations at different scales, and reconstruction of solid elements containing 

physical features. The assembly model studied in this paper, as shown in the Fig. 1(a), is a 

composite bolted joints used in wing assembly. The corresponding nominal model and parts are 

depicted in the Fig. 1(b). 

For the composite bolted joints discussed in this paper, the contact area of the laminates is 

the critical feature surface, which needs to be discretized and superimpose the deviations. For 

larger scale part surface deviations, methods like Discrete Cosine Transformation (DCT) or 

random field modeling are typically used. However, determining the weighting coefficients of 

various basis functions in the modal methods can be challenging, making it difficult to leverage 

historical statistical data effectively. Therefore, using random field representations that 

incorporate statistical parameters of the part surface is more suitable for addressing assembly 

process. This study utilizes non-Gaussian random fields to simulate surface topography based 
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on statistical data. This method is closer to reality than Gaussian random field simulation 

because different manufacturing processes can lead to non-Gaussian distributions of surface 

topography. Following the methodology outlined in Ref. [6] , we combined the higher-order 

central moments of the laminate and washer surfaces heights to simulate non-Gaussian 

deviation distributions on a larger scale. The results of this simulation are shown in Fig. 2. 

 

 

 

(a) CFRP bolted joints in the wing box (b) The CAD model of CFRP bolted joints 

Fig. 1 Schematic of physical model and CAD model 

   

  
Fig. 2 Simulation of surface morphology of washers and critical mating surfaces 

 For finer-scale morphology, simulating non-Gaussian random fields requires high-

precision measurement equipment, and obtaining statistical parameters for a significant volume 

of parts is both difficult and expensive. Therefore, combining self-similar methods with fractal 

functions can infer the overall distribution from the topographical deviation structure of a part, 

further generating the fine-scale topography of the parts. This approach accounts for the elastic-

plastic deformation of surface asperities and ensures that the overall model is deterministic, 

allowing for realistic simulation of part contact during assembly. This method proves to be 

practical and feasible for simulating the actual contact of components. In this study, we use the 

W-M function method to represent the surface morphology of the parts as the result of the 

superposition of different spectral cosine functions. 
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Fig. 3 multi-scale part deviation modeling process 

 In summary, based on the generated results of multi-scale geometric deviations of key 

mating surfaces of assembly parts, the final skin model shape of the parts is obtained by 

superimposing these deviations within the given deviation interval constraints. After 

constructing the key morphology, the discrete point cloud is reconstructed into corresponding 

solid elements using the interpolation mesh method. It is worth noting that to ensure that the 

surface of the workpiece does not exhibit unrealistically large deviations, the overall error is 

often constrained by adding a tolerance band. Therefore, a more general multi-scale part surface 

morphology modeling process is summarized as shown in Fig. 3. 

3 DATASET IMPLEMENTATION 

As discussed before, the composite bolted joint structure for wing assembly consists of the 

composite laminate, the bolt, nuts, and washers’ assemblies. To simulate the realistic tightening 

process of the composite bolted joint structure, a detailed threaded mesh model is established, 

as illustrated in Fig. 4(a). Characterize the intra-laminar damage behaviors of CFRP using the 

continuum damage model (CDM). The determination of damage occurrence relies on the 

application of the 3D Hashin damage criteria. The progressive damage behaviors are 

characterized by modifying the stiffness matrix of the material as shown in Fig. 4(b).  
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Fig. 4 The process and principle of the dataset preparation 

During the progressive damage analysis of the composite laminates, intra-laminar damage 

and inter-laminar damage are performed simultaneously. Then, we characterize the inter-

laminar damage behaviors by using the cohesive contact method (CCM). As shown in Fig. 4 

(b), a bilinear traction-separation law is used to characterize the cohesive contact for the 

delamination processing.  

The quadratic stress failure criterion is employed for the estimation of damage initiation, 

whereas the BK failure criterion is applied to forecast the propagation of delamination [12].As 

shown in Fig. 4 (c), a multitude of diverse contact pairs can be found in composite bolted joints. 

For the modeling of normal interactions, the default hard contact model, which prevents 

penetration of slave nodes into master surfaces, is employed. The classic Coulomb friction 

model is employed to represent the tangential behavior in all contact pairs between the 

constituent parts. 

A dynamic explicit time step is introduced to simulate the authentic tightening process of 

the composite bolted joint, with control over the boundary conditions at the nut as shown in Fig. 

4(d). The geometric data, material properties, and boundary conditions are further synthesized 

for finite element simulation, taking into account the variables as shown in Fig. 6(e).Extracting 

the normal compressive deformation fields on various laminates during the assembly process, 

as shown in Fig. 4(f), provides input for subsequent analysis. 

Based on the aforementioned model and simulation methods, this study conducted Latin 

Hypercube sampling under various geometric and material parameters. The selection range of 

parameters and partition details of grids for the simulations are provided in Table 1. 

After obtaining the displacement distribution data values, they were mapped to 

displacement contour plots through interpolation. The displacement results from FEM were 

interpolated to generate the contour plots of 256×256 resolutions using bilinear interpolation. 

The images of the key feature surface of the washers and laminates are shown in Fig. 5(a), 

which serve as the input data. The deformation field cloud map under this morphology is 

prepared as shown in Fig. 5(b). Along with corresponding non-image data, the paired data is 

constructed for this study. 

This study utilized 200 pairs of deformation cloud maps in the target region as the training 

and testing dataset. The preparation of the data was performed using the Siyuan-1 cluster 
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Random splitting and cross-validation methods were employed for the training and testing sets 

to eliminate biases. 

Table 1 

The parameter selection range and grid details for simulations 

Meanings Signal Minimum Maximum 

Friction coefficient of bolt end face b  0.1 0.5 

Friction coefficient between washer and composite 

laminated plate 
bC  0.1 0.5 

Friction coefficient between composite laminates C  0.1 0.5 

Friction coefficient between nut and composite laminated 

plate 
nC  0.1 0.5 

Friction coefficient of nut end face n  0.1 0.5 

Thread friction coefficient t  0.1 0.5 

Bore radius of washer inr  3.0mm 3.5mm 

Outer circle radius of washer outr  6.0mm 10.0mm 

Thickness of washer t  0.5mm 2.0mm 

Nut tightening angle   0.16rad 1.36rad 

Number of grids around holes CCN  64 96 

Deviation of key feature surface pT  0mm 0.15mm 

 

 
(a) The sample of parts’ morphology (b) The sample of deformation fields 

Fig. 5 Image preparation and sample results 

 

4 GC-MM-GAN MODEL ARCHITECTURE 

The prediction framework in this study is based on a combination of a Vision Transformer 

(ViT) auxiliary network and a conditional Generative Adversarial Network (cGAN). The 

overall network architecture is illustrated in Fig. 6. The function of the ViT auxiliary network 

is to integrate image data and non-image information. What’s more the sequence information 

could be embedded, such as assembly order, into a conditional latent space as learnable 

parameters. The cGAN module then uses the high-dimensional feature vectors output by the 

ViT auxiliary network as guiding conditions to generate the assembly result data field [13]. 

Ultimately, the GC-MM-GAN could output the deformation field prediction results similar to 

numerical analysis results under various inputs. 
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The VIT auxiliary network primarily includes a Transformer encoder module and a feature 

fusion module to achieve the integration of geometric and performance features. The 

Transformer block is used for feature extraction from image data. The image data represent the 

key mating area of the composite laminates. Additionally, the assembly sequence and position 

of different laminates during the assembly process affect the final results of the performance 

analysis. Non-image data are then integrated with the Transformer-encoded image data in the 

subsequent Mapping Network layer. The fusion method of the Mapping Network is shown in 

Fig. 7(a) where it stacks linear and convolutional layers to elevate the dimensionality of non-

image data. This high-dimensional concatenation with the encoded image data forms 

conditional constraints in the latent space to guide the subsequent generation of field data. 

 
Fig. 6 The architecture of GC-MM-GAN 

For the generator, the U-Net structure is employed, as shown in Fig. 7(b). The architecture 

primarily includes down-sampling encoding modules, up-sampling encoding modules, and skip 

connections. Down-sampling and up-sampling use convolution and transpose convolution 

operations, while skip connections enhance the network's ability to capture detailed field 

features, allowing for a more precise grasp of both global and local characteristics. Additionally, 

the down-sampling and up-sampling modules incorporate spectral normalization, which helps 

mitigate the training uncertainties introduced by the U-Net structure. This approach alleviates 

the artifacts generated during GAN training, achieving a good balance between enhancing local 

details and suppressing artifacts. 

  
(a) Feature fusion mapping network (b) Generator Architecture Framework 

Fig. 7 Description of the key component of the generator 

The discriminator network employs the PatchGAN architecture, designed as a fully 

convolutional network as shown in Fig. 8. The input consists of deformation field images from 

assembly results, including real sample images generated by finite element simulation and 
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"fake" images generated by the generator. This discrimination method considers the local 

interrelationships within the physical field, representing the covariance and other statistical 

characteristics through pixel associations. By utilizing the network to recognize these complex 

couplings, the discriminator supervises the generator's learning direction, ensuring it learns the 

intricate rules of solving physical differential equations via finite element methods. The specific 

architecture consists of an input layer followed by a series of down-sampling modules. Each 

down-sampling module comprises 2D convolution, leaky ReLU, and instance normalization 

layers, which continuously extract key information from the images to ultimately perform 

authenticity verification. 

 
Fig. 8 The structure of the discriminator 

5 COMPUTATION RESULTS AND DISCUSSIONS 

The training and testing errors for the generator and discriminator of GC-MM-GAN are 

shown in Fig. 9(a)(b). The losses for both groups gradually decrease, and they converge after 

400 epochs. Additionally, the deformation predictions at different stages are compared in the 

Figure. Initially, the generator can only produce simple shape features, with the deformation 

distribution still chaotic and disordered. After 5000 epochs, the generation quality improves 

significantly, though artifacts and local distribution differences remain in the image details. 

Through the adversarial training between the discriminator and generator, the generated details 

are progressively refined, resulting in cloud images that closely approximate the FEM results. 

After training, the generator is utilized as a function approximator for the deformation field 

results fused with geometric deviations and physical parameters. It takes different geometric 

deviations and physical parameters as inputs and predicts the deformation field results for key 

areas, which are then compared with the results from FEM. The difference maps between the 

two are plotted. It can be observed that the predicted deformation cloud images are 

indistinguishable from the results of FEM to the naked eye. They effectively capture the overall 

trends of deformation distribution and some details around the holes. On the difference maps 

as shown in Fig. 9(c), areas with significant prediction errors generally correspond to regions 

of deformation of abrupt changes, but they can still simulate and diagnose significant 

deformation anomalies.Following the evaluation metrics proposed in the previous section, a 

comparison is made among the CNN-MLP model, the model trained without discriminator, and 

GC-MM-GAN model. The comparison results of the corresponding metrics are shown in Fig. 
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9(d)(e), with specific numerical values detailed in Table 2. It can be observed that our method 

not only achieves superior image quality in terms of similarity but also exhibits closer proximity 

at the data level. 

Regarding the improvement in computational efficiency, a comparison is made between 

FEM and the trained GC-MM-GAN for a single case, as shown in Table 3. It can be seen that 

the speed of deformation prediction with the converged network is very fast. We can apply the 

GC-MM-GAN to further engineering deformation prediction and analysis, thereby saving a 

considerable amount of computational costs. 

  
(a) The loss function variation of 

generator 

(b) The loss function variation of 

discriminator 

 
(c) Comparison and difference figures of the deformation maps by GC-MM-GAN 

prediction and FEM calculations 

  
(d) Performance radar plots of prediction 

results using different methods 

(e) Comparison of image performance 

indicators of different methods 

Fig. 9 Network training and comparative verification of results 
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Table 2 

Performance comparison of results from different methods 

 SSIM MSSIM PSNR 

(dB) 

RMSE MAE PAE PPAE 

CNN-MLP 0.632 0.9214 22.812 0.0421 0.0621 0.52 0.236 

Without 

Discriminator 
0.725 0.9435 29.125 0.0385 0.0456 0.21 0.095 

Ours 0.812 0.9458 31.125 0.0125 0.0238 0.042 0.0191 

 

Table 3 

Comparison of the calculation time with FEM 

Method Time 

Finite Element Method 25321.2s 

Ours 4.1s 

6 CONCLUSIONS 

This study proposes a rapid deformation field prediction strategy for composite bolt 

structures based on deep learning. The fundamental idea is to utilize a cGAN-based network 

framework combined with a VIT auxiliary network to construct the deformation field prediction 

model GC-MM-GAN under multi-modal data input. This model takes geometric deviations and 

physical performance parameters during assembly as inputs, with the deformation field of key 

assembly areas as the target. Leveraging the results from progressive damage models and FEM, 

a database containing various interface states and deformation scenarios is established. Based 

on the current research, the following conclusions can be drawn: 

(1) The prediction results of the GC-MM-GAN model on the test set under different 

conditions in the database were validated, and compared with several other models. According 

to various accuracy metrics proposed in this paper, GC-MM-GAN demonstrates stronger 

accuracy. Therefore, the good accuracy of the prediction model can be validated. 

(2) Through the visualization of the features in the high-dimensional space layer during the 

training process, it is illustrated that the VIT auxiliary module plays a role in integrating 

geometric variables and physical variables, demonstrating the advantage of GC-MM-GAN in 

handling assembly multimodal data. 

(3) The proposed GC-MM-GAN model needs to be further compared with other models and 

supplemented with comparative verification under different experiments to complete the 

model's transfer learning, which is an important task for future work. 
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