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Summary. In this work, we introduce a hybrid variational framework for the Virtual Ele-
ment Method (VEM) and develop a family of polygonal elements for plane elasticity. Under
specific assumptions, it is demonstrated that the minimization of Total Potential Energy and
the projection operation characteristic of enhanced VEM can be derived from the stationary
condition of the Hellinger-Reissner mixed functional. The designed elements, which can be in-
terpreted as either enhanced VEM or hybrid finite elements, are termed the Hybrid Virtual
Element Method (HVEM). The primary variables in this approach are the displacements along
the element boundary and the stress field within the element domain. The assumed stress field
is represented on a polynomial basis that satisfies the divergence-free condition. In the HVEM
formulation, stabilization-free elements are achievable using two concepts: hyper-stability and
iso-stability. Notably, the iso-stable cases yield the most accurate recovery of both displacement
and stress fields. The proposed HVEM family demonstrates high accuracy, even when coarse
meshes are employed.

1 INTRODUCTION

The Virtual Element Method (VEM) is an innovative and original formulation belonging to
the wide family of the Finite Element Method (FEM) [1]. The term ”virtual” in VEM refers
to the fact that the method does not explicitly assign the approximation form of the unknown
field. In solid mechanics applications, the main feature of VEM is that the displacement field
is not given explicitly in the internal element, but is specified only on its boundary [2, 3].
Therefore, the displacements of the nodes on the element boundary are the unknowns of the
problem. Moreover, depending on the approximation hypotheses assumed, weighted averages of
the displacements can be introduced as further unknowns of the problem. Because of the lack
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of the explicit displacement field form, the strain is recovered adopting a projection procedure
which (generally) requires the use of a stabilization term in the internal energy [4].

The VEM has been successfully used to solve linear elastic problems as well as nonlinear
problems including plasticity, viscoelasticity, shape memory material behavior, and damage
[5, 6]. Thanks to its mesh flexibility, VEM is adopted in contact mechanics [7] and in fracture
mechanics where the element splitting technique is easily employed with successful results [8, 9].

The advances on the VEM formulation have concerned the development of new elements
for different structural models and the proposal of new and efficient stabilization procedures
[10] to address the numerical stability and enhance the convergence properties for a wide range
of problems. In this context, a very challenging topic is the possibility of developing high-
performance VEM formulations that do not require stabilization procedures [11, 12].

The standard VEM formulation is based on the approximation of the displacement along the
element boundary through a piecewise k-th polynomial degree and on the assumption of a p-th
polynomial degree representation of the strain field within the element, with p = k − 1. The
strain field inside the element domain is obtained through a L2 projection of the compatible
strain. A modification of such a recipe has been proposed in D’Altri et al. [11]. Called enhanced
VEM, this approach assumes a polynomial degree p different from k − 1 and proposes the
adoption of an energy norm projection. The adoption of the energy norm implicitly leads to
the introduction of an approximation of the stress field, which suggests that the enhanced VEM
construction could make use of a mixed or hybrid formulation of the boundary value problem.
Hence, VEM approaches based on mixed variational formulations have been recently proposed
and discussed [13, 14, 15, 16].

Mixed approaches have been extensively used in the formulation of high-performance finite
elements. In such cases, starting from a mixed variational principle, the stress or the strain
fields are taken as primary variables together with the displacements. The main advantages
demonstrated by the mixed FEM are the improvement of the overall accuracy, the elimination
of various locking phenomena and the enchantment of the stress and strain representation [17].
Within the mixed FEM, an interesting approach is represented by the hybrid formulation. Being
based on assumed stress fields that a-priori satisfy the equilibrium equations, it allows the
displacement field to be interpolated only along the element boundary. Among the others, a
quadrilateral membrane hybrid finite element with drilling rotations and no spurious modes
has been proposed in [18]. The element is formulated within the Hellinger-Reissner variational
principle and assumes a stress approximation implicitly satisfying the equilibrium equations
with zero bulks loads. Additionally, the assumed stress is defined as isostatic, namely it is ruled
by a number of stress parameters that exactly matches the number of kinematical deformation
modes. Since these elements do not require the assumption of the displacement field inside the
element domain, they exhibit many similarities with VEM formulations.

Hybrid membrane finite elements have also been developed by assuming stresses that satisfy
both equilibrium with zero bulks loads and compatibility equations [19]. This stress assumption
allows the finite element operators to be evaluated only by performing boundary integration.
The hybrid FEM has also been used to setup linear elastic shell elements with four nodes [20]
or eight nodes [21]. These elements in general exhibit high accuracy for rough meshes and the
same rate of convergence for both displacements and stresses solutions. This behavior has also
been confirmed for composite materials applications and for geometrically nonlinear problems
[22]. Finally, good performance has been observed when hybrid FEM is used in the context of
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plasticity problems [23]. The possibility of integrating the element operators along the boundary
facilitates the formulation of polygonal hybrid elements [24].

In the present paper it is proved that the enhanced VEM formulation proposed in [11] can
be recognized as a special hybrid finite element model under specific assumptions. Thus, the
aim of the paper is to propose a family of elements, named Hybrid Virtual Element Method
(HVEM), because they can be regarded as enhanced VEM or as hybrid FEM.

A rational procedure for defining different strain field bases for the HVEM is provided, consid-
ering the number of degrees of freedom (DOF) and of rigid motions of the element (3 in-plane),
with the objective of recovering self-stabilized elements. One of the main drawback of the VEM,
occurring when the degree p of the strain field polynomial approximation is increased, is the
arising of new internal unknowns of the element; a technique for avoiding this bother is discussed
for the HVEM. Moreover, the problem of defining a minimal basis for the strain field, denoted
as the iso-stable basis, that ensures the element stability, is approached.

A numerical application is presented in order to assess the efficiency of the proposed HVEM.
Additional details on the HVEM approach can be found in [25]. Furthermore, stabilization-free
HVEM has been successfully adopted in plasticity problems in [26].

2 BASIC EQUATIONS

Let a body Ω be considered, subjected to body forces b, with boundary split into two parts:
Γp, where the traction p is specified, and Γu, where the displacement field ū is prescribed, so
that Γ = Γp ∪ Γu and Γp ∩ Γu = 0. A Cartesian coordinate system {O, x1, x2} is introduced.

In the framework of small strain and small displacement theory, the field governing equations
of the 2D elasticity boundary value problem (BVP), i.e. the strain-displacement relationship,
the equilibrium equation and the constitutive law, are:

ε = Du

DTσ + b = 0

σ = Cε

in Ω (1)

with the boundary conditions:

N σ = p on Γp

u = ū on Γu
(2)

In Eqs. (1) and (2), the classical Voigt notation is adopted, with D the compatibility differ-
ential operator, N the matrix of the unit normal to Γ.

The total potential energy can be written as:

Π[u] = Φ[u]−W[u] (3)

where the external work is defined as:

W[u] =

∫
Ω
bTu dA+

∫
Γp

pTu ds (4)

the displacement field satisfies the boundary condition in Eq. (2)2, the stress field is σ[u] =
C(Du) and the internal strain energy is:

Φ[u] =
1

2

∫
Ω
εT [u]Cε[u] dA. (5)
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The Hellinger-Reissner variational functional is expressed as:

ΠHR[u,σ] = Φd[u,σ]− Φc[σ]−W[u], (6)

where

Φd[u,σ] =

∫
Ω
σTDu dA, Φc[σ] =

1

2

∫
Ω
σTC−1σ dA, (7)

and the displacement field satisfies the boundary condition in Eq. (2)2. For convenience, by
applying the diverge theorem, the internal work Φd can be split into a domain and a boundary
contribute as

Φd =

∫
Γ
(Nσ)T ũ ds−

∫
Ω
(DTσ)Tu dA. (8)

3 VEM FORMULATION

The first step of the formulation of VEM consists in the discretization of the domain Ω in ne

subdomains, i.e. elements, Ωe. Within each element Ωe the displacement field u is approximated
as uh, whose explicit expression is not defined; the trace of the displacement field uh on the
boundary of the element Γe is denoted as ũh and an explicit representation of this field is given:

ũh = N b û (9)

where û is the vector of the nodal displacements on Γe; considering n nodes on the element
boundary, the size of the vector û is 2n. Moreover, N b is the 2 × 2n matrix of the polyno-
mial functions. The components of the displacement vector û represent the unknowns of the
approximated form of the BVP.

According to the the classical procedure for the construction of VEM, as the displacement
field is not explicitly given in Ωe, it is not possible to derive the strain by the compatibility
equation, so that the strain-displacement relationship needs to be relaxed. In fact, the consistent
approximated strain is evaluated as the projection of the (unknown) compatible strain on a
subspace of polynomial function with a given degree of the power. In formula, the strain is
represented as:

εh = N ε ε̂ (10)

with N ε the matrix of the p degree of polynomial functions representing the basis for the strain
approximation and ε̂ vector of strain parameters. The approximated strain can be evaluated by
enforcing a minimal distance (in a chosen norm) between εh and Duh.

3.1 Mixed energy

A mixed energy norm can be adopted, observing that the terms C εh and CDuh from a
mechanical point of view are stresses. Thus, the approximated stress field σh is introduced and
represented as:

σh = Nσ σ̂. (11)

Taking into account Eq. (11), one obtains:

min
σ̂

∫
Ωe

(
C−1Nσ σ̂ −Duh

)T (
Nσ σ̂ −CDuh

)
dA. (12)
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Introducing the definitions:

Gσ =

∫
Ωe

(
C−1Nσ

)T
Nσ dA, Bσ =

∫
Γe

NT
σN

T
e N b ds (13)

and implicitly assuming that Nσ satisfies the relationship DT Nσ = 0, the stationary condition
of Eq. (12) leads to:

Gσσ̂ = Bσû. (14)

In such a case, the strain representation in Eq. (10) can be expressed as:

εh = Πσ û with Πσ = C−1Nσ G
−1
σ Bσ (15)

where Πσ is projector of the compatible strain field obtained through stress approximation.

3.2 Total potential energy formulation

Once the strain field is determined within the virtual element as a function of the displacement
of the boundary nodes, the total potential energy in Eq. (3) is written and minimized with
respect to the nodal displacement degrees of freedom.

Taking into account Eq. (15) for the projected strain, the stationarity condition of the total
potential energy written at the element level takes the form:

0 = Kσ û− b̂ (16)

where

Kσ = BT
σ G−1

σ

(∫
Ωe

NT
σ C−1Nσ dA

)
G−1

σ Bσ = BT
σ G−1

σ Bσ. (17)

is the so-called (consistent) stiffness matrix, recovered by the stationary condition of the potential
energy once an expression of the projected strain is considered. The vector b̂ is the equivalent
element load vector accounting for traction and bulk load. It can be remarked that the enhanced
VEM approach does not require the use of a stabilization term, as the matrix Nσ is properly
set in order to ensure no spurious energy modes.

4 Hybrid formulation for VEM

In this Section, the equivalence between the enhanced VEM, based on the mixed energy
formulation and a hybrid mixed FEM is proved, leading to the formulation of the HVEM. The
special case of divergence-free interpolation is considered.

The hybrid FEM is based on the Hellinger-Reissner mixed variational formulation given by
Eq. (6), taking into account Eqs. (7) and (8). Thus, both displacements uh and stresses σh

represent the unknowns of the BVP problem. The displacement is explicitly approximated on
the boundary Γe by Eq. (9), while the stress is represented in the form given in Eq. (11) in
each element, satisfying divergence-free condition. Thus, the Hellinger-Reissner energy, written
at the single element level, becomes:

Πe
HR1[û, σ̂] = σ̂TBσû− 1

2
σ̂T Gσσ̂ − ûT b̂ (18)

where the definitions, given in Eq. (13), have been taken into account.
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The stationarity condition of the elemental Hellinger-Reissner energy (18), with respect to û
and σ̂, leads to the following algebraic equations:

0 = BT
σ σ̂ − b̂ (19)

0 = Bσû−Gσσ̂. (20)

It is worth noting that Eq. (20) exactly matches Eq. (14), recovered for the mixed energy
formulation of the VEM projector. In fact, solving this compatibility equation and enforcing
the constitutive equation, the strain field representation obtained for the VEM formulation in
Eq.(15) is retrieved.

Substituting the stress vector parameters σ̂ obtained from Eq. (20) into the equilibrium
equation (19), one obtains:

0 = BT
σ G−1

σ Bσ û− b̂, (21)

that exactly corresponds to Eq. (16) with K⋆ = Kσ, obtained through the minimization of the
total potential energy of the VEM mixed energy formulation.

5 STABILIZATION-FREE HVEM

5.1 Approximation of the element boundary displacement

An interpolation of the displacement field ruled by the displacements of nodes located at the
geometrical vertexes of the polygonal element is considered. Therefore, the number of nodes n
coincides with the number of edges of the polygonal shape.

A specific choice is made in the proposed elements consisting in a linear interpolation of
the displacement field along the element boundary, i.e. the degree of the functions in N b is
k = 1. The assumed linear interpolation represents a common and useful choice, but higher
order interpolations can be readily considered.

5.2 Stress field approximation

As declared in Section 3, the stress field inside the element is approximated by p degree
polynomial functions. Thus, let the three components space R3

p[x1, x2] representing polynomials
of maximum degree p and variables [x1, x2] be considered. It is possible to define the vectorial
subspace M3

p[x1, x2] ⊆ R3
p[x1, x2] which satisfies the equilibrium equations with zero bulk loads.

A basis of M3
p[x1, x2] up to the p-th polynomial order can be expressed as:

M3
p[x1, x2] = span([N0|N1|N2| . . . |Np]), (22)

where each Nq, with q = 1, .., p, represents divergence-free vectors of polynomials of order q.
The explicit expression of these matrices up to p = 4 is given in [25].
The space M3

p[x1, x2] can be used to interpolate the stress field, as indicated in Eq. (11), so

that DTσh = 0. In particular, it is possible to select an appropriate subspace from M3
p[x1, x2]

whose dimension defines the number of stress parameters σ̂. This choice has a significant
relevance on the element stability, that is defined as the absence of spurious modes in the
element stiffness matrix Kσ.

For a polynomial element with n nodes, the number of deformation modes is m = 2n − 3.
As shown elsewhere in the context of quadrilateral FEs [27], a necessary condition for element
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(a) M-str4 (b) M-str8 (c) M-poly (d) M-conc

Figure 1: Cook’s membrane: mesh topologies.

stability is that the number of stress parameters should at least match the number of deformation
modes, i.e. dim(σ̂) ≥ m. Once the necessary condition is satisfied, to prove element stability it
is required that rank(Kσ) = m for all the possible element geometrical configurations.

The number of stress parameters, i.e. dim(σ̂), defines two contexts for stability, named
hyper-stability and iso-stability , both satisfying the stability condition rank(Kσ) = m:

1. when dim(σ̂) ≥ m and Nσ ≡ M3
p hyper-stability occurs in the element; in such a case, a

complete polynomial order is used to interpolate the stresses and there may be redundancy
in the number of stress parameters;

2. when dim(σ̂) = m, the stress interpolation is ruled by the minimum number of stress
parameters required for stability and iso-stability is obtained; in this case Nσ ⊆ M3

p and
the polynomial order of the stress interpolation function may not be complete.

It is worth to remark that the concept of iso-stability coincides with that of isostatic assumed
stress in mixed FEM, successfully employed in the analysis of membrane [27, 18] and shells in
linear [21] and nonlinear contexts [28, 22].

The specific expression for the iso and hyper stable assumed stress fields can be found elsewere
[25].

6 NUMERICAL RESULTS

A popular benchmark for assessing the performance of the proposed formulation in shear
dominated problems is here analysed. The test concerns a tapered cantilever beam loaded by
a shear force [25]. Elastic modulus and Poisson’s ratio are E = 1 and ν = 0.333, respectively.
The structure is discretized using different mesh topologies, represented in Fig. 1.

Table 1 shows the results obtained using four noded structured meshes for displacements and
principal stresses. For all the refinement levels, HVEM-iso proves to be more accurate than
HVEM-hyp and the advantages in using HVEM-iso are more evident for the coarsest meshes.
A similar trend can be observed in Table 2 for eight nodes elements. In this case, HVEM-iso is
more accurate than HVEM-hyp in evaluating the displacement, while HVEM-hyp gives better
stress results in the 2×2 case. Analogously, HVEM-iso gives better results than HVEM-hyp in
Voronoi meshes for the vertical displacement in A and the maximum principal stress in C, as
shown in Table 3. However, these results allow to highlight the high level of accuracy obtained
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Table 1: Cook’s membrane: Displacement in A (uA2 ), maximum principal stress in C (σC
mx) and

minimum principal stress in B (σB
mn) for M-str4 meshes.

mesh 2×2 4×4 8×8 16×16 32×32

uA
2

HVEM-iso 22.3230 23.5160 23.8023 23.9107 23.9462
HVEM-hyp 15.0387 20.6074 22.9487 23.6844 23.8873

reference 23.960

σC
mx

HVEM-iso 0.1381 0.1837 0.2133 0.2252 0.2310
HVEM-hyp 0.1032 0.1669 0.2071 0.2243 0.2312

reference 0.2362

σB
mn

HVEM-iso -0.2319 -0.1848 -0.2014 -0.2038 -0.2039
HVEM-hyp -0.1403 -0.1752 -0.1979 -0.2041 -0.2048

reference -0.2023

Table 2: Cook’s membrane: Displacement in A (uA2 ), maximum principal stress in C (σC
mx) and

minimum principal stress in B (σB
mn) for M-str8 meshes.

mesh 2×2 4×4 8×8 16×16 32×32

uA
2

HVEM-iso 23.8734 23.9606 23.9754 23.9720 23.9690
HVEM-hyp 23.6331 23.8925 23.9432 23.9584 23.9642

reference 23.960

σC
mx

HVEM-iso 0.2182 0.2311 0.2349 0.2362 0.2367
HVEM-hyp 0.2201 0.2247 0.2295 0.2329 0.2349

reference 0.2362

σB
mn

HVEM-iso -0.1448 -0.2043 -0.2080 -0.2045 -0.2038
HVEM-hyp -0.1526 -0.2018 -0.2020 -0.2027 -0.2031

reference -0.2023

even for very coarse meshes, that represents one of the main advantages of adopting the HVEM
formulation.

The convergence properties of the proposed HVEM using quadrilateral and polygonal meshes
are compared in Fig. 2 (a). The results show that the rate of convergence is the same for
quadrilateral and polygonal elements, while a better accuracy is obtained with M-poly meshes.
The same comparison is performed considering an incompressible material, characterised by
ν = 0.499999 and a plane strain constitutive law.

The results, given in Fig. 2 (b), show that polygonal meshes provide a more accurate solution
than the quadrilateral ones. Additionally, in both cases the HVEM formulation is compared
with the 5β mixed FE. It can be observed that its performance are close to those provided by
HVEM-iso. Finally, it is worth noting that the use of incompressible materials does not alter the
performance of HVEM-iso and HVEM-hyp in terms of both accuracy ad rate of convergence.
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Table 3: Cook’s membrane: Displacement in A (uA2 ), maximum principal stress in C (σC
mx) and

minimum principal stress in B (σB
mn) for M-poly meshes.

dofs 18 88 272 914 3030

uA
2

HVEM-iso 23.2370 23.7960 23.8990 23.9433 23.9600
HVEM-hyp 21.5626 23.7015 23.8811 23.9409 23.9587

reference 23.960

σC
mx

HVEM-iso 0.2397 0.2229 0.2300 0.2357 0.2360
HVEM-hyp 0.2242 0.2364 0.2328 0.2380 0.2377

reference 0.2362

σB
mn

HVEM-iso -0.1813 -0.1903 -0.1982 -0.2012 -0.2028
HVEM-hyp -0.1979 -0.2082 -0.2068 -0.2028 -0.2047

reference -0.2023

HVEM-iso (M-str4) HVEM-hyp (M-str4)
5β (M-str4) HVEM-iso (M-poly)

HVEM-hyp (M-poly)

0.5 1 1.5 2

−4

−2

log(
√
dof)

log(1− u/uref )

(a) compressible

1 2

−4

−2

0

log(
√
dof)

log(1− u/uref )

(b) incompressible

Figure 2: Cook’s membrane: convergence curves for structures meshes using different VEM and
FEM formulations, compressible (a) and incompressible (b) cases.
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7 CONCLUSIONS

This work establishes that the minimization of Total Potential Energy and the projection
operation typical of the enhanced Virtual Element Method can be derived from the stationarity
condition of the Hellinger-Reissner mixed functional. This insight led to the development of the
Hybrid Virtual Element Method (HVEM), a family of polygonal elements for plane elasticity
problems that can function as either virtual elements or hybrid finite elements. In HVEM, sta-
bility is achieved through carefully selected stress fields, using two stabilization-free concepts:
hyper-stability, which ensures stress interpolation completeness, and iso-stability, which opti-
mizes the stress interpolation with minimal parameters. Numerical results indicate that the
iso-stable HVEM provides higher accuracy, particularly with coarse meshes, though it requires
careful selection of the stress interpolation basis. As the mesh is refined, the accuracy and
convergence rates of both iso-stable and hyper-stable HVEM become comparable. Additionally,
polygonal HVEM outperforms quadrilateral meshes, highlighting an advantage of the polygonal
discretization.
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