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Summary. The �ber model evaluates the normal stress at a number of points over the section
following the plane section assumption and, by integration, axial force and bending moments.
The interaction with tangential stresses is neglected due to the inaccurate tangential strains of
the kinematics. This work presents a generalized �ber model capable of considering interactions
among all stress components. A preliminary cross-section analysis, based on the Saint Venant
problem, provides the 3D strain as a function of the section generalized strains. This �eld,
accurate also in the inelastic case, is exploited to impose at each section point a 3D von Mises
elasto-plastic law, obtaining by integration all the resultants and moments with a full interaction.
Non-uniform warping is also easily included. The section model is implemented in a mixed
3D beam-column �nite element with equilibrated stress �eld, accurate with a minimal mesh.
Numerical tests show the excellent prediction of the proposal compared to analytical and solid
FEM solutions also for structures not �exure-dominated. Its e�ciency, on the same order as a
standard �ber model, makes the approach suitable also for large buildings.

1 INTRODUCTION

Fiber beam-column elements, as described by [1], o�er a balanced blend of accuracy and
e�ciency in modeling structural members under axial force and biaxial bending. They use the
assumption of the section remaining planar after deformation to relate generalized strains, i.e.
axial strain and curvatures, to the distribution of normal strain across the section. This relation-
ship allows for the evaluation of normal stress at integration points (�bers) across the section,
enabling numerical integration to determine axial force and bending moments. Apart from con-
ventional incremental analyses, the �ber model �nds application in evaluating �re resistance [2]
and shakedown analysis [3].

The main limitation of this model lies in its incapacity to consider tangential stress components
arising from shear forces and torsion at the point level. The reason is that, when computed
directly from the kinematics based on the rigid section deformation, the shear strains can be
largely inaccurate for typical sections. There has long been a need for a re�ned element capable
of automatically modeling member responses under high shear and torsion, interacting with axial
force and bending moments.
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Many research activities have been spent in the attempt of an accurate modeling of this
interaction. Petrangeli et al.[4] initiated research on inelastic shear behavior in reinforced concrete
elements, considering its interaction with axial force and bending moment. Marini et al. [5]
proposed �ber beam elements with simpli�ed constitutive laws for shear. Saritas [6] presented
a formulation for seismic assessment of steel structures, while Navarro et al. [7] focused on
reinforced and prestressed concrete elements. Papachristidis et al. [8] addressed steel frames,
while works by Gruttmann et al. [9] and Battini [10] considered torsional warping. Bleyer [11]
discussed shell-like elastoplasticity.

Mixed �nite element formulations [12, 13] are widely used for inelastic analysis of frames yield-
ing accurate results with fewer global degrees of freedom with respect to displacement formula-
tions. Furthermore stress degrees of freedom are local on the element and can be condensed before
solving global linear systems, reducing the computational burden. Material laws are applied at
prede�ned control sections, typically Gauss-Lobatto points. Compared to displacement-based
elements, mixed elements require solving a small system of equations at the element level (ele-
ment state determination) to ensure consistency with the constitutive law. Equations are derived
from the Hu-Washizu weak form of the problem [12], solved with global structural equilibrium.
Alternatively, element state can be solved at each global Newton iteration [14, 15].

A generalized �ber model for steel frames is presented here that automatically considers
interactions among all stress components. It utilizes a preliminary �nite element cross-section
analysis based on the generalized De Saint Venant (SV) elastic problem [16, 17] to establish
accurate 3D elastic strains across the section. This analysis, performed once, remains accurate
even in the inelastic case. The resulting strain �eld is then used to assess 3D stress at each
section point via a von Mises associated plasticity law, allowing integration of all resultants and
moments with full interaction. This re�ned approach improves accuracy and reliability in the
inelastic range, especially for structures not dominated by �exure.

The proposed cross-section model is implemented in a mixed beam �nite element with equili-
brated stress �eld, accurate with a minimal mesh. The element is based on the usual 6 kinematic
degrees of freedom (DOFs) for each end-node. Non-uniform warping, such as the torsional one,
can be also easily included, with just an additional variable per end-node. The additional warp-
ing unknown is, however, required only to model non-uniform warping, since the uniform case is
already considered in the 6 DOFs formulation.

A campaign of numerical tests (see [17]) validates the proposal against more detailed simula-
tions based of solid �nite elements. The extension of the proposal to the �nite deformation case
is very easy [15].

2 THE 3D BEAM MODEL

The 3D beam model used is based on the generalized SV solution, which also incorporates
variability in torsional warping along the beam axis and plasticity.

2.1 The beam model with variable warping from the 3D continuum

Let us consider the beam as a Cauchy body B. In the reference con�guration and adopting
a �xed Cartesian frame with origin O and basis vectors e1, e2, e3, each point is de�ned by a
position vector X = se1 + x, where s ≡ x1 represents a one-dimensional abscissa along the axis
line of length ℓ, and x = x2e2 + x3e3 lies on the cross-section �ber(s) (see Fig. 1).
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Figure 1: The cylindrical solid.

The displacement �eld u[X] of the beam model is de�ned by the mean translation and rotation
v(s) and φ(s) of the section plus an additional term accounting for variable warping e�ects

u(X) = v(s) +φ(s)× x+ µ(s)ω(x), (1)

where the operator × denotes the cross product, while ω is the warping shape ampli�ed by the
µ(s). In this work, only torsional out-of-plane warping is considered and then

ω(x) = ω(x)e1. (2)

Adopting a Voigt notation the non-zero strain components ε = [ε11, γ12, γ13]
T can be written as

ε(s,x) = η(s) +WT
xχ(s) +Aω(x)µ,s (s) +Dω(x)µ(s) = B̄(x)ρ(s) (3)

where a comma denoting derivative and

Wx = spin(x) =

 0 −x3 x2
x3 0 0
−x2 0 0

 Aω =

ω0
0

 Dω =

 0
ω,2
ω,3

 ,

the vector of generalized strains of the section is ρ(s) = {η,χ, µ,s , µ} and the overall compati-
bility operator B̄ are self-de�ned. Vector η collects the axial and shear strains, χ the torsional
and bending curvatures:

η(s) ≡

 e
γ2
γ3

 =

 v1,s
v2,s − φ3

v3,s + φ2

 χ(s) ≡

χ1

χ2

χ3

 =

φ1,s

φ2,s

φ3,s

 . (4)

Letting σ = [σ11, σ12, σ13]
T the vector of the active stress components, the kinematics assumed

in Eq. (3) allows us to write the virtual internal work W as

W :=

∫
ℓ

∫
Ω
σTεdAds =

∫
ℓ

(
N (s)Tη(s) +M(s)Tχ(s) + Bµ,s (s) + T µ(s)

)
ds =

∫
ℓ
t(s)Tρ(s) ds

(5)

so de�ning the vector of the generalized internal actions for the beam t(s) = {N ,M,B, T }
which collects the classical stress resultants N and moments M on the section plus the new
quantities B, called bi-moment, and T , known as bi-shear

N
M
B
T

 =


∫
Ω σdA∫

ΩWxσdA∫
ΩAT

ωσdA∫
ΩDT

ωσdA

 and then t(s) =

∫
Ω
B̄(x)TσdA (6)
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The model is completed with a suitable constitutive law. In the linear elastic case we have

t(s) = Cρ(s). (7)

The constitutive matrix C, when derived by the 3D continuum using the assumed kinematics,
need to be corrected. In our proposal, this problem will be avoided by replacing the matrix B̄
in Eq. (3) with that coming from the generalized SV elastic solution [16, 17].

2.2 Saint Venant cross-section analysis

By exploiting a cross-section discretization into 2D elements and employing a semi-analytical
solution, the cross-section analysis [16, 17] enables the consideration of the 3D strain �eld arising
from the generalized SV solution, including variable torsional warping, by solving a series of
linear problems on the discretized cross-section once and for all. The strain becomes

ε3D(x, s) = Lϵ(x)Qαα(s) σ3D(x, s) = Cε3D(x, s) (8)

where Lϵ(x) is the strain/displacement matrix, Qα is a modal matrix containing the cross section
shapes in terms of cross section DOFs, α(s) are the modes amplitude.

By exploiting the de�nition of the generalized stresses t we can express α(s) = R−1t(s) as a
function of t(s) and then we have that

σ3D(x, s) = Nσ(x)t(s) with Nσ(x) = Cε3DLϵ(x)QαR
−1. (9)

The stationary of the strain energy in mixed Hellingher-Reissner form with respect to t furnishes
the generalized elastic constitutive law of the section

t = Cρ with C−1 = F =

∫
Ω
Nσ(x)

TC−1
3DNσ(x)dΩ. (10)

where the so de�ne section constitutive matrix C automatically includes the e�ect of shear
and uniform and non-uniform torsional warping with the correct sti�ness constants and their
coupling. The link between the section generalized strains ρ work-conjugate of t and the correct
strain �eld over the section ε3D coming from the generalized SV model can be obtained using
the elastic constitutive law as

ε3D(x, s) = B3D(x)ρ(s). (11)

The Timoshenko beam model of Section 2.1 can be made energetically equivalent, in the elastic
case, to the SV model by using Eq. (11) to link the correct 3D strain �eld in the section with
the generalized strains of the beam instead of Eq. (3).

2.3 Inelastic case

The SV strain approximation, Eq. (11), remains accurate even in the plasticity range, crucial
for generalizing the section's �ber model. This enables us to apply a 3D elasto-plastic constitutive
law at each section integration point, ensuring full stress component coupling. For typical metal
members with isotropic thin-walled sections we have that σ22 = σ33 = σ22 = 0 and the Poisson
coupling among the normal strain components has a negligible in�uence. This can be exploited
to write the constitutive law directly in terms of the active stress σ = [σ11, σ12, σ13]

T and strain
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ε = [ε11, γ12, γ13]
T components only allowing a computationally e�cient stress evaluation at each

point of the section by solving a closest point projection problem with only 3 stress unknowns.
The incremental elasto-plastic equations for each control point m of the section discretization,
integrated by a Backward Euler scheme, are∆σm − C

(
∆εm −∆µm

∂f(σ)

∂σ

∣∣∣∣
σ=σm

)
= 0

∆µm ≥ 0 ∆µmf(σm) = 0

(12)

where C = diag
{
E,G,G

}
, µ is the plastic multiplier, f(σ) is the von Mises yield function

f(σ) = σ2
11 + 3(σ2

12 + σ2
13)− σ2

y ≤ 0 (13)

and the symbol ∆ denotes the di�erence of the current variables and those consolidated at the
end of the previous time step. The increment of active strains is computed as

∆ε(x, s) = B(x)∆ρ(s) (14)

where B is a block of B3D stored at each integration point of the section after the preliminary
cross-section analysis. Perfect plasticity is considered here for simplicity.

3 THE MIXED FINITE ELEMENT FOR THE INELASTIC ANALYSIS

An equilibrated mixed �nite element, allowing to obtain accurate results with few elements per
member is adopted. The element uses exact shape functions for stress resultants and moments
[2, 3] and an equilibrated interpolation for bi-moment and bi-shear. Kinematic variables are
required only at the end nodes of the element. The kinematic degrees of freedom (DOFs) are 7
per node, i.e. the standard 6 of the Timoshenko beam plus the non-uniform warping amplitude.
The model with 6 DOFs is obtained by eliminating warping from the kinematics [17].

3.1 The mixed �nite element

The beam �nite element is based on a stress approximation

t(s) = D(s)βe (15)

which exactly satis�es the equilibrium equations on the element for zero body forces, i.e.

N ,s= 0, M,s+e1 ∧N = 0, B,s= T . (16)

Body load e�ects are exactly included as a particular solution of such di�erential equations.
Equation (16) states that the resultants N ≡ [N1, N2, N3]

T and the torsional moment M1 are
constant, while the two bending components M2(s) and M3(s) of M(s) ≡ [M1,M2,M3]

T are
linear with s and linked to the shear resultants so that N2ℓ = −(M3(ℓ) − M3(0)) and N3ℓ =
(M2(ℓ)−M2(0)). A cubic polynomial interpolation is adopted for the bi-moment.

The internal work in Eq. (5) becomes

W ≡ N T (v(ℓ)− v(0)) +M(ℓ)Tφ(ℓ)−M(0)Tφ(0) + B(ℓ)µ(ℓ)− B(0)µ(0) = βT
e Qede (17)
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allowing us to obtain directly the discrete form of W without any FE interpolation for the
kinematic �elds u(s), φ(s) and µ(s). In Eq. (17), the vectors collecting the kinematic de and
static βe FE parameters and the compatibility operator Qe are de�ned as

βe =



N1

M2(0)
M3(0)
M2(ℓ)
M3(ℓ)
M1

B(0)
B(ℓ/3)
B(2ℓ/3)
B(ℓ)


, de =



v(0)
φ(0)
v(ℓ)
φ(ℓ)
µ(0)
µ(ℓ)

 , Qe =
1

ℓ



−ℓ eT1 0 ℓ eT1 0 0 0
eT3 −ℓ eT2 −eT3 0 0 0
−eT2 −ℓ e3 eT2 0 0 0
−eT3 0 eT3 ℓ eT2 0 0
eT2 0 −eT2 ℓ eT3 0 0
0 −ℓ eT1 0 ℓ eT1 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1


. (18)

The βe are local to each element and can be condensed out before assembling the global (struc-
tural) equations in the kinematic DOFs only.

3.2 The incremental elasto-plastic analysis

The elasto-plastic solution, for an external load linearly increasing with a load multiplier λ is
obtained, as usual, by means of an incremental step-by-step analysis.

3.2.1 The elasto-plastic step equations for an equilibrated beam element

The equations de�ning the �nal state at each elasto-plastic increment of a step-by-step process
for mixed �nite elements, can be derived [12, 15], from a Hu-Washizu weak form. For elasto-
plasticity, an equivalent alternative derivation is given in [3, 2, 18]. Starting from an initial

stress state σ
(0)
m stored at each integration point m of the generic section g corresponding to a

Gauss-Lobatto point of the beam FE, the elasto-plastic solution for the whole FE model can be
obtained by solving at each step the following 3 groups of equations:

Global equations QTβ(λ)− λp− p0 = 0 (19a)

Element equations


Qe∆de −

∑
g

DT
g ∆ρgwg = 0

tg(σ1, · · · ,σN )−Dgβe − λt̄g = 0 ∀g
(19b)

Section equations



∆εm = Bm∆ρg ∆σm − C

(
∆εm −∆µm

∂f(σ)

∂σ

∣∣∣∣
σ=σm

)
= 0

∆µm ≥ 0 µmf(σm) = 0

tg =
∑
m

BT
mσmwm

(19c)

where the symbol ∆ denotes the increment of a generic quantity over the step, while w represents
the generic weight of the numerical integration over the section and along the beam axis.

6
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The global equations impose the equilibrium at structural level of internal QTβ and external
forces λp + p0 obtained by assembling the element counterpart. The element-wise equations
link the stress DOFs βe with the displacement increment ∆de by preserving the kinematic
compatibility of the generalized strain increment ∆ρg at each Gauss-Lobatto integration point g
along the beam axis with the element displacement increment ∆de and the FE equilibrated stress
interpolation in Eq. (15). Vector λt̄g collects the generalized stresses at the gth IP corresponding
to the particular solution of the equilibrium equations due to distributed loads ampli�ed by λ.
Finally, the section generalized stresses tg are obtained by numerical integration of the active
stresses σ over the section corresponding to the increment of generalized strains ∆ρ. For that
purpose, the associated elastic-perfectly plastic equations, written in �nite incremental form
through the backward Euler scheme, are imposed at each integration point m of the section for
an increment of active strains ∆εm computed from ∆ρ through the compatibility SV matrix B.

3.3 Strain-driven solution scheme

Instead of solving Eqs. (19) all together, it is possible to apply a strain-driven decomposed
strategy based on the solution of the following three nested sub-steps.

� A section state determination provides the cross section generalize stresses tg at each Gauss-
Lobatto IP g along the element axis as a function of an assigned section generalized strain
increment ∆ρg and the current load multiplier λ using the constitutive law (19c). This
requires the solution of a closest point projection problem at each integration point of the
section, with tg obtained by numerical integration of the resulting stress.

� An element state determination �nds the element stress interpolation variables βe cor-
responding to an assigned increment of element nodal kinematic variables ∆de and the
current load multiplier λ by means of the element equations (19b). An iterative solution at
FE level involving, at each iteration, the section state determination at the IPs is required.

� A global incremental-iterative process, corresponding to a modi�ed Riks method, solves the
global equilibrium equations (19a) step-by-step with the stress interpolation variables β
expressed as functions of the unknown kinematic degrees of freedom d and the current load
multiplier λ through the element state determination.

The process allows to write the global equations in a standard strain-driven format with an
arc-length incremental method providing a path of equilibrium points (λ(n),d(n)).

4 Numerical Tests

Some numerical tests are reported and the results compared with analytical or solid FE solu-
tions obtained with the commercial software Abaqus. A more complete campaign of numerical
tests can be found in [17]. The material used for all tests is steel characterized by a Young mod-
ulus E = 2100000 daN/cm2, Poisson coe�cient ν = 0.3 and yield stress σy = 2000 daN/cm2.
The cross-section shapes reported in Fig. 2 and Tab. 1 are considered.

Di�erent cross-section models are considered and compared adopting the following notation.

� SV: the proposed method. Non-uniform torsional warping is excluded.

� SVW: the proposed method with non-uniform torsional warping.

7
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Name Section dimensions
B H e s

HEA300 30 29 1.40 0.85
IPE330 16 33 1.15 0.75
BOX160 16 16 0.80 0.80

Table 1: Dimensions (cm) of the sections.

H

B

e

s

H

B

e

s

H

B

e

s

Figure 2: Shapes of the sections.

� SVW-free: SVW with torsional warping not restrained at the clamped sections.

� PS: the standard Timoshenko beam kinematics. Non-uniform torsional warping is excluded.
This model was used in some previous works, e.g. [8].

� Abaqus: solid �nite element solution provided by the commercial software Abaqus/Stan-
dard for a converged mesh.

In some tests, a comparison neglecting shear stresses, i.e. considering a simpli�ed yield function
f(σ11) = σ2

11 − σ2
y ≤ 0 instead of the von Mises one is added. To denote such a case, -σ11 is

added to the previously de�ned model names, e.g. SV-σ11.
As expected, SV and SVW-free (free warping allowed to be uniform) provide identical solutions

in the linear elastic case. Interestingly, the two models can di�er in the plastic range, because
the collapse mechanism obtained by SV satis�es compatibility and stress admissibility also for
SVW-free, but not vice versa. SVW-free, with a richer kinematics, can �nd a di�erent plastic
mechanism associated to a lower collapse load, closer to the 3D continuum value for the given
boundary condition. The equilibrium curves are reported in terms of load factor λ vs maximum
displacement component in absolute value dmax in the whole structure.

4.1 Clamped-clamped beam subjected to uniform load

A clamped-clamped beam with HEA300 cross-section subjected to a uniform distributed
transverse load q = λ · 1 daN/cm along the strong axis of bending is considered. The presence
of tangential stresses a�ects signi�cantly the results, making it possible to compare the accuracy
of the proposal with other methods. The results has been obtained using 2 elements for the
beam with the cross-section discretized using (6× 6)× 1 Q9 elements. No increase in accuracy
is observed by using �ner meshes for the section, while the beam �nite element is exact in this
case. The predictions of the SV model are compared with those of Abaqus using solid elements
in Tab. 2, including also the results obtained using the Timoshenko-like plane section (PS) [8]
and those given by the proposed SV-σ11. In this last case, the results are coincident with the
analytical value (for normal stresses only) calculated as

λ =
16My

qℓ2
with My = 2610137 daN·cm

with the plastic bending moment My evaluated by assuming the section completely yielded with
a symmetric distribution of positive and negative σ11.

The prediction of the collapse multiplier is reported in Tab. 2 for the di�erent models and
beam lengths, allowing the following considerations: i) the SV model furnishes results close to

8
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ℓ (cm) λ
SV Abaqus SV-σ1 PS

300 248.46 240.25 464.02 432.75
350 211.67 200.30 340.92 324.11
400 182.34 170.76 261.01 251.25
500 137.15 132.95 167.05 163.14
600 104.20 104.98 116.00 114.16

Table 2: Clamped-clamped beam: collapse load multiplier for di�erent beam lengths and models.

0 100 200 300

−5

0

5

·104

beam abscissa s (cm)

N
3
(d
aN

)

SV normal

SV normal and shear

0 100 200 300

−2

0

2

·106

beam abscissa s (cm)

M
2
(d
aN

·cm
) SV normal

SV normal and shear

Figure 3: Clamped beam with L = 300 cm: shear force and bending moment at the collapse state.

the Abaqus solid solution also for short members where shear dominates the plastic behavior; ii)
the PS model provides results very similar to SV-σ11 due to the inaccurate shear strain �eld; iii)
SV-σ11 and PS largely overestimate the solid solution also for ℓ = 600 cm, i.e. the shear-bending
interaction is important also for length-to-height ratio up to 20. Moreover, for the shortest case
of ℓ = 300 cm (length-to-height ratio equal to 10) shear force and bending moment diagrams at
incipient collapse are reported in Fig. 3 for SV and SV-σ11. SV-σ11 gives the classical solution
with My at 3 plastic hinges corresponding to end-sections and the mid-span leading to a huge
error in the collapse load compared to the solid solution. Instead, SV is able correctly capture
the shear plasticization at the clamped sections.

4.2 Simple 2D frame with shear links

A simple 2D frame (see Fig. 4) is considered. A horizontal force of F = λ · 1 kN is applied at
the top left node. A single element per member is employed. For beams and columns, IPE330
and HEA300 cross-sections are used respectively, with a (6×6)×1 discretization. A BOX section
160 × 160 × 8 is used for the diagonals, subjected only to axial force, and then to a constant
stress state over the section. 1 element per wall is used in this case.

In Fig. 5, the signi�cant stress components at collapse for the central section of the IPE330
beam obtained by the SV model are reported. At this point, the only non-zero internal actions
are normal and shear force. The normal stress is entirely distributed in the �anges, while yield
limit for the shear stress σy/

√
3 is reached on the web.

The equilibrium path evaluated accounting for or neglecting the shear stresses are also pre-
sented in Fig. 6. The collapse load prediction is λ = 5.424 when tangential stresses are considered
and λ = 7.376 when they are neglected. A total number of 18 step and 28 global iterations is
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32
0
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IPE330

HEA300

BOX160x160x8

HEA300

Figure 4: 2D frame with shear link

Figure 5: 2D frame: stress distribution at collapse at the middle section of the IPE330 shear link beam.

required by the incremental-iterative process. The computational cost is, in our Matlab imple-
mentation, of about 1 second.

5 CONCLUSIONS

The interaction of normal and tangential stresses is usually neglected or considered in a sim-
pli�ed way in the evaluation of the inelastic response of steel members. This work aimed at
�lling this gap in modeling with a very simple approach, easy to implement in commercial codes
for practical applications. The proposal is based on the generalized SV solution, used to de�ne,
in a pre-processing stage, the link between the generalized strains of a beam model and the
distribution of normal and tangential strains over the cross-section. Although this relationship
is evaluated in the elastic case it still proves to be an excellent and robust approximation also in
elasto-plastic analysis for typical metal sections. The e�ect of non-uniform torsional warping can
be also easily included or excluded in the formulation. The proposed section model was imple-
mented in a mixed �nite element of beam, where the equilibrated solution of generalized stresses
is adopted to achieve converged results with a minimal mesh and to express the kinematics in
terms of DOFs at the end-nodes only, i.e. the only global variables. The approach provides very
accurate and reliable predictions of the behavior of steel structures also when shear and torsion
become important, compared to the solid reference solution.
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