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Summary. Taking advantage of recent developments in machine learning procedures, 

railway researchers have been creating new tools and methodologies to improve upon structural 

health monitoring solutions that were developed over the last century. These new tools are now 

being used to assess a wide range of railway related scenarios. 

However, current vehicle-based railway monitoring methodologies cannot provide reliable 

data on track subgrade conditions. This is a key issue since subgrade condition significantly 

influences track dynamic response and overall track support conditions. 

An alternative and novel methodology to assess railway track support conditions is now 

under development and validation, which is based on modal analysis of the characteristic 

frequencies of the multi-element system composed by an instrumented railway vehicle and the 

railway infrastructure under assessment. 

Furthermore, an unsupervised data-driven procedure is currently being developed to enhance 

the capabilities of the proposed track monitoring methodology to automatically extract adequate 

results from collected data. This tool is also expected to improve the overall reliability of the 

proposed methodology to work with more complex data sets. 

To ensure the intended continuous assessment of the railway track, the developed tool is 

formed by a sequential combination of four steps, applied in a sliding window process over the 

collected input data, to reach the intended results. The four steps are, in order of application, a 

feature extraction step, a feature modelling step, data fusion and a feature discrimination step. 

This paper provides an overall description of this tool and on the obtained preliminary results, 

which are based on numeric simulations performed using the Simpack® software. 
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1 INTRODUCTION 

The assessment of railway track support conditions is a naturally important aspect of modern 

railway companies, since it is related with several relevant social and economic aspects. These 

include maintenance management, operational safety, and general reliability of this 

transportation service. In the context of vehicle-based railway monitoring methods, there are 

several well-established parameters for the assessment of railway track support conditions (e.g., 

vertical track stiffness, track geometry) [1, 2]. However, these extensively used parameters 

cannot provide reliable data on the conditions of the track subgrade [3-5]. This is a significant 

issue since subgrade condition is one of the major aspects that influences track dynamic 

response and overall support conditions of a railway track [1, 6-8]. 

A novel vehicle-based methodology to evaluate railway track support conditions is currently 

under development and validation. This methodology is based on modal analysis of the 

characteristic frequencies of the multi-element system composed by a railway vehicle and a 

railway infrastructure. It states that by observing the characteristic frequencies of the railway 

infrastructure, with a focus on the frequencies related with the railway subgrade, it should be 

possible to collect data on overall track support conditions [9, 10]. This assessment can be 

performed over the entire length of a railway infrastructure, since this methodology is based on 

instrumented railway vehicles to serve as the data collection points. 

The proposed methodology uses a two Degree-of-Freedom (2-DoF) lumped-elements type 

model to perform preliminary interpretation on the acquired railway related frequency data. The 

model consists of an assembly of two spring-mass sub-systems in series, to represent the 

vehicle, per axle, and the modal properties of the railway infrastructure. The outputs of this 

model are two characteristic frequencies (ω1 and ω2), that are related with these 2-DoF [11]. 

Frequency ω2 is mainly related with the vehicle’s modal characteristics and can be attributed to 

the vertical oscillatory motion of the vehicle’s sprung mass [12]. For most railway vehicles, this 

oscillatory motion has a frequency value between 1 Hz and 5 Hz. Frequency ω1 is mainly 

influenced by the modal parameters of the railway infrastructure elements, thus represents the 

natural frequency of interest for the proposed railway monitoring methodology. Even if this ω1 

frequency cannot be directly attributed to a natural frequency of a railway subgrade layer, since 

the 2-DoF model is a simplification of a real track infrastructure, the actual difference between 

the modelled and a realistic frequency value can be relatively low if adequate mass and stiffness 

values are used in the infrastructure related lumped elements on the 2-DoF model. Common 

values for the first natural frequency from a subgrade layer can be from 20 Hz to 50 Hz [5, 13], 

which can be used as an expected range for ω1 in the aforementioned conditions. Morais et al. 
[13] provides a more in-depth description on the proposed methodology and on the motivations 

that lead to its development. Numerical simulations tests using the multibody simulation 

software Simpack® have been performed to validate and assess the developed methodology 
[14]. The obtained results demonstrated its significant potential as an alternative track monitoring 

solution that could more directly assesses subgrade conditions, although some difficulties were 

detected in extracting reliable results in the more realistic accurate numerical models and from 

experimental data. 

In an attempt to solve the aforementioned issue and improve upon the overall reliability of 

the proposed methodology, a new unsupervised data-driven tool is currently under development 

to apply the methodology in an automatic and more efficient way. For the current application, 
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a data-driven approach was chosen since their computational simplicity makes them more 

attractive and efficient to implement in Structural Health Monitoring (SHM) operations. Data-

driven approaches rely on data mining techniques to extract meaningful information from the 

acquired data [15], which suits this application since there is a lack of a sufficiently accurate 

model to allow for a model-updating solution. The statistical nature of data-driven solutions 

should also improve the odds of the developed tool to provide reliable results when analysing 

data obtained from the complex system of interest. 

This paper presents a brief description on the developed unsupervised data-driven tool. This 

is followed by two sections describing a numerical model that was used to assess the current 

version of this tool and the obtained results. Overall, the results point to a very promising 

solution to solve the aforementioned difficulties in extracting reliable results while using the 

unenhanced way of applying the proposed track monitoring methodology (i.e., as described in 

Morais et al. [14], that entailed manually analysing frequency patterns in spectrograms), with the 

added benefit of representing an automatic and autonomous results extraction tool. 

2 UNSUPERVISED DATA-DRIVEN TOOL 

The unsupervised data-driven tool (UDDT) presented in this paper for the automatic 

application of the proposed track monitoring methodology (TMM) aims at being a robust and 

generic enough solution to be applied to any type of plain railway infrastructure. Since it is 

based on traffic-induced dynamic responses (i.e., acceleration data acquired with an 

instrumented vehicle), it is very important that the tool can account for and discard the effects 

of the environmental and operational variations (EOV) that are common in experimental data 

from real structures. In this context, EOV include vehicle running speed, rail defects and 

irregularities, temperature changes and other weather-related phenomena. As explained in 

Morais et al. [13], most of the weather-related phenomena should not significantly interfere with 

the frequencies of interest for the TMM, neither should changes in vehicle running speed. 

However, it is still recommended to implement generic and self-sufficient steps in a new 

unsupervised damage detection tool for the mitigation of EOV, since this is meant to be an 

automatic process without direct influence from the user or the consideration of direct 

measurements of such phenomena. The current version of the UDDT entails the four steps 

shown in Figure 1: (i) a feature extraction step applied to the acquired acceleration data to 

calculate relevant features, (ii) a feature modelling step to remove EOV, (iii) a data fusion step 

to merge features from each sensor and merge data from multiple sensors to improve the 

sensitivity to damage cases, and (iv) a feature discrimination step to automatically classify the 

extracted merged features into two categories: healthy or damaged track section. 

    

    

Figure 1: data processing steps of the proposed unsupervised data-driven tool 
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In generic terms, feature extraction refers to the process of transforming the acquired data in 

the time domain into an alternative form, where damage-related information can be more 

readily obtained [15]. Modal-based features are the most commonly used solutions in the 

literature [15] due to the advantage of them being directly associated with the modal properties 

of the structure under assessment, which are expected to change in the presence of damage [11]. 

This is particularly true for modal stiffness, which tends to be more sensitive to the presence of 

damage in a structure [11]. Since the TMM already converts acquired acceleration data from the 

time domain to the frequency domain to search for frequencies that could be related with the 

modal properties of the track subgrade [13], transforming the input data into the frequency 

domain was a very natural choice as the first solution for the feature extraction step. The data 

is converted to the frequency domain by the application of Fast Fourier Transforms (FFT), in 

overlapping time windows, thus making the calculated frequency components the extracted 

features to be further processed. Thus, the concept is that the UDDT will theoretically be 

looking to detect changes in a specific set of frequency components that could be more sensitive 

to a damaged subgrade layer, which should potentially correspond to the natural frequencies of 

interest identified and analysed in the unenhanced version of the TMM. 

Effective damage detection solutions must always contend with the issue of separating 

between measurable changes in the structure under analysis caused by EOV from those 

triggered by the presence or propagation of damage in said structure. To accomplish this, most 

of the current damage detection solutions used in SHM resort to feature modelling tools as a 

means to solve this issue [15]. This step is crucial in the railway context to prevent false positive 

results since environmental effects (e.g., temperature variations) or operational change (e.g., 

vehicles running at different speeds) may impose greater variations in the collected data than 

those caused by damage, thus triggering possible false positive results if countermeasures are 

not applied. The current version of the UDDT applies the Principal Components Analysis in 

this step, that represents a statistical solution to remove the effects of most EOV from the 

collected data. In brief, the concept behind this tool in the feature modelling context is that most 

of the energy content from a signal is associated with effects caused by EOV [15], from a 

statistical standpoint. Thus, if the signal is discretised into several components based on their 

respective energy contributions, the main contributors can be identified, and their effects 

mitigated in the original signal. The signal can then be reconstructed with the effects caused by 

the EOV properly mitigated, in statistical terms, thus highlighting any effects caused by the 

eventual presence of damage in the structure under analysis. 

In general, the purpose of a data fusion step is to reduce the data volume while assuring a 

greater or at least similar capabilities to analyse the object of interest, when compared to what 

could be achieved when using the original data format [15]. Usually, the fusion process may 

combine features from a single sensor, features from multiple sensors referencing the same 

object or even features from different sensor types (e.g., features obtained from acceleration 

data and displacement data). The Mahalanobis distance is one of the more common solutions 

used in the SHM context for this application due to its capacity to describe the variability in 

multivariate data sets [15]. The method basically calculates a “distance” between two data sets, 

magnifying the obtained value according to how different they are in terms of the individual 

values of each comparable feature. This is the characteristic that makes this method a very 

useful solution if a healthy state scenario is definable for the structure under analysis (i.e., a 

baseline case). Every new set of features can then be compared with the baseline and any 
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difference present are magnified, thus enhancing the overall capabilities of the devised tool to 

detect the presence of an anomaly. If EOV are properly removed, then any detected anomaly is 

likely the result of damage in said object or structure. The current version of the UDDT first 

calculates the Mahalanobis distance with the data from each sensor, thus merging multiple 

features into a single more sensitive feature per data point. Then it merges the features from 

each sensor into a final form that should represent a class of features that is even more sensitive 

to the presence of damage in a track. 

Feature discrimination solutions classify each set of features calculated from the acquired 

data into a healthy or damaged classification. They can be divided into supervised and 

unsupervised learning algorithms [15]. In situations where training data is available from both 

undamaged and damaged states of a structure, supervised learning algorithms can be used since 

they usually provide more reliable results. But the inherent need to have data on all the possible 

states of the structure that are meant to be identified (i.e., both damaged and undamaged sates), 

which can be difficult or even almost impossible to acquire in many situations, usually prevents 

the application of these solutions to several real cases. These situations are where unsupervised 

learning algorithms are preferred, since they do not require training data. This aspect justifies 

the choice of selecting a UDDT for the present application. Due to its simplicity and 

effectiveness, outlier analysis was the chosen method for the feature discrimination step in the 

current implementation of the UDDT. It consists of fitting a probability distribution to the 

baseline condition data of the structure under assessment and then testing whether the new data 

complies with that distribution. The cases where is does not comply are automatically classified 

as a damage situation. The current version of the UDDT uses the Gaussian distribution in this 

step, due to its adequacy for application in most cases related with reality [15]. 

The overall workflow of application of the proposed UDDT to a new track is to first define 

a baseline profile for the track, which can be set as its current condition defined upon a first few 

batches of acquired data. Then future monitoring data can be processed and compared against 

the baseline-related features to check for the appearance of damage on a specific point along 

the track, or potentially check for the deterioration of a previously detected damaged track 

section. As such, although this methodology requires a set of baseline features to provide the 

damage identification results, it is still considered as an unsupervised method. This is so because 

the data required to build the baseline just considers the state condition of the track 

infrastructure at the start of the monitoring campaign, which does not necessarily correspond to 

an undamaged state. There is also no need to have data regarding the specific damage cases that 

are meant to be identified by it. 

3 NUMERICAL MODEL OF THE VEHICLE-TRACK SYSTEM 

This section presents the Simpack® model (Figure 2) that was developed to assess the 

capabilities of the current version of the UDDT. The main elements of this model were a generic 

railway passenger carriage, with two bogies, and four sets of elements to represent the presence 

of the railway infrastructure below each vehicle axle. Simpack® is a multi-body simulation 

software that has been used to validate the proposed TMM, mainly due to how adequate this 

type of modelling software is to simulate case studies with a focus on performing modal 

analysis and because of their overall better computational efficiency when there is the need to 

run simulations with significantly large models. In previous tests using this software, 
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simulations of a vehicle running over a 2000 m stretch of railway track only took 15 to 20 

minutes to simulate, while a similar simulation could require several hours or even days to run 

in a Finite Elements modelling software. The main objective of this model was to assess the 

UDDT by synthesizing the data required for a proper implementation of the proposed tool. An 

initial batch of simulations with a track in adequate support conditions were performed, with 

several EOV conditions, to define the baseline. Then additional simulations batches were run 

on the base Simpack® model, each with different damaged track cases introduced on a specific 

track section. The goal was to test if the UDDT could reliably identify the baseline cases as 

undamaged (i.e., negative damage classification) and detect the presence of damage in the latter 

cases (i.e., positive damage classification). 

 

Figure 2: Simpack® model containing a railway passenger carriage and the railway infrastructure (track and the 

cylindrical elements sets) 

3.1 Base model 

The generic vehicle model included all the components relevant for these tests, namely: 

springs and dampers for the two levels of suspension systems, and mass elements to represent 

both the sprung and unsprung mass components of the vehicle. Table 1 presents the nominal 

values of the main modal parameters of the vehicle model. These parameter values are in 

accordance with a common passenger carriage model used in Portuguese lines (carriage BNN 

from the Alfa Pendular). 

Table 1: Main parameters used in the Simpack® vehicle model 

Vehicle parameters Value 

Car body mass, with no passengers on-board (mv.c) 35,640 kg 

Bogie mass (mv.b) 5204 kg 

Axle mass (mv.a) 1538 kg 

Primary suspension stiffness, per axle (kv.s1) 0.564 kN/mm 

Secondary suspension stiffness, per bogie (kv.s2) 0.256 kN/mm 

Primary suspension damping, per axle (Cv.s1) 18,000 Ns/m 

Secondary suspension damping, per bogie (Cv.s2) 35,000 Ns/m 



João Morais, Andreia Meixedo, Eduardo Fortunato, Diogo Ribeiro and Joaquim Mendes 

 7 

The railway infrastructure was described by four equal sets of body elements, each including 

two rail elements, one sleeper, and two cylinders stacked on top of each other. These cylinders 

represented a ballast layer (grey cylinder) and a subgrade layer (brown cylinder). This part of 

the model also contained spring-damper elements to simulate the equivalent vertical stiffness 

behaviour from each component, including the vertical stiffness of the subgrade layer that is 

the main point of interest in this analysis. During the simulations, these body elements sets 

follow their corresponding vehicle axle as the vehicle moves along the cartographic profile of 

the track. Table 2 presents the values used for the modal parameters of the infrastructure 

elements sets. The implemented modal stiffness and damping values are within the respective 

ranges used on consulted bibliography, as are the specific mass values used to calculate the 

mass for each layered element of the infrastructure [16]. 

Table 2: Main parameters used in the Simpack® infrastructure model 

Infrastructure Parameters Value 

Layered elements diameter (θ) 1.070 m 
Subgrade layer height (hsu) 3 m 
Ballast layer height (hba) 0.3 m 
Subgrade specific mass (ρsu) 2000 kg/m3 
Ballast specific mass (ρba) 1500 kg/m3 
Subgrade layer mass (mi.su) 5152.9 kg 
Ballast layer mass (mi.ba) 386.5 kg 
Sleeper mass (mi.sl) 330 kg 
Sleeper spacing (Lsl) 0.5 m 
Subgrade layer spring element stiffness (ki.su) 225 kN/mm 
Ballast layer spring element stiffness (ki.ba) 450 kN/mm 
Sleeper spring element stiffness (ki.sl) 1800 kN/mm 
Layered elements damping (Ci.l) 37,600 Ns/m 

 

3.2 Simulation setup 

Having created the base model for the UDDT assessment simulations, there was the need to 

define the baseline case (BC) and the damaged cases (DC). Do to this, a specific set of 

parameters were selected and tuned to create significantly different simulation conditions to 

provide the data for these cases. Naturally, the main parameter of interest was the vertical track 

stiffness of the subgrade element (ki.su). This was the parameter used to primarily define the 

proper track conditions for the BC, and the damaged scenarios for the DC. Then some additional 

parameters were selected to imposed changes in the EOV, to synthesise a wider range of 

realistic condition, thus forging more robust and statically significant BC and DC. The three 

parameters selected were: vehicle running speed, vehicle sprung mass and the track 

irregularities profile. All of the values implemented in the aforementioned parameter changes 

were either directly from experimental data (the three EOV related parameters) or at least 

heavily based on such data (the implemented subgrade track stiffness variation profiles). 

The data for the three EOV related parameters came from different sources, all related with 
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experimental campaigns conducted on Portuguese tracks. The running speed profiles used in 

these simulations were all related with a base speed profile obtained from an Alfa Pendular 

train, with just overall amplitude variations to create significantly different EOV conditions. 

The vehicle sprung mass values used were all based on different average passenger occupation 

levels of an BNN Alfa Pendular carriage. Like the running speed profiles, the track irregularities 

profiles used were developed from a base profile collected on a Portuguese track, with just an 

amplitude change to simulate progressively worse track irregularity conditions. The more 

severe profiles went slightly over the warning level values indicated by the norm EN13848-5 
[17], to create simulations where superstructure conditions did not represent a completely 

adequate track. These would also be used in the BC so that the UDDT could learn that these 

types of damage were to be discarded, since they are not the focus of this tool. 

As for the subgrade track stiffness variation profiles, this data was collected in an 

experimental campaign using the portancemetre method [5]. This method can measure local 

vertical stiffness values at surface level of a track or road being assessed. These values were 

then slightly adjusted to be within a specific range of admissible track stiffness values based on 

consulted bibliography. While there is no consensus on this topic, there are rough stiffness 

ranges mentioned by several authors as requirements for proper support conditions on a track 
[18]. The admissible stiffness range considered here was between 100 and 180 kN/mm, per 

equivalent axle of a railway vehicle. These values were then converted into equivalent subgrade 

track stiffness values based on an intrinsic knowledge of the developed numerical model, where 

the overall stiffness of the modelled track was decomposed on the multiple intervening stiffness 

components, one of which is the stiffness of the subgrade layered element. For subgrade track 

stiffness, the equivalent admissible stiffness range was from 150 to 375 kN/mm. This base 

stiffness profile, converted from the experimental data, was used for the BC. Then synthesized 

damage situations were added to the base profile to create the different DC. The main logic 

behind using this procedure to create these track stiffness profiles was to at least have a fairly 

realist behaviour of the stiffness changes along the track, since direct subgrade track stiffness 

profiles is something that is not currently monitored by currently employed methods. 

Combinations of the several profiles designed for the aforementioned parameters resulted in 

the simulations batches that were run for the BC and the DC. More specifically, as shows in the 

schematic presented in Figure 3, these combinations resulted in 100 different simulations for 

the BC and 144 simulations for the DC (18 simulations for 8 DC). The BC simulations all 

shared the same base subgrade track stiffness profile, and each batch of the 8 DC shared their 

own version of a modified subgrade track stiffness profile. 

     

     

Figure 3: Parameter configurations used to generate the Baseline and the Damage Cases (types and number of 

profiles used for the EoV parameters in each configuration) 
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Since the nominal track stiffness profile was designed to be within the aforementioned 

admissible range, the profiles used for the 8 DC were created so that the imposed subgrade 

stiffness changes in the damaged sections actually went outside the admissible range. Figure 4 

shows the stiffness profiles used in the BC (blue curve) and DC. The design logic for the DC 

was to have stiffness variations where the damage or anomaly caused an increase in stiffness 

above the admissible range (cases 1 to 4), and other were the damage caused a decrease in 

stiffness below the admissible range (cases 5 to 8). There was also the intent of analyzing if the 

UDDT would provide different results if the stiffness changes from the damage occurred more 

abruptly (cases 2, 4, 6, 8) or more gradually (cases 1, 3, 5, 7). Finally, in each combination of 

the two previously mentioned aspects, two intensity level of damage where defined, where the 

first one represented damage just over the admissible stiffness limit and the second 

corresponded to a more severe damage situation. All of these DC were created just by 

manipulating the base track stiffness profile in the same track section, by increasing or 

decreasing the local stiffness values to maintain the realistic variability of the base profile. 

 

 

Figure 4: Subgrade stiffness profiles used in the BC and DC simulations 

The cartographic profile used in each simulation was a straight track with a length of 2000 

m, since this aspect does not interfere with the frequency content of interest [14]. Each simulation 

was conducted using a data sampling frequency of 1000 Hz. Nine virtual accelerometers were 

placed in several points along the vehicle (three on the chassis, two on the bogie and one in 

each wheelset) to provide the data that was used to test the UDDT. 

4 RESULTS 

Having acquired the data from the 244 previously described simulations (i.e., BC and DC), 
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the UDDT was applied to it in bulk. The routine just as to be informed of which data it as to 

consider as BC and which is meant to by analysed as possible DC. Thus, for simplicity and 

better graphical interpretability, in the following graphs the first 100 simulation correspond to 

the BC and the remaining 144 to the DC (Damage cases 1 through 8, in sequential order). 

Figure 5 presents the obtained results from a partial application of the UDDT where the data 

fusion step as just been applied to the data collected from each individual sensor (chassis 

sensors, then bogie and then wheelset). This colour map is just a compact way to graphically 

represent the obtained results to check upon the accuracy of the UDDT in the damage 

identification task. Each cell in the colour map that is coloured in green represents a negative 

damage identification and a yellow cell represents a positive damage identification, resulting 

from the application of the Outlier Analysis step to the results from each sensor with a 

confidence boundary value of 0.99. These results provide a solid base for the potential merits 

of the UDDT since the BC were all correctly classified as undamaged cases and only a few DC 

were incorrectly classified as undamaged (i.e., only six false negative results in total). 

 

Figure 5: Damage identification results from each sensor used in the simulated railway vehicle 

Following the previous results, Figure 6 presents the final output of the UDDT from the data 

collected in the aforementioned 244 simulations, having merged the features from each sensor 

into their final form. The horizontal line represents the threshold value given by the Outlier 

Analysis for these results, thus any point below the line represents a negative damage 

classification and a point above the line represents a positive damage classification by the 

UDDT. Here the results were even better than those shown in Figure 5, since there are no false 

negative results and only 2 false positive results in the BC. This represented an overall accuracy 

of 99.18 % in the damage identification task. While these results are just from a single case 

study with simulated data, they still demonstrate the significant potential of the developed 

UDDT in solving the complex issue of correctly identifying cases where there is a damage on 

a subgrade layer only based on acceleration data collected with a moving instrumented railway 

vehicle. Thus, it also represents a very promising solution for a proper implementation of the 

proposed TMM since it potentially solves the aforementioned difficulties of extracting reliable 

results from realistic data. 

No Damage Damage 
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Figure 6: Final damage identification results, after combining the features obtained from every sensor. The red 

circle indicates the only false identifications obtained from the analyzed data 

4 CONCLUSIONS 

A novel methodology to assess railway track support conditions is currently under 

validation. This methodology states that by monitoring the natural frequencies of the subgrade 

layers, it’s possible to obtain usable data on the overall support conditions of a track. But recent 

results demonstrated that the methodology was not always reliable when working with data 

from realistic scenarios. Thus, a new UDDT was developed to solve this issue. 

This paper presents a brief description of the proposed TTM and on the UDDT, followed by 

a description of a numerical model used to perform a preliminary assessment test on the 

developed tool. The scenarios presented here, that used typical values for the modal parameters 

of both the vehicle and the infrastructure elements, demonstrated that the UDDT can indeed 

solve the previously mentioned issue and provide accurate results in the damage identification 

task with simulated data. Something that the current version of the UDDT does not provide is 

a way to classify the identified DC depending on their severity. This will be the topic for future 

work on the development of this tool. 
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