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Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes
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Biological membranes are continuously brought out of equilibrium, as they shape organelles, package and
transport cargo, or respond to external actions. Even the dynamics of plain lipid membranes in experimental model
systems are very complex due to the tight interplay between the bilayer architecture, the shape dynamics, and the
rearrangement of the lipid molecules. We formulate and numerically implement a continuum model of the shape
dynamics and lipid hydrodynamics, which describes the bilayer by its midsurface and by a lipid density field for
each monolayer. The viscoelastic response of bilayers is determined by the stretching and curvature elasticity,
and by the inter-monolayer friction and the membrane interfacial shear viscosity. While the bilayer equilibria
are well understood theoretically, dynamical calculations have relied on simplified continuum approaches of
uncertain transferability, or on molecular simulations reaching very limited length and time scales. Our approach
incorporates the main physics, is fully nonlinear, does not assume predefined shapes, and can access a wide range
of time and length scales. We validate it with the well understood tether extension. We investigate the tubular
lipid transport between cells, the dynamics of bud absorption by a planar membrane, and the fate of a localized
lipid density asymmetry in vesicles. These axisymmetric examples bear biological relevance and highlight the

diversity of dynamical regimes that bilayers can experience.
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I. INTRODUCTION

Lipid bilayers are quasi-two-dimensional systems made
out of two monolayers of lipid molecules held together by
the hydrophobic effect. They form most biological containers
in the cell, and exhibit a wide range of morphologies, from
vesicles to tubes, including sheets or complex networks in
the endoplasmic reticulum [1]. Bilayers behave as elastic
membranes forming relatively stable structures. At the same
time, they exhibit in-plane fluidity, essential to the motion of
membrane proteins [2], or to the transport of lipids between
cells through membrane tubes [3]. Besides lipid flows at fixed
membrane shape, this malleability also allows bilayers to
rapidly adapt their shape to accomplish important biological
functions, such as vesicular transport in secretion [4], or
area regulation in confined cells [5]. The goal of the present
paper is to formulate and numerically implement a dynamical
quantitative model for bilayers, observing the intimately
coupled lipid hydrodynamics and shape dynamics.

Although a simple elastic surface model such as that
described by the Helfrich curvature energy has been able to
explain a number of observations of bilayer vesicles [6], it has
long been recognized that in many situations the mechanical
behavior of lipid membranes can only be explained by
acknowledging its bilayer architecture [7]. Besides curvature
elasticity, a general model for the energetics of bilayers [8]
includes the stretching elasticity of each monolayer, which
despite the generally small density deviations from equilibrium
has a non-negligible effect. Physically, increasing the lipid
density in one leaflet leads to a free energy penalty due to
the steric interaction between the lipids, while decreasing it
exposes the hydrophobic core, resulting again in a free energy
cost. What makes bilayers very special mechanical systems
is the in-plane fluidity of the monolayers, and their ability
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to slip over each other. In physiological conditions, in-plane
and inter-monolayer shear stresses are purely viscous, with
experimentally characterized membrane shear viscosity and
inter-monolayer friction coefficients [9].

In equilibrium, the bilayer continuum model gives rise a
hierarchy of area difference elasticity models [8]. Yet, the
membrane biophysics is fundamentally out of equilibrium.
Biophysical experiments vividly exemplify nonequilibrium
dynamics involving lipid density changes, such as the shape
changes due to lipid translocation under the action of flippases
[10], or a local pH disturbance, changing the preferred area
per lipid [11,12]. Putting together the curvature and density
elastic forces and the dissipative forces due to inter-monolayer
friction, the membrane, and the surrounding bulk fluid shear
viscosity, it is possible to derive a dynamical model for
the shape and the monolayer density. Yet, such model is
mathematically complex, and has only been formulated and
exercised in simplified settings. The thermal undulations of
bilayers are generally understood in terms of a linearized
version of this model, considering infinitesimal shape and
density perturbations around a planar bilayer at equilibrium
[13]. Another important application of this theory, under the
strong assumption of fixed shape, is in the hydrodynamics
of tether extension [14]. This reference highlights the role
of inter-monolayer drag for membrane flows around sharp
geometries. The coupled lipid density and shape dynamics
under finite perturbations have been analyzed in Ref. [15] for
a predefined family of shapes and density distributions.

The complex equations for the dynamics of bilayers
can be further simplified under specific conditions. In the
simplest situation, the bilayer architecture and the internal
dissipative mechanisms can be neglected for giant unilamellar
vesicles, governed by capillarity, curvature elasticity, and bulk
dissipation. Around sharp geometries, or for short wavelength
thermal undulations, the inter-monolayer friction dominates
the dissipation, and membrane and bulk shear viscosities may
be neglected. There is a general tendency in the literature to
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neglect the membrane shear dissipation, notoriously difficult
to treat mathematically [16], e.g., on the basis of scaling
arguments involving the Saffman-Delbriick length scale. We
show here and elsewhere [17] that such arguments, as well as
the linearization of the equations around a planar configuration
[13], can severely underestimate the role of membrane shear
viscosity for significantly curved bilayers. Bilayers can also
be studied theoretically with molecular dynamics. However,
due to the slow relaxation times of bending modes [18],
these methods are severely limited to small time and length
scales [19,20].

In summary, lipid bilayers exhibit subtle mechanics, de-
scribed by complex continuum equations, which have been
judiciously simplified in some situations. Our goal here is to
introduce a general mathematical model and its numerical im-
plementation to deal with finite shape and density deviations,
accounting for the bilayer nature of the system, its elasticity,
and its internal dissipative mechanisms. We leave aside the
extensively studied effect of the surrounding bulk fluid, which
can be safely ignored for lipid bilayer systems smaller than a
few microns, and specialize in the simulations to axisymmetric
systems, allowing us to describe many of the important shapes
bilayers adopt. Our model can describe complex lipid hydrody-
namics mobilizing the inter-monolayer friction, such as flows
around sharp geometries or as a result of localized density
asymmetries. Interestingly, the latter, which have been inter-
preted as a transient spontaneous curvature, can induce shape
dynamics. The competition between these two relaxation
mechanisms—flowing lipids or changing shape—is studied
here by considering vesicles with a localized density asymme-
try. We also study the nucleation and well understood extension
of membrane tethers, the absorption of a bud by a planar
bilayer, and the recently observed tension-driven lipid flows
between vesicles and cells connected by tubes, which can be
interpreted as a Marangoni effect. In other works, we apply the
proposed model to confined bilayers [21], and to study protein-
membrane interactions. These examples illustrate the diversity
and complexity of the bilayer dynamics, which make it difficult
to provide accurate estimations based on simple arguments.

Section II describes the kinematics of our continuum
model, which challenge traditional Lagrangian or Eulerian
descriptions [22], the continuity equation, and the balance
of linear momentum. The numerical implementation for
axisymmetric bilayers, relying on a B-spline Galerkin
method, is given in Sec. III. Section IV describes numerical
calculations based on the proposed model, and Sec. V collects
some concluding remarks.

II. CONTINUUM MODEL

We describe the configuration of the bilayer in terms of
its midsurface and two lipid density fields, one for each
monolayer, thus forcing at the outset the shape coupling of
the two monolayers. The rate of change of the system is given
by the rate of change of the midsurface, i.e., its normal velocity,
and by the tangential velocity of the lipids of each monolayer,
which are in general different, producing inter-monolayer
slippage and friction. The lipid densities, and the tangential
and normal velocities, are coupled through the continuity
equation, expressing locally balance of mass. The governing

PHYSICAL REVIEW E 86, 011932 (2012)

equations are completed with balance of linear momentum,
obtained with variational methods, where we ignore inertial
forces given the low Reynolds numbers typical in bilayer
mechanics. We pay particular attention to the kinematics,
which are necessarily Lagrangian (tracking material particles)
in the normal direction to the bilayer, but which cannot be
Lagrangian tangentially due to inter-monolayer slippage. We
propose an arbitrarily Lagrangian-Eulerian formulation, very
useful in the numerical implementation, and provide detailed
and accessible expressions for axisymmetric bilayers.

A. Kinematics

We consider the parametric description x(£',£2,¢) of a
bilayer midsurface I';. As argued above, a point (£',£2) in
parameter space cannot label a material particle, and the time
derivative of this parametrization is not in general the velocity
of material particles. We express it as

x’[:W:w—i_vnny (l)

where the normal velocity v, has mechanical relevance,
since it characterizes the rate of shape changes, whereas the
tangential field w is the velocity of points with fixed parametric
coordinates. We denote by g,, = x, - x, the metric tensor,
by n the unit normal to the surface, and by k = —Vn the
second fundamental form, where V denotes the covariant
derivative and (-) , denotes partial differentiation with respect
to £4.

To describe the physical tangential velocity of each leaflet,
we consider independent vector fields on I';, v*, which we
define as the velocity of the ends of the tails of the amphiphiles
in each leaflet; see Fig. 1. This definition is convenient in
the formulation of the inter-monolayer friction. For numerical
convenience, we allow for general tangential motions of the
parametrization, and formulate the mechanics covariantly in
this respect. Such a description of motion is often referred
to as arbitrarily Lagrangian-Eulerian (ALE) kinematics; see
Refs. [22,23] for details. The tangential convective velocity,
i.e., the tangential physical velocity relative to points of
fixed parameter value (£',£2), is ¢* = v* —w. If w = 0, we
recover an Eulerian description in the tangential direction.
Lagrangian descriptions are characterized by zero convective
velocity. It is clear that we cannot recover a purely Lagrangian
formulation since in general the leaflets slip relative to each
other, and therefore w cannot equal v and v~ at the same
time.
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FIG. 1. (Color online) Description of a bilayer membrane. v+
denotes the tangential velocity field of each monolayer on the
midsurface. The density field on the neutral surface of each monolayer
0%, and the projected density field on the midsurface p* are also
shown.
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B. Continuity equation

Following Ref. [8], we describe each leaflet by a neutral
surface representative of its mechanics, i.e., the density of the
lipids in this surface p* is the order parameter that allows us
to define the areal elastic energy. The projected densities onto
the midsurface of the bilayer p*, see Fig. 1, deviate from p*
according to the following relation:

pT = p*[l F2dH + O(d*K)]. )

where d is the distance between the bilayer midsurface and
the neutral surface of the monolayers, usually located close to
the polar-apolar interface [24], H denotes the mean curvature
(half the trace of the second fundamental form), and K
denotes the Gaussian curvature (the determinant of the second
fundamental form). A convenient approximation, for small
deviations from a reference density of lipids py, is

pr~ p* F2podH. 3)

Since the rate of change of local area for a time-evolving mate-
rial interface is given by dive® — 2v, H [16], the conservation
of mass for each leaflet takes the form

d +

% + pE(dive* — 20, H) = 0, (4)
where d/dt denotes the material time derivative. In practice,
we are interested in time derivatives for a fixed value of (§,&,).
From the chain rule we have [23]

P+ - Vp* 4 pF(dive™ —2v0,H) =0, (5

where we stress that by pf we denote a time derivative for a
fixed value of the parameters (£;,£;).

C. Elastic energy

Deviations from the equilibrium density pg result in excess
elastic energy. Additionally, each leaflet stores elastic energy
when curved, for which we follow the classic Helfrich
functional ignoring the Gaussian curvature term for simplicity.
Consequently the total elastic energy can be written as [§]

K. At 2 Al 2
n[x,pi]zf—‘ o)+ (1) as
r 2 Po £0
K 2
+ | Lou = cyas,

L2

where K is the elastic stretching modulus of each monolayer,
k is the bending modulus, and Cj is the spontaneous curvature.
We rewrite the total elastic energy by substituting Eq. (3),

Ore o1 — [ K (PF ?
[x,07] = a5 E_quZdH as
r

+ / X oH = cp)ds. (6)
L2

Here and in subsequent expressions we imply a summation
of the “+” and “—” contributions. The interested reader can
find in Appendix A the expression of the elastic surface stress
tensor derived from this Hamiltonian.

We compute now the rate of change of the elastic energy
functional, required to derive the governing equations. The
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resulting expression should be independent of the parametriza-
tion of the midsurface, and hence should depend on x,
through v, alone. By using the continuity equation, we
express this functional in terms of the velocities v, and v,
instead of v, and pf. For convenience, we consider in this
derivation an Eulerian gauge, for which the rate of change
of the area element is —2v, Hd S, and the rate of change of
the mean curvature follows the classical expression 2H, =
Av, + v,(4H? — 2K). Using these two expressions, Eq. (5)
with ¢* = v*, and rearranging terms, we find IT = I, + Ik,
with

. [v,] = & / QH — Co){Av, + (2H* —2K + HCy)v,}dS,
I

(7
and
ILIKA [vnvvi]
+ +
_ K/ (p— —17 2dH> {—div (’O—v*>
r \ Po ro
o
+u,H <— + 1) F d[Av, + 2v,(H? — K)]}ds’
Lo
®)

where the parametric dependence on x and p* is omitted.
Interestingly, the rate of change of the stretching elastic energy
depends on the tangential rearrangements of the lipids, which
alter the lipid density but leave the shape unchanged.

D. Dissipation

The internal dissipative mechanisms of the bilayer include
the monolayer surface viscosity and the friction between two
monolayers. We consider each monolayer as a Newtonian
interfacial fluid [25], which can only support a tangential
viscous stress

O_‘\‘/isc,i — 2Md:t + A(trdi)g, (9)

where p and A are the monolayer shear and dilatational
viscosities (see Ref. [9] for measured coefficients), and the
rate-of-deformation tensor d includes a contribution from the
normal velocity of the interface in the presence of curvature,

d* = 1[VoE + (VoH)] — v,k (10)

Assuming as usual a linear relation between the inter-
monolayer shear traction and the slippage velocity 7 =
b,(v™ — v7), we can write the Rayleigh dissipation potential
from which all these viscous stresses derive:

Wlv,,vE] = W, [v,,v5] + Wy, [vF]

1 2+
3 Qud : d 4+ A(trd)*)™d S
r
bm + -2
+— | llv" —v||°dS. (1)
2 Jr

See Ref. [16] for a detailed account of the membrane
dissipation.
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E. Governing equations

The dynamics of the system can be obtained by minimizing
the Rayleigh dissipation potential plus the rate of change of
the elastic energy with respect to the variables expressing the
rate of change of the system [26]. This minimization is often
constrained, for instance by boundary conditions or a fixed
enclosed volume. For this purpose, we form the Lagrangian

L[v,, 0%, A] = W[v,,v*] + [[v,,0F] — A-C[v,,v*], (12)

where C[v,,v*] collects all the constraints and A the
corresponding Lagrange multipliers. For instance, a fixed
enclosed volume constraint for a closed bilayer is expressed
as fr v,dS = 0, and the associate Lagrange multiplier is the
hydrostatic pressure jump across the bilayer. The governing
equations are then obtained by making the Lagrangian station-
ary for all admissible variations

80, L =08, L=25,L=5,L=0, (13)

which is a form of the principle of virtual power. It is
straightforward to include external forces such as a prescribed
membrane tension at the boundary of a domain. From
these equations, by integration by parts, the Euler-Lagrange
equations can be derived by a direct calculation. The only term
involving complex calculations is the membrane dissipation;
see Ref. [16].

In an ALE formulation, the physics are independent of the
choice of parametrization of the midsurface, and therefore
independent on the tangential parametrization velocity w.
In numerical calculations, this allows us to freely choose
the parametrization velocity, which can be interpreted as a
mesh velocity. It can be prescribed, for instance, to zero in
a tangentially Eulerian approach, although this introduces
numerical stiffness in the equations. It is also possible to
exploit the freedom of the tangential motions of the mesh to
adapt to discretization density to the features of the solution,
although we do not attempt this here. Instead, we view the mesh
velocity as an additional unknown. To break the invariance
of the physical equations with respect to w, we include a
functional to damp the mesh velocity,

Ww=%/m%& (14)
r

where [ is a numerical parameter with units of physical
viscosity and S is the bilayer surface area. This functional can
be understood as a penalty approach to enforce approximately
the Eulerian gauge.

Once the lipid, shape, and parametrization velocities have
been obtained from these equations, one can integrate in time
the parametrization from Eq. (1), and monolayer densities from
the local statement of balance of mass in Eq. (5).

F. Particularization to axisymmetric surfaces

We consider the parametric description of an axisymmetric
surface in terms of the generating curve, i.e., the surface I'; at
a given instant ¢ by

x(u,0,t) = {r(u,t)cos6,r(u,t)sinf,z(u,t)}, (15)

where u € [0,1],0 € [0,27], and {r(u,t),z(u,t)} is the para-
metric description of the generating curve. The velocity of the
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parametrization is
{ri.z.} = wt+uvn,

where t = 1/a{r’,z'} is a tangent unit vector to the gener-
ating curve, n = 1/a{—z7',r'} is a unit normal, and a(u) =
VIr'(u)]? + [2/(u)]? is the norm of the curve speed. Through-
out the paper, (-)" denotes partial differentiation with respect
to the parameter . From the above relations, we have

1 1
w = E(r/r.t + Z,Z,z)» Uy = Z(_Z,V,z + r,Z,z)- (16)

We assume that the tangential velocity of the lipids in each
monolayer does not have azimuthal components, i.e., vt =
vt

For axisymmetric surfaces, integrals on the surface can be
brought to the interval [0, 1] with the relation d S = (2war)du.
Following Refs. [16,27], the rate-of-deformation tensor can be
written in an orthonormal coordinate system with basis vectors
along the generating curves and the parallels of the surface as

di—l v 0 v, [b/a®> 0O
a0 vHYr al0 Z/r ]’

where b(u) = —r"(u)z'(u) + r'(u)z” (u). The mean and Gaus-
sian curvature are given by

1 /(b 2 b/
2H=—< +5) K==

a\a®2 ' r a‘r
The continuity equation (5) can be written as

F_w roty
. +pi[( )

p* + pt'2 —2WH]=0. (17)
’ ra

Specializing Eq. (11) in the present setting, the dissipation
potentials can be written concisely as

+q b_mfl + - 1 -1 U+
W, [v7] = 2 ), (v, v7] 11 - (2mar)du,

(13)

and
1 1
Wu[r,z,Z,t,vi] = E/ UTAUQrar)du, (19)
0

where UT = [r;,z,,v",v",v"",v7'] and A is a symmetric
matrix given in Appendix B.

The parametrization dissipation potential takes the simple
form

A 1 ” ’ot
-~ M Tr r rz r,
anggz._f —-png[,/ /2}[’]mL (20)
St a rz z

N

Similarly we implement the axisymmetric version of the
elastic energy. Rather than using the general expression in the
previous section for the rate of change of the elastic energy,
we find a numerically more convenient expression avoiding
third-order derivatives next. By taking variations directly of
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the axisymmetric functional

1 KS + 2
M[r,z,p*] :/ — (p— F2dH — 1) Qrar)du
0

2 \po
1
+ / %(2}1 — Co)*@rar)ydu, 1)
0
we obtain
) 1 pE ot
[r,.z,.p5] = / KS|:(:|:2dH,, + —"> (— F2dH — 1)
0 Lo Lo

+2k(2H — CO)H,,j|(2nar)du

1 KS Ioj: 2
+ — | —F2dH -1
o L2 \po
K 2
+ E(ZH —Cp) (a,,r + ar,,) 2ndu, (22)

where H,, a,, and ,of are given in Appendix C. Using the
continuity equation, IT becomes a functional of velocities
only. Despite the long expressions, this functional has a simple
structure of the form

1
[r,,z.,v5] = —f F'WQrar)du, (23)
0

where W7 = [r,r,rf,,rf;,Z,,,zft,zf;,v*,v‘,v’”,v‘/] and F is
a column vector depending nonlinearly on the shape and
monolayer densities. This form highlights its linearity with
respect to the variables expressing the rate of change of the
system.

A common assumption when studying bilayer vesicles is
that the enclosed volume remains constant [28]. This condition
is expressed in the present setting as

1
0= C"Ol[r,,,Z,,] =V = / (—Z'ry +7'z)Q2rr)du.
0

Minimizing the Lagrangian subject to the constraints, one can
find the velocities {r,z,,v*} at each configuration {r,z,p*}.
Then, the surface parametrization can be integrated in time
from {r ;,z,}, and the monolayer densities from the continuity
equation.

III. NUMERICAL APPROXIMATION

In this section, we discretize the governing equations with
a Galerkin method. We represent numerically shape and the
physical fields using B splines and derive the space-discretized
form of the governing equations, a system of differential-
algebraic equations.

A. Spacial semi-discretization

The generating curve of the axisymmetric surface is
represented numerically as a B-spline curve

N
{r@u,0), 2,0} & Y Biw) (ri(0),2:1(1)} (24)
1=1

P; (1)
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where B;(u) are the B-spline basis functions [29] defined on
the interval [0,1], and {r,(¢),z;(¢)} is the position of the /th
control point of the B-spline curve at instant ¢. Similarly, the
density field is represented as

N
pEust) = ) Biwpf (o). (25)
I=1
We then have

N
rozd =) B {1,210},
=1 110
(26)

N
i~ ) Biwpr o).

I=1

Finally, the tangential velocity of each monolayer can be
numerically expressed by

N
vEus 1) A Y Biupi (o). (27)
1=1

We note that the basis functions for the parametrization of
the curve, the density field, and the velocity field can be
B splines of different orders. Since the energy functional
involves second derivatives of r and z, B; need to be at
least quadratic B splines to have continuous derivatives and
square-integrable second derivatives. While higher-order B
splines have superior accuracy, their computational cost is
also higher, because the bandwidth of the dissipation matrices
described below becomes larger, and the numerical integration
requires more quadrature points. We found the results to be
quite insensitive to the degree of the basis functions, and in the
calculations we consider cubic B splines for the shape and for
the tangential velocity fields, and quadratic B splines for the
density. This combination provides stable and accurate results
at a reasonable computational cost.

B. Discretized form of the governing equations

Plugging these representations into Egs. (18)—(20) and (23),
and making the Lagrangian stationary with respect to Py,
vf, and the Lagrange multipliers A, we obtain a system of
differential algebraic equations (DAEs),

D [P}Jr D 0 [P}JFQA_ P
visc v 0 D, v = f(p, ,

o[t]-

where the global column arrays P, V, and p collect all the
degrees of freedom. All the dissipation and constraint matrices
depend nonlinearly on P. The constraint matrix Q encodes
boundary conditions and possibly the fixed volume constraint.
The membrane dissipation matrix Dy, follows from Eq. (19)

(28)
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and takes the form

Dyisc = / BTABdS,
I

where B is a matrix whose entries are Bj, B,, and E;, the
integrals are performed by Gaussian numerical quadrature, and
the global matrix is filled with the standard assembly process
in finite elements [22]. Similarly, the inter-monolayer friction
matrix is assembled from local matrices of the form

Do) _b/ B, 0 [1 —1]'1@, 0]
SO S T 0 1 T O O 7

and for the parametrization dissipation we have

~ 2 1]
~ Q 1B, 0 r's r'z By 0
D)y,==] — ds.
( )1] S ,/]: a2 |:() Bl} |:rrz/ Z/Z | 0 BJ

From Eq. (23) we have

f= / BTFds,
r

where now B is filled with B, B}, B}, B, and é}.

The continuity equation is a partial differential equation
governing the evolution of the density field. Due to the
convective term (¢* - Vp), the Galerkin finite element method
needs to be stabilized. We use the standard streamline upwind
Petrov-Galerkin (SUPG) stabilization method [22,23]. After
spacial discretization, see Appendix D, the continuity equation
can be written as

M*pE + LEp* =0, (29)

where the M and L matrices depend on Pand V.

The system of DAEs can be understood as follows. Given
a state of the system at time ¢, (P(¢), p(¢)), we find V(¢), A(?),
and P(r) from Eq. (28). We then use Eq. (29) to compute
0(2). Thus, we can formally express the rate of change of the
system as (P(z), p(t)) = G(P(¢), p(t)). We integrate forward in
time this ODE with specialized semi-implicit ODE solvers for
stiff problems [30].

IV. NUMERICAL RESULTS

We exercise now the model in selected applications of
interest. We first revisit the problem of tether extension as
a validation of our model and simulations. We then present
a suite of examples that illustrate the diversity of dynam-
ical regimes of lipid bilayers, all of which bear biological
relevance. We have carefully checked the convergence of the
numerical approximation by mesh refinement. We find that the
numerical method is robust to the order of the B-spline basis
functions, to the parametrization dissipation coefficient /i, and
to the stabilization parameter t of the SUPG method. In the
examples presented here, we use at most 100 basis functions
for each of the unknowns, r, z, pi, and v™.

A. Material parameters and time scales

Since our model includes several energetic and kinetic
coupled mechanisms, the choice of material parameters (x,
K, 1, by, and d) plays an important role in the behavior of
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the system, and there is no canonical nondimensionalization of
the equations (A does not play a major role). Note carefully that
K, and u are monolayer parameters, and therefore a factor of 2
is needed to relate the model to some reported measurements.
We set the distance between the bilayer midsurface and the
monolayer neutral surface to d = 1 nm. It is useful to define
nondimensional parameters comparing elastic and dissipative
mechanisms respectively. On the one hand, € = k/(2K,d?)
takes values on the order of 1 for lipid bilayers. On the other
hand, @ = 241/(b,,d*) shows a larger variability. With reported
values for the membrane shear viscosity 1071 < 2u < 5 x
10~ Js/m? and for the inter-monolayer friction 108 < b, <
10° Js/m*, o ranges between 0.1 and 50. Here we consider
a = 1. In all the simulations, we consider « = 10719 J, 2K, =
0.1J/m?, b, = 10° Js/m*, and 2 = 107 Js/m? [9,31].

We discuss next a number of time scales that govern
the dynamics under different circumstances. Let us denote
by p the density average and by p the density difference
between the two monolayers, normalized by py. At fixed shape,
the gradients in the density difference p have been shown
to evolve according to a diffusion equation with diffusivity
D = K;/b,, [14], which introduces a relaxation time scale
t1 = §/D, where S is the relevant area, here of a density
difference disturbance. Density differences can also relax by
changing shape and creating curvature, see Fig. 5, which when
dragged by membrane viscosity gives rise to the time scale t, =
\/§M/(st,5). For our parameter choice, t,/t; = ad/(2x/§,6),
and therefore in most cases the density difference relaxation by
inter-monolayer friction is slower than by membrane viscosity
(induced by shape changes). When the shape change is driven
by curvature elasticity, 3 = Su/k is relevant. Gradients in
the density average p do not mobilize the inter-monolayer
friction and exhibit an extremely fast characteristic time scale
ty = n/(K;p), typically smaller than a microsecond, which
needs to be resolved by the simulations at initial stages. When
the dynamics mobilize bending energy and inter-monolayer
friction, the relevant time scale is #5 = Sd2b,, /k. Some of
these time scales have been considered previously, e.g., in
Ref. [15].

B. Dynamics of tether formation and extrusion

The statics of bilayer tubular structures has been extensively
studied from a theoretical point of view. One can easily
estimate the equilibrium configuration of a tether pulled
out of a giant vesicle under constant surface tension o by
minimizing the energy of a uniform cylindrical membrane
E = nxL/r + 2norL with respect to the tube length L and
radius r, leading to expressions for the equilibrium radius
r = «/k /20, and for the static force needed hold the tube

ff=mk/r+2mor =2n+2k0. (30)

The equilibrium force during quasistatic tether nucleation,
eventually converging to f*, has been studied theoretically
[32,33].

The dynamical features of tether growth and retraction have
been investigated theoretically and experimentally in many
studies [14,34,35]. Evans and Yeung [14] considered a giant
vesicle kept at constant tension o by a micropipette, and pulled
out a tether with an adhesive microbead at constant velocity
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L. They provided a theoretical estimation of the pulling force
f when the tube area is much smaller than that of the vesicle,

2K, d?
f=2n<ro+;—r>+2n< = )L

R7 .
+2 [2M — 3nur + (4b,,d*) 1In —] L, (@3
r

Neff

where 71,, denotes the water viscosity, R denotes the radius
of the vesicle, and n.¢ denotes the effective viscosity of the
tether. The first line is an elastic force fya, With a first term
corresponding to the constant static force f* and a second term,
proportional to the tether’s length, accounting for the global
area difference between the monolayers. The second line is
the rate-dependent force fr,., which groups all hydrodynamic
effects, i.e., the bulk and membrane viscous forces and the
slippage between the monolayers at the tether’s neck. For
large vesicles, the nonlocal elastic term can be neglected,
and the viscous forces are overwhelmingly dominated by
inter-monolayer friction.

We test our simulations against these theoretical predic-
tions. We remove the nonlocal effect by pulling a tether out
of a large enough planar membrane disk of radius R with
constant surface tension o boundary condition, and uncoupled
monolayers (other than by frictional forces). More specifically,
at the boundary of the disk (# = 1), the parametric surface
does not move r (1) =0 and z,(1) = 0, and a power of the
form 7 Rov*(1) is added to the variational principle.

PHYSICAL REVIEW E 86, 011932 (2012)

The tangential velocities at the boundary of the domain v*(1)
are free, and are taken into account in the balance of mass since
the system exchanges mass with its surroundings. Figure 2
shows a tether nucleation and extraction at constant rate. The
color map, Fig. 2(a), shows the velocity difference between the
leaflets, visualizing the inter-monolayer slippage at the tether’s
neck. The radius of the tube during this process ranges between
71.1 and 76.3 nm. By stopping the extraction, we check
that the small deviation from the static radius (+ = 70.7 nm)
is due to dynamical effects. The maximum pulling force,
about 1.17 f*, is attained for a critical length 0.32R, a value
known to depend on the radius of the vesicle or the disk
[33]. The steady state pulling force from our simulations is
% = 1.12f°, where the 12% deviation from f* is explained
by the additional terms in Eq. (31). To assess their magnitude,
we annihilate in the computations the friction coefficient first,
and then the membrane viscosity. The resulting drops in
the tether force are shown in the inset of Fig. 2(b). Most
of the rate-dependent part of the force is due, as expected,
to inter-monolayer friction. The membrane shear viscosity
contribution is only f, = 0.00712f*, very close to the the
theoretical estimation from Eq. (31), 0.00707 £, which shows
the quantitative agreement between the simulations and the
available theoretical predictions. We can further understand
the phenomenon by tracking elastic energies and dissipation
powers during the process in Fig. 2(c). It can be observed that,
while the stretching energy slightly deviates from zero due to
rate effects, the curvature energy grows significantly during the
experiment. This is not surprising, since most of the resisting

. 0. 0.2
L (mm/s)

FIG. 2. (Color online) Nucleation and extension of a tether out of a planar disk of radius 2 wm kept at constant surface tension (o =
ot +0~ =107*K,). All figures but the right plot are for a pulling rate L = 0.1 mm/s. (a) Selected snapshots with a color map of the
inter-monolayer slippage velocity. Once the tether is fully formed, the process reaches a steady state, where the shape, slippage at the neck, and
the radius of the tether do not change. (b) Force-extension curve normalized by the static tether force in Eq. (30). The end of the process and the
inset highlight the effect of membrane shear viscosity and inter-monolayer friction on the dynamical part of the force. (c) Evolution of the elastic
energy (IT) and dissipation power (2W) components during the process. (d) Effect of the loading rate for L = 0.02,0.05,0.08,0.1,0.2 mm/s.
The arrow indicates increasing rate. The inset shows the normalized steady-state force f° as a function of strain rate. From the slope of this

curve, we can compute the effective tether viscosity 7. in Eq. (31).

011932-7



MOHAMMAD RAHIMI AND MARINO ARROYO

force is static and explained by f;. Before the tube has fully
nucleated, the growth of the curvature energy is quadratic, and
after the buckling event that forms the tether, it grows linearly,
with a slope that we confirm is very close (within 1%) to half f*
as predicted by Eq. (30). It can also be observed that most of the
dissipation in this process is due to inter-monolayer friction. It
can be easily seen from Eq. (31) that the viscoelastic time con-
stant for this process is ts = 8Sd*b,, /k = rLd*b,, /k.Recalling
the expression for the tube radius, the characteristic tether
pulling velocity at which viscous forces are comparable to
elastic forces is L, = L/ts = «/2x0 /(4b,,d*) ~ 0.25 mm/s,
in agreement with our results, Fig. 2(d).

The left plot in Fig. 2 shows the effect of pulling rate on
the resisting force. The rate of the process changes slightly
the buckling point, but more importantly the steady state force
f°° increases with rate. From Eq. (31), the slope of f* as a
function of L should provide the effective tether viscosity s
(see the figure inset), which has been examined experimentally
[34,36]. We find that, for the largest rate, the relation slightly
departs from linearity, due to the dynamically induced elastic
force resulting from I1x, mentioned above.

In summary, this example validates our model and simula-
tions in a well understood situation, and provides a detailed
picture of the rate effects during such process. Tether extension
may behave quite differently, for instance for vesicles pulled
at two opposing points [37]. In this reference, the tension is
not constant but rather increases as the tethers are extended,
and therefore these thin down.

C. Cell communication via tunneling nanotubes

In recent years, a novel cell-to-cell communication mecha-
nism mediated by membrane nanotubes bridging animal cells
has been identified. Such open-ended membrane tethers, called
tunneling nanotubes (TNTs), have been shown to facilitate
physiological functions in cell-to-cell communication during
health and disease [38—40]. For instance, there is evidence

PHYSICAL REVIEW E 86, 011932 (2012)

that HIV-1 can spread quickly via TNTs between cells in the
human immune system [41].

TNTs have diameters 2r ranging from 50 to 200 nm and
lengths L of up to tens of micrometers. Transport of objects
through TNTs has been shown in vitro to be mostly driven by
the difference of surface tension Ao between the connected
liposomes, and not by the internal pressure difference Ap
[42]. Indeed, the fluid velocity profile inside the tube can
be expressed as v(s) = vy — vo[l — (s/r)*], where s is the
radial position, v; is the inner monolayer lipid velocity driven
by the tension difference Ao, and vo =rAp/(2n,L) is the
amplitude of the backward flow due to the pressure difference.
For long thin tubes, vy can be neglected. As before, the
radius of the connecting tube can be estimated by r = /k /26
where & is the average tension between the two cells. This
phenomenon, driven by gradients in the surface tension, can
thus be interpreted as a Marangoni effect.

We consider a long tether (L = 8 um) bridging two giant
vesicles modeled by two circular disks of radius R = 3 um,
see Fig. 3 (left). Initially, we obtain the static equilibrium
by fixing the same surface tension at the top and bottom
boundaries. Then, we induce the lipid flow by increasing
the tension difference Ao, while their average & is fixed.
If the process is performed very slowly, we can assume
that the membrane flow is at steady state. We visualize the
flow of the lipid membrane by the lipid velocity of inner
monolayer v;. The velocity is not uniform along the tube due
to the gradient of the surface tension, which in turn changes
the tube radius. The figure illustrates the steady state shape
after the tension difference has been applied (blue dashed
line) compared to the equilibrium shape for Ao = 0 (solid
red line). We can define an effective viscosity relating the
velocity of the lipids to the tension difference, Ao = negv;.
We find that indeed the relation between v; and Ao is linear
in a wide range of tension differences of up to 20% of &.
Figure 3 (middle) shows how the effective viscosity increases
with average tension (as the tube radius decreases). As the

0.03
> 20
0.01 o +Ac/2

he) —~
%0.02 X 18

vy (mm/s) = >
e _16

3

©0.01 s
o IJ\g 20/2 )

a/Ks  x10™ a/Ks x10™

FIG. 3. (Color online) Cell-to-cell communication via tunneling nanotubes. Geometry and lipid velocity field of the inner monolayer at
steady state for Ac = 1.36 x 107* mN/m and 6 = 0.005 mN/m = 107K, corresponding to » = 100 nm (left). The shape change as a result
of the tension difference is highlighted by the dashed blue generating curve, to be compared with the static shape (solid red line). Effective
viscosity as a function of the average tension between the two connected membrane patches & (middle). Fraction of the membrane shear

dissipation relative to the total dissipation as a function of & (right).
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FIG. 4. (Color online) Relaxation dynamics of a bud of radius R = 0.34 ywm connected to a tense planar membrane disk (6 = 0.006 mN/m).
The color map on the snapshots shows the membrane dissipation power density in the same scale during the process. The left plot shows
the curvature and stretching elastic energies during the process, while the right plot shows the membrane shear and inter-monolayer friction
dissipation powers, in nondimensional terms with W = 2uS/#?. Here, #; ~ 3.6 ms. The stretching energy Ik, due to the lipid density
asymmetry arising from the bud absorption relaxes following the time scale #; & 15 ms (not shown).

tube becomes narrower, the role of inter-monolayer friction
relative to membrane shear viscosity increases in setting 7eft;
see Fig. 3 (right). Remarkably, for tubes in the physiological
range, the membrane shear viscosity contributes between
10% and 20% of the total dissipation, and is therefore not
negligible for quantitative predictions. Focusing on the main
contribution, we can estimate the order of magnitude of the
effective viscosity by scaling arguments as s & by, d*/r =
b,d*/25 ]k, leading to a characteristic time for transport
across the TNT of tg = b, d’L/25 [k /Ao

D. Bud relaxation

We consider now the relaxation of a vesicle that has
formed a fusion pore with a planar membrane disk under
constant tension. Figure 4 shows selected snapshots of the
process, by which the bud is eventually absorbed completely
and the bilayer disk becomes planar. Here, the curvature
forces are the main elastic mechanism driving the process
(see Fig. 4, left plot). The applied membrane tension also
drives the absorption. The dominant dissipative mechanism
is the membrane shear dissipation (see Fig. 4, right plot),
and therefore, as expected, the relaxation dynamics are
governed by 73 =~ 3.6 ms. It can be observed that, during the
bud absorption, some amount of stretching elasticity is stored
since initially the bud and the planar bilayer were at their
equilibrium lipid density. The density difference created as the
bud disappears then dissipates slowly through inter-monolayer
friction in a time scale of #; ~ 15 ms.

The process proceeds first rather slowly, with the membrane
shear dissipation concentrated at the neck of the bud. Recalling
Egs. (10) and (11), we can interpret that this localized shear

dissipation density is caused by tangential velocity gradients.
As the neck opens up, the membrane dissipation becomes
larger at the top of the bud, now caused by the large normal
velocity and curvature in this region; see Eq. (10). At a
critical point (¢ & 0.6t3), the curvature elastic energy sharply
decreases, accompanied by a high membrane dissipation. The
snapshots illustrate how the change in geometry facilitates the
lipid flow, and as a consequence speeds up the shape transition.

E. Density asymmetry excitations in vesicles

Organelles and cells are often placed out of equilibrium by
localized density disturbances caused by a myriad of physic-
ochemical phenomena. Proteins or polymers inserting into
the bilayer, effectively changing the lipid packing, can induce
shape changes [1,43]. Lipid molecules can locally change their
shape and size, for instance under localized pH alterations,
leading to transient shape changes [11,12]. Lipid translocation
between the monolayers driven by flippases can induce bud-
ding [15,44]. Figure 5 illustrates how the insertion/extraction
of a molecule in one monolayer locally increases/decreases
the lipid density, mobilizing inter-monolayer slippage and/or
creating curvature.

In this study, we focus on deflated, spheroidal, axisymmet-
ric vesicles initially in equilibrium. Since lipid membranes
are almost area preserving, a completely spherical vesicle is
too tight to allow for shape changes. The excess area relative
to the vesicle volume is conventionally quantified by the
reduced volume, defined as the ratio between the enclosed
volume and the volume of a sphere with equal surface area.
We start with a prolate spheroid, with a reduced volume of
0.98, although analogous results are found with oblate shapes
as long as there is available excess area to change shape
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FIG. 5. (Color online) Illustration of how a molecule inser-
tion/extraction in a monolayer disturbs the lipid density asymmetri-
cally. The lipid density contrast across the monolayers can be relaxed
either by flowing lipids away from/towards the disturbance (thin red
arrows), or by curving the bilayer to form buds/invaginations.
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without stretching significantly the bilayer. In fact, the last
example presented here exhibits a transition between a prolate
and an oblate configuration, triggered by a localized density
asymmetry. We consider a small vesicle of radius R = 100 nm,
a large vesicle (R =2 um) and a giant vesicle (R =4 pm).
We chose a different number of lipids in each monolayer
so that the equilibrium density in the neutral surface of the
monolayers is close to pg. To accomplish this, we set initially
the projected densities to p* = po(1 & 2d/R), and then find
the equilibrium state by minimizing IT subject to the mass
and volume constraints, which slightly perturbs p* due to the
nonuniform curvature of the prolate shape.

Once the initial state has been prepared, we locally
perturb the lipid density of the outer monolayer, and examine
numerically the relaxation dynamics. Specifically, the lipid
density at the neutral surface of the outer monolayer p* is
disturbed with the profile 6p x f(¢) shown in Fig. 6, where
¢ € [0,7] is the spherical angle of the vesicle domain. We
choose the width of the disturbance and its amplitude as
w = 10% and §p = 0.05p.

0.8
—~0.6
04

0.2

TE

0 50 100
¢/m (%)

FIG. 6. Profile of the density perturbation on the outer monolayer.
The density at the neutral surface p* is disturbed by §p x f(¢). With
our choice of width of the profile, w = 10%, the disturbance occupies
about 2.5% of the area of the vesicle.
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FIG. 7. (Color online) Relaxation dynamics of the small vesicle
(R =100 nm, #; = 0.06 ms, , = 0.02 ms). The density disturbance
diffuses without noticeable shape changes. The color maps represent
the difference between the monolayer lipid densities at the neutral
surface, p* — p~, where red corresponds to 8o and blue to 0.

Such density perturbation creates a gradient of both density
average and density difference of magnitude 6p/2 [8]. The
density average disturbance relaxes, dragged by membrane
shear viscosity, extremely fast in a time scale commensurate
to #4. This initial event needs to be captured by the simulations,
although we do not report on it. Then, the density difference
disturbance relaxes by local curvature. Such a localized shape
change is dragged mainly by membrane shear viscosity in
a time scale given by f,. The amplitude and nature of this
moderately fast relaxation emerges as a competition between
bending and the stretching elasticity, and is strongly size
dependent. The shape changes caused by density difference
gradients are barely noticeable for density disturbances smaller
than £ = k/(K;dp) =~ 80 nm, when curvature elasticity exerts
strong forces opposing deformation. Then, in a slower process
dictated by 71, the density difference is dissipated through inter-
monolayer slip. During this process, the shape disturbance
adapts very quickly to the diffusing density difference, and
eventually disappears.

Figures 7-9 show the shape and density evolution of
perturbed prolate vesicles of different radii as they relax
towards a new equilibrium state. For the small vesicle,
Fig. 7, the density deviations hardly produce any shape
deformation due to the large resistance of bending elasticity
relative to stretching elasticity as the size of the disturbance
is smaller than ¢. The aggregated density diffuses in the
lateral direction dragged by inter-monolayer slippage. The
time scale for density diffusion is #; = Sb,, /K, ~ 0.06 ms,
where § = 27 (1 — cos wg) R? is the area of the asymmetry
patch. The small shape perturbation occurs at a faster time
scale given by , &~ 0.361¢,. For the large vesicle, Fig. 8, the
resisting elastic forces due to curvature are much less relevant,
and in a very fast time scale commensurate to £, &~ 2 x 1072¢,,
a geometric feature of significant amplitude relaxes part of the
stretching elastic energy. Due to the time scale separation, the
shape adapts almost instantaneously to equilibrate stretching
and curvature forces as the density slowly relaxes by inter-
monolayer friction. The transient bud eventually disappears
as the density fully equilibrates. A similar behavior can be
observed for the giant vesicle, Fig. 9, where now the dynamics
are complicated by a richer shape landscape at the current
ratio between the disturbance size and £. As before, in the
very initial stages given by #,, a large amplitude bud forms
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FIG. 8. (Color online) Relaxation dynamics of the large vesicle
(R=2 pm, t; =25 ms, t, = 0.44 ms). At early stages, the density
disturbance relaxes by forming a bud, which then disappears and
the density difference diffuses by inter-monolayer friction. The color
maps represent the difference between the monolayer lipid densities
at the neutral surface, )™ — p~, where red corresponds to §p and blue
to 0.

at the density disturbance. As the density diffuses, there is a
shape transition by which the bud elongates into a short tube
at t ~ 0.12¢,. This fast shape transition relaxes abruptly the
stretching energy and slightly increases the curvature energy,
resulting in a net decrease of the total energy. This abrupt
shape change is accompanied by a spike in the membrane
shear viscosity (see Fig. 10). This figure also shows the initial
spike in membrane dissipation associated with #,.

Subsequently, the elongated protrusion pearls, and the
number of pearls decreases in steps until there is a single
vesicle connected to the mother vesicle by a narrow neck.
The color map in Fig. 9 shows how the density difference is
quantized by the size of the pearls. Interestingly, these complex
shapes transiently trap the density asymmetries, and slow down
significantly the density relaxation by inter-monolayer slip.
The full relaxation takes ¢ &~ 10¢;. This example shows the
intimate coupling between lipid flow and shape dynamics.
Previous insightful theoretical work [15] captures the essential
physics, but is restricted to a shape ansatz that does not
agree with the shapes we find and that are reported in some
experiments.

Similar phenomena have been observed experimentally,
for instance by locally anchoring polymers or amphiphilic
molecules to oblate lipid vesicles [43]. Once polymers anchor
to the bilayer, they induce curvature both by increasing the
area of the monolayer, and by a local deformation of the bi-
layer (spontaneous curvature). The anchoring molecules then
diffuse on the membrane. Figure 11 shows the experimental
observations from [43], which are qualitatively in agreement
with our simulations. Similarly, a localized pH gradient can
change the repulsion between the lipid head-groups of the
exposed monolayer and form the metastable pearled tubes
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FIG. 9. (Color online) Relaxation dynamics of the giant vesicle
(R=4 pum, t; =98 ms, 1, = 0.88 ms). The density difference
relaxation by inter-monolayer slippage is slowed down significantly
by the dramatic shape changes, which transiently trap the density
asymmetries. Atalater time (t/#; =~ 10), the spherical bud is absorbed
by the mother vesicle [45]. The color maps represent the difference
between the monolayer lipid densities at the neutral surface, p* — p~,
where red corresponds to §p and blue to 0.

[11,12]. Such asymmetries have been modeled mathematically
by considering a transient spontaneous curvature [46], an area
difference [11], or a density asymmetry parameter [12].
Stomatocyte morphologies are often observed in vesicles
at equilibrium, and have been explained on the basis of
area difference or spontaneous curvature [47]. However, the
dynamical studies of the stomatocyte formation are limited.
The reversible dynamics of membrane invaginations has been
studied by a local acid injection [11]. Going back to Fig. 5, we
explore the transient formation of stomatocytes by removing
lipids locally from the outer leaflet. We consider a large vesicle
R =2 pum, with a density disturbance characterized by §p =
—0.0509 and w = 10%. Figure 12 shows the stomatocyte
formation by relaxation of density difference through shape
changes at a time scale t,, and then the full relaxation through
inter-monolayer slippage at a time scale slightly longer than
t1. Again, the second stage of the relaxation dynamics is
slowed down by the complex shapes adopted by the vesicle.
Interestingly, these dynamics provide a pathway between two
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FIG. 10. Elastic energy (top) and dissipation power (bottom)
during the relaxation of the giant vesicle, R = 4 um. The dissipation
power is normalized by W = 8b,,d?/(pt?). After a fast initial
relaxation of the density difference by budding, which leaves as a
signature a first spike in the membrane shear dissipation, the dynamics
are dictated by the inter-monolayer friction. Yet, at ¢ ~ 0.12¢,, the
density difference field is such that a rapid shape transition from a
bud to an elongated protrusion occurs, leaving another large spike of
membrane shear dissipation.

metastable branches of the equilibrium phase diagram, prolates
and oblates.

We finally note that our results quantitatively depend on
the reduced volume, the magnitude of the density disturbance,
and its size relative to the vesicle size. A systematic character-
ization of the dynamical behavior of such density disturbances
is the topic of current work. In the present study, we have not
considered larger vesicles, since then the effect of the bulk fluid
viscosity, ignored here for simplicity, may become important.

[~ VERNeEE |

- :C ke ! —
FIG. 11. Experimental observations from Ref. [43]; tube and bud
formation after a local injection of polymers in the vicinity of a
flaccid giant vesicle. The first row shows the nucleation of buds and
their transient elongation into tubes. The second row shows further
elongation and the subsequent retraction of the bud-tube shapes.
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FIG. 12. (Color online) Stomatocyte formation from a large
vesicle of radius R = 2 um, locally perturbed by an inverse density
asymmetry. During the relaxation of the density disturbance, the
vesicle switches from prolate to oblate.

V. CONCLUSIONS

We have proposed a comprehensive dynamical continuum
model for lipid bilayers to investigate out-of-equilibrium
phenomena, and implemented it numerically. Our simulations,
restricted to axisymmetry, are to our knowledge the first to
consider general and finite shape and lipid density changes.
This model allows us to study very complex dynamical
events of biological relevance, without resorting to simplifying
assumptions on the magnitude of the disturbances, the kinds
of shapes the bilayer can adopt, or the relative importance
of the different phenomena. After validating the model with
the well understood membrane tethering, we have presented
a gallery of examples, which highlights the versatility and
generality of the model in describing very different processes
involving lipid hydrodynamics and shape dynamics. These
examples show that some usual assumptions can oversimplify
the response of bilayers to various stimuli, and illustrate a
wide diversity of dynamical regimes. In tether pulling, the
viscoelastic behavior is given by the bending elasticity and
the inter-monolayer friction. In the intercell communication
through tunneling tubes, membrane tension gradients, together
with inter-monolayer friction and membrane shear viscosity,
set the time scale of transport. In the relaxation dynamics
of a bud absorption into a planar bilayer, two time scales
are operative: the faster one, given by bending elasticity and
the membrane shear viscosity, attenuates the geometry of the
bud, while the slower one, given by stretching elasticity and
inter-monolayer friction, relaxes a residual density difference
between the monolayers. This latter time scale is the dom-
inant one in the relaxation of localized asymmetric density
disturbances in vesicles, which also possess a faster time scale
given by stretching elasticity and membrane shear viscosity.
It is important to note that these observations are specific to
our parameter choice (material parameters such as «, size,
applied tension,. . .), and in general the dynamics depend very
much on the details. Furthermore, our simulations illustrate the
highly nontrivial effect of the bilayer shape on the dynamics.
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Thus, the proposed model and simulation method is a valuable
tool to interpret experiments and interrogate hypothesis about
biological phenomena mediated by bilayers. We are currently
using it to investigate the dynamics of confined bilayers [21], as
well as the dynamics of bilayers in the presence of membrane
proteins.
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APPENDIX A: SURFACE STRESS TENSOR

To determine the Cauchy surface stress tensor, we follow
the method presented in Ref. [48] based on the principle of
virtual work; see also Ref. [49]. Suppose that the free energy
of the bilayer is given by

n=/ﬂgmw,
I

where f(g,k)is the free energy per unit area. Then, the general
expression for the elastic surface stress tensor is

o = 7% 4 k> — VN, (A1)
~—— ——— N—— e’
ab ab
o) 1
where
ar_ 2 0ED)
\/§ 8gab
%ab — af
akab '

and g is the determinant of the metric tensor. We have changed
the sign in the definition of this stress tensor as compared to
the references above to be consistent with the Doyle-Ericksen
formula [50] and the usual convention, by which positive
tractions are tensile. Note also our different sign convention
in defining the second fundamental form. When dotted with a
unit tangential vector to the surface and normal to a curve on
it 1, this tensor provides the tractions along this curve /¢ gma‘fb

and [¢ gwojb , tangential and normal to the surface [49].
‘We have
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where the last equation comes from differentiating the follow-
ing statement of balance of mass piﬁ = cst. In the present
case,

f=«QH—Co)*/2+ Ky(p™/po F2dH — 1)*/2,
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leading to

0" = fg*" — k(2H — Co)k*”
+

K p 1 pi ab ab
—K, (5 —152dH ) [ Eg® + ak (A2)
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which is symmetric as expected, and to

+
0% = 2 Ve Hn® + dK,V° (p— - 2dH) n’. (A3)
L0

In both expressions, there is an implied summation on the
two monolayers contributions. The stretching term usually
dominates the in-plane stress tensor. For moderate density
variations and bilayer curvature, this results in the familiar

expression
At
19
o~ —K; <— — 1) g.
00

Also note that for uniform bilayers, e.g., spheres or tubes with
uniform lipid density, o, = 0.

APPENDIX B: MEMBRANE DISSIPATION FOR
AXISYMMETRIC SURFACES

We first compute the following terms of Eq. (11) for ax-
isymmetric surfaces, dropping the superindex =+ for simplicity:

1\ "\? 2 b 'y
d:d= (—v’) + (r—v> — —v, (—31)’ + £ r2 v)
a ar a a ar
+(4H* = 2K)v?
1, (PN, 2b 2%
=2 ) vttt

2r%7 (4H? - 2K)?*
.tV r,,
r2a3 " a2

(4H? — 2K)r"
+ 2
a

/ 2
(rd)> = ((r”) — 2v,,H>

ra
1 "\’ 47H
—v’z—l—(r—) v+
a

4" H r,
52V +2—vv
ra ra

,  204H? —-2K)r'?
- —

N tZ,ts

47'r'H
ra?

r;v

4r'H
a2

/
VU —

4H2r/2

4HZZ/2 )
+ 2

5 8H2}’,Z/
2z Tt -

a?

Tt Y Zt-

a a

By substituting the above relations into Eq. (11), we can
identify the nonzero components of the matrix A as

4H2_2K 72 H2 72
Aqy =4M( 5 )2 + 8A 22 ,
a a
AH? —2K)'7 H?r'7'
A12=—4M( 5 Iz —8i ’;Z,
a a

011932-13



MOHAMMAD RAHIMI AND MARINO ARROYO

Z/2,./ Z/F/H
Az = A =2p—— + 24—,
r<a ra
7’b 7H
Ais = A =2p— + 20—,
a a
(4H? — 2K)r"*? H%r'?
Axp =4u 5 + 8 —5—,
a a
r/zz/ r/ZH’

Ay = Ay =-2u

Axs = Az = —2u— — 20—~
a a
-

Azs = Age = A—
ra

1
Ass = Ags = 2+ 1) PR

APPENDIX C: VARIATION OF ELASTIC ENERGY FOR
AXISYMMETRIC SURFACES

Recalling definitions and the continuity equation, simple
calculations show that

oH oH , oH , 0H , oH |,
H, = a—rr,z + Wr’t + 3r”r’t + a—Z/Z’t + @Z,t’
r 7
a;=—r +-7,
t a ,t+ <
ir/ +/
pr:_(p Io_)l}i—p—vi/
ra a a
+/ + 7 +/ + ./
r 20 7 H z 20 r'H
+ P _ T+ P +p— 2t
a? a a? a
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and
0H 7z oH 7/ 3br’ oH 7
2— = ——, _—= = = —, —_— = =,
or ar? ar'  ad a’ ar” a3
28H _ " 3b7 23H _ r
o7’ al ad a3r ’ 97" al :

APPENDIX D: SPACE DISCRETIZATION OF THE
CONTINUITY EQUATION

Following a standard SUPG stabilization method, the
weight functions for the continuity equation are (B; + tc -
VB;), where © = h/(2|/c||) and & is the grid size. We rewrite
the continuity equation in Eq. (17) as

R e
Py FsTpT+cTpT =0, (D)
where
" vEr v 27Hr, 2r'Hz,
st = — —
ra a a a
+ / /
LV r'ry 7'z
C =TT T T
a a a

By replacing Egs. (25) and (26) in the equation above and
multiplying by the SUPG weight functions, we obtain for each
monolayer the discrete form of the continuity equation

(Mi + Mstbi)pi + (L:IE + Lg: + Litb:ﬁ: + L;tb:t)pi — O,
(D2)

where
+ 5 5 sth+ __ c* =5
M 1J = B[BJdS, MIJ = T—BIB]dS,
r r a
L, = / Bis*Byds, LY, = / Bic*B)ds.
r r
Ly —frfé’ *B,dS
117~ S byas,
r a
stb+ Ci Y=Y
Ly ,J=/r—B,c B;dS.
r a

Note that the M and L matrices depend on Pand V.
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