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A B S T R A C T

This paper presents a multi-scale procedure for the study of flat composite structures with discontinuities. In
this procedure, the structure is solved using shell elements while the laminate performance and the structural
discontinuities (e.g. connections or change in the laminate thickness) are analysed with a subscale model made
with solid 3D elements. The kinematics of both models are coupled following the Kirchhoff–Love theory. This
coupling is used during the homogenization procedure where the characteristic behaviour of the different
micro-models is obtained. Periodical boundary conditions are used for the laminates whereas a combination
between periodical and linear boundary conditions are used for the discontinuities. The proposed procedure
allows to reproduce accurately the structure elastic behaviour, as well as the stress and strain states in regions
with discontinuities, which until now could only be accurately simulated by means of expensive numerical
models using volumetric solid elements.
1. Introduction

In recent decades the size of structures designed and built with
composite laminates has grown significantly. In addition, the increas-
ingly widespread use of this kind of material is also leading to more
sophisticate structures. In particular, some of these structures are made
of complex laminates that are designed to suit better their mechanical
needs [1]. The hull of larger vessels, structural components for civil
construction, the blades of wind turbines, and larger part of airplane
fuselage are examples of these structures [2,3].

Most composite laminate structures have connections, transitions
zones and internal microstructures that increase the complexity of the
structures morphology [4,5]. The presence of such discontinuities in-
creases the challenge of the structural analysis. When the finite element
method is used to solve the mechanical problem there are commonly
two options to discretize the structure, i.e. volumetric solid elements
and superficial shell elements. Each ones having its advantages and
disadvantages, as it is described hereafter [6].

A detailed finite element mesh with solid elements allows to capture
the tensional and deformational state in each part of the composite
laminate. Moreover, this kind of elements are capable of reproducing
the stress states that occur in areas of transition, reinforcement, union
and overlapping. Nonetheless, a solid elements mesh has higher com-
putational cost due to the number of elements needed to discretize the
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geometry. In example, to correctly capture the evolution of the stresses
in the composite it is necessary to define several elements thought the
thickness direction. Considering that a conventional laminate is made
of dozens of layers, the necessary number of elements increase steeply.
Manage such large meshes is a disadvantage in terms of computational
cost, and also in the pre- and post-process tasks.

The problem related to the high computational cost associated with
solid finite elements can be solved by using shell finite elements.
In this case, all the layers of the laminate are concentrated in its
reference plane [7] which is then discretized as a surface, thus dras-
tically reducing the computational cost. However, grouping all the
layers in a single reference surface entails, in some cases, loss of
accuracy. Plate theories, such as Kirchhoff-Love’s, Reissner-Midlin’s [6]
or Zigzag [8] approximate the real deformation field of the laminate by
assuming numerous simplifications. Alternatively, novel and interesting
approaches have been recently proposed, as an instance, the method
proposed by Carrera et al. [9], which uses a global shell model of
the structure to obtain a local three dimensional representation of the
stress–strain distribution in each one of its elements. For continuous
laminates, all these approaches achieve good results, being able to give
the resulting average tension on each layer. Nevertheless, they cannot
capture the concentrations of stresses and deformations generated in
zones of transition and irregularities.
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Fig. 1. Representation of the different scales considered and the path followed during the problem definition.
Several authors have proposed formulations that, using multiscalar
approaches, couple models with different finite elements, for example
shells and volumetric solids elements, in order to benefit from the
advantages provided by each one of them. Most of these frameworks
differ among them on the displacement field applied at the bound-
aries between the elements, required to couple both scales. Gruttmann
and co-authors [10] use the kinematic definition established by the
Reissner–Mindlin plate theory while imposing a zero stress in the per-
pendicular direction of the plane on the upper and lower faces. Massart
et al. [11] rely on Kirchhoff’s kinematics introducing the periodical
boundary condition in a similar way as does Mallikarachchi [12]. More
complex formulations such as the one developed by Helfen in [13]
take into account the thickness variation of the laminate. The authors
Geers [14] and Coenen [15] also rely on the Reissner–Mindlin formula-
tion but using the second-order homogenization procedure previously
proposed by Kouznetsova [16]. Alternatively other authors rely on the
asymptotic homogenization for approximating the shell kinematics, see
Huang and Cai et al. [17,18], respectively. This approach aims to enrich
the kinematics of the original plate theories by adding among others the
out-of-plane phenomena. The precision of the results obtained applying
the described formulations to a composite laminate is demonstrated by
numerous numerical analyses. However, these formulations, and the
analyses conducted with them, are limited to laminates with a constant
configuration along the whole structure.

The methodology proposed in this work aims to reduce the com-
putational cost of simulations while maintaining the level of precision
provided by volumetric solid models. The proposed approach consists
in simulating the structure using shell elements and obtaining the
mechanical performance of these shell elements from their numerical
3D solid models representation. This is graphically presented in Fig. 1,
in which are introduced the different scales and models considered. On
the left it is shown the dimensional scales involved in the numerical
simulation while on the right it is shown the resultant equivalent shell
model that gathers the different scales considered.

In the structure shown in Fig. 1 it is possible to identify three differ-
ent dimensional scales i.e. structural, substructural and microstructural.
In the proposed approach, the substructural scale is defined as a dis-
continuity in the structure that is repeated along the geometry. On
the other hand, the microstructural scale corresponds to the periodical
internal structure of the laminate. The constitutive behaviour of the
shell elements, at the structural level, are characterized with a homoge-
nization procedure that use the substructural and microstructural scales
(see Section 2.2). The latter two subscales are modelled using volu-
metric solid elements, which allow to fully reproduce the behaviour
of discontinuities and internal laminate structures.
2

In addition, this work studies the boundary conditions necessary to
carry out the homogenization process to characterize the substructural
scale. The proposed boundary conditions are a combination of free,
linear and periodic conditions applied on the contour faces of the
models. They allow to take into account the loss of periodicity as well as
the scale separation concept [19], which is one of the main hypothesis
in which a computational multi-scale homogenization procedure is
based. Moreover, the presented methodology relies on a second order
homogenization formulation [16] to develop a novel homogenization
procedure in order to obtain the effective behaviour of the substructural
scale.

Current manuscript is divided as follows. In the first section the
kinematic coupling between the models of both scales is introduced.
Then this coupling is applied to the homogenization of continuous and
discontinuity laminate regions. The implementation process is briefly
explained afterwards. Finally an example is shown where a rectangular
laminated sample with a discontinuity in the center is studied. This
example is also used to validate the procedure proposed.

The mathematical notation used is the following. Scalars, vectors,
unit vectors, second and n-order tensors have been denoted as 𝑎, 𝑎, �̂�,
𝐀 and 𝑛𝐀 respectively. Using the Cartesian reference system, with 𝑒𝑖
where 𝑖 = 1, 2, 3, and the Einstein notation, the dot products shown
correspond to tensor-tensor, tensor-vector and vector-tensor-vector as
𝐀 ⋅ 𝐁 = 𝐴𝑖𝑗𝐵𝑗𝑘𝑒𝑖𝑒𝑘, 𝐀 ⋅ �⃗� = 𝐴𝑖𝑗𝑏𝑗𝑒𝑖, 𝑎 ⋅ 3𝐁 ⋅ 𝑐 = 𝑎𝑖𝐵𝑖𝑗𝑘𝑐𝑘𝑒𝑗 , respectively.

2. Multi-scale procedure proposed

The current section describes the multi-scale approach developed in
this work. The objective is to efficiently take into account the stiffness
contribution of the micro and substructural scales at the structural scale
level.

In order to relate the scales involved in the problem, it is neces-
sary to establish the kinematic relationship that exist between them.
The proposed relationship must consider the different finite element
technologies used in each scale. Due to the nature of the shell-like
problem at the structural scale, a second order multi-scale framework is
formulated. However, specific boundary conditions are applied to solve
the subscales boundary value problem in order to account for the loss
of periodicity.

The procedure proposed to couple both scales is schematically
presented in Fig. 2. The characteristic mechanical behaviour of the
substructure and microstructure, at the structural level, is obtained
with a numerical homogenization. The ABD constitutive matrix, which
relates the force and moment per unit length with the strains of the
shell, is obtained by solving the subscale models applying all possible



Composite Structures 322 (2023) 117343F. Turon et al.
Fig. 2. Definition of the ABD shell constitutive matrices following the homogenization procedure.
Fig. 3. Deformation of the laminate according to the KL plate theory.
pure strain states (strain tensors with a unit value in one direction,
and zero in the rest). This procedure, known as homogenization, is
similar to the one defined to obtain the tangent constitutive tensor
by numerical derivation in [20]. Finally, the shell elements used at
the structural problem are defined using the obtained ABD constitutive
relationships.

2.1. Kinematic relationship between shell and solid formulation

In the proposed procedure the structural scale uses shell elements
whereas the substructural and microstructural scales are discretized
with solid elements. Consequently, the former scale has a different
kinematics than the later scales. In order to define the kinematic
relationship between them, it is necessary to study the deformation
field on the shell elements, which are used by structural model, and its
correlation with the displacement field in the three-dimensional space
used by the solid models.

The Kirchhoff–Love (KL) plate theory [21] has been chosen to
govern the structural scale behaviour. The KL theory does not take into
account the out-of-plane shear of the laminate. Nevertheless, this the-
ory provides a good approximation for laminate with a low thickness-
size ratio. KL’s theory relies on three kinematic assumptions [6]. These
are listed below and represented in Fig. 3:

i Due to bending effects, points belonging to the mid plane only
move vertically.

ii After deformation takes place, straight lines perpendicular to
the mid-surface remain straight, and perpendicular to the mid
surface curvature.

iii The thickness of the plate does not change during a deformation.

Following the above assumptions, it is possible to establish a generic
volumetric displacement field for a material point which moves from
3

position 𝑝 on the undeformed configuration to the position 𝑝′ on the
deformed configuration (see Fig. 3),

𝑢(�⃗�) = [𝑢, 𝑣, 𝑤 ]𝑇 ,

𝑢(𝑥, 𝑦, 𝑧) = 𝑢𝑟(𝑥, 𝑦) + 𝑧 𝜃𝑥(𝑥, 𝑦) ,
𝑣(𝑥, 𝑦, 𝑧) = 𝑣𝑟(𝑥, 𝑦) + 𝑧 𝜃𝑦(𝑥, 𝑦) ,
𝑤(𝑥, 𝑦) = 𝑤𝑟(𝑥, 𝑦),

(1)

where the sub-index 𝑟 refers to the reference plane. Thus, 𝑢𝑟, 𝑣𝑟 and 𝑤𝑟
are the displacements in 𝑥, 𝑦 and 𝑧 directions of the laminate’s reference
plane. Given the second condition (𝑖𝑖) both angles of rotation i.e. 𝜃𝑥 and
𝜃𝑦 are defined as the partial derivatives of the bending with respect to
𝑥, 𝜕𝑤

𝜕𝑥 , and 𝑦 direction, 𝜕𝑤
𝜕𝑦 , respectively.

The in-plane strain field 𝜀𝑝 =
[

𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦
]

for any point of the
laminate is obtained applying the definition of the infinitesimal strain

𝜀𝑥 = 𝜕𝑢
𝜕𝑥

=
𝜕𝑢𝑟
𝜕𝑥

⏟⏟⏟
𝜀𝑟𝑥

+𝑧
𝜕𝜃𝑥
𝜕𝑥

⏟⏟⏟
𝜅𝑥

,

𝜀𝑦 =
𝜕𝑣
𝜕𝑦

=
𝜕𝑣𝑟
𝜕𝑦

⏟⏟⏟
𝜀𝑟𝑦

+𝑧
𝜕𝜃𝑦
𝜕𝑦

⏟⏟⏟
𝜅𝑦

,

𝛾𝑥𝑦 =
𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

=
(

𝜕𝑢𝑟
𝜕𝑦

+
𝜕𝑣𝑟
𝜕𝑥

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝛾𝑟𝑥𝑦

+𝑧
(

𝜕𝜃𝑥
𝜕𝑦

+
𝜕𝜃𝑦
𝜕𝑥

)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝜅𝑥𝑦

.

. (2)

then, Eq. (2) can be written as

𝜀𝑝 = 𝜀𝑟 + 𝑧 �⃗� (3)

where 𝜀𝑟 =
[

𝜀𝑟𝑥 , 𝜀𝑟𝑦 , 𝛾𝑟𝑥𝑦
]

is the reference plane strain, and �⃗� =
[

𝜅𝑥, 𝜅𝑦, 𝜅𝑥𝑦
]

contains the curvatures and torsion deformations. Both
vectors can be joined in a unique strain vector 𝜀 =

[

𝜀 , �⃗�
]

.
𝑟
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Fig. 4. 2D representation of Linear and Periodic boundary conditions.
𝑢

𝑢

Integrating Eq. (3) the full three-dimensional displacement field at
the subscale level is obtained. Appendix shows the integration proce-
dure followed to obtain the displacement vector 𝑢𝜇 =

[

𝑢𝜇 , 𝑣𝜇 , 𝑤𝜇
]

. The
final expression of this displacement is:

𝑢𝜇(𝜀, �⃗�𝜇) = 𝜀𝑟𝑥𝑥𝜇 +
𝛾𝑟𝑥𝑦
2

𝑦𝜇 + 𝜅𝑥𝑧𝜇𝑥𝜇 +
𝜅𝑥𝑦
2

𝑧𝜇𝑦𝜇 + 𝜔𝑥(�⃗�𝜇),

𝑣𝜇(𝜀, �⃗�𝜇) = 𝜀𝑟𝑦𝑦𝜇 +
𝛾𝑟𝑥𝑦
2

𝑥𝜇 + 𝜅𝑦𝑧𝜇𝑦𝜇 +
𝜅𝑥𝑦
2

𝑧𝜇𝑥𝜇 + 𝜔𝑦(�⃗�𝜇),

𝑤𝜇(𝜀, �⃗�𝜇) =
𝜅𝑥
2
𝑥2𝜇 +

𝜅𝑦
2
𝑦2𝜇 + 𝜅𝑥𝑦𝑥𝜇𝑦𝜇 + 𝜔𝑧(�⃗�𝜇),

(4)

where 𝜇 refers to the microstructural and substructural scales.

2.2. Second order homogenization formulation

The homogenization process aims to define the characteristic be-
haviour of the subscales when subjected to a strain given by the
structural model. In order to induce a structural strain state, a set of
displacements are imposed on the boundaries of the subscale models.

When the lengths of the subscales models cannot be considered
infinitesimal compared to the structure under study, the linear re-
lationship between the first order deformation gradient 𝐅 and the
subscale boundary displacements, is no longer fulfilled. This is even
more accentuated when the microstructural model represents the to-
tal thickness of the laminate. Therefore, it is not possible to use a
first-order homogenization to define this relationship.

This phenomenon can be appreciated when studying a solid under
bending. If the microstructure is infinitely smaller than the body under
study, it will be subjected to pure traction or compression depending
on the point studied with respect to the neutral plane. However, as
the size of the microstructure increases, the uniformity of traction or
compression is lost as the bending has to be taken into account in the
microstructure itself. This is shown in the work by Otero et al. [22].

In order to capture the variation of the deformation the second
order deformation gradient, 3𝐆, must be taken into account. This is
introduced by expanding the Taylor series of the displacement at the
microstructural and substructural scales

𝑢𝜇 = (𝐅 − 𝐈) ⋅ �⃗�𝜇 + 1
2
⋅ �⃗�𝐓

𝜇 ⋅ 3𝐆 ⋅ �⃗�𝜇 + �⃗� , (5)

where the term �⃗� is the displacement fluctuation field.
According to the average theorem, initially introduced by Hill

at [23], the deformation gradient F on any point of the structural scale
model must agree with the average of the strain gradient on their
representative subscale volume. The same relationship also applies
for the second order deformation gradient [24]. Both relationship are
expressed as

𝐅 ≡ 1 𝐅𝜇𝑑𝛺
3𝐆 ≡ 1 3𝐆𝜇𝑑𝛺 , (6)
4

|𝛺|
∫𝛺 |𝛺|

∫𝛺
where 𝛺 stands for the volume of the subscales models. Using the
displacement expression shown in Eq. (4), the first and second order
deformation gradient tensors can be derived by means of the gradient
operator ∇ = ( 𝜕

𝜕𝑥1
,… , 𝜕

𝜕𝑥𝑛
) following

𝐅 = 𝐈 + ∇𝑢𝜇 = 𝐈 +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜀𝑟𝑥 + 𝜅𝑥𝑧
𝛾𝑟𝑥𝑦
2 + 𝜅𝑥𝑦𝑧

2 𝜅𝑥𝑥 + 𝜅𝑥𝑦𝑦
2

𝛾𝑟𝑥𝑦
2 + 𝜅𝑥𝑦𝑧

2 𝜀𝑟𝑦 + 𝜅𝑦𝑧 𝜅𝑦𝑦 +
𝜅𝑥𝑦𝑥
2

−𝜅𝑥𝑥 − 𝜅𝑥𝑦𝑦
2 −𝜅𝑦𝑦 −

𝜅𝑥𝑦𝑥
2 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7)

and
3𝐆 = ∇𝐅 =

{

𝜕(𝐅)
𝜕𝑥 , 𝜕(𝐅)𝜕𝑦 , 𝜕(𝐅)𝜕𝑧

}

=

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

0 0 𝜅𝑥
0 0 𝜅𝑥𝑦∕2

−𝜅𝑥 −𝜅𝑥𝑦∕2 0

⎤

⎥

⎥

⎦

,
⎡

⎢

⎢

⎣

0 0 𝜅𝑥𝑦∕2
0 0 𝜅𝑦

−𝜅𝑥𝑦∕2 −𝜅𝑦 0

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

𝜅𝑥 𝜅𝑥𝑦∕2 0
𝜅𝑥𝑦∕2 𝜅𝑦 0
0 0 0

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

. (8)

To satisfy the average strain theorem, written in Eq. (6), some
restriction on the displacement fluctuation field must be imposed.
The most common restriction on �⃗� is applied at the boundaries of
the subscales models, and they are commonly known as Linear and
Periodic Boundary Conditions (BC). Fig. 4 shows an example of a 2D
microstructural scale model, and the obtained admissible deformations
depending on the boundary condition imposed in it. The Linear BC is
defined by imposing zero fluctuations on the boundaries, i.e. �⃗� = 0,

⃗𝜇 = (𝐅 − 𝐈) ⋅ �⃗�𝜇 + 1
2
⋅ �⃗�𝐓

𝜇 ⋅ 3𝐆 ⋅ �⃗�𝜇 (9)

for any �⃗�𝜇 ∈ 𝛤 .
The Periodic BC is obtained when �⃗�+ = �⃗�− for all points aligned

and located on opposite faces (see Fig. 4), which is imposed with the
following displacements in the boundary,

⃗ +
𝜇 − 𝑢 −

𝜇 = (𝐅 − 𝐈) ⋅ (�⃗� +
𝜇 − �⃗� −

𝜇 )

+1
2
⋅(�⃗� +

𝜇 − �⃗� −
𝜇 )𝐓 ⋅ 3𝐆 ⋅ (�⃗� +

𝜇 − �⃗� −
𝜇 )

(10)

for ∀pairs {𝑝+, 𝑝−} ∈ 𝛤 .

2.2.1. Mixed boundary conditions
As it has been previously stated, this work will use either mi-

crostructural or substructural models of the laminate in order to obtain
the material performance to be used in the structural model. The char-
acteristics of these models require using different boundary conditions
at the different faces of the microstructure or substructure, as it is
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Fig. 5. Transition’s periodical and non-periodical faces.
shown in Fig. 5. The specific mixed boundary conditions required for
each case are described hereafter.

Microstructural boundary conditions
The microstructure defined in the developed methodology considers

the whole laminate thickness, as can be seen on Fig. 5. Since there is
no periodicity in the out-of-plane direction, the model is free to deform
along this axis. This geometric feature must be taken into account
when the boundary value problem is formulated. For this subscale
the boundary conditions that suit the best are the following: Periodic
boundary condition for the two pair faces in the in-plane directions
(blue faces on Fig. 5), and Free boundary conditions for the upper and
lower face on thickness direction (green faces on this same figure).

It should be noted that when working with a second order homog-
enization formulation, the position of the microstructural coordinate
system must be consistent with the reference system used to define the
displacement field in the structural model.

Substructural mixed boundary conditions
Substructural models are used to characterize transitions, reinforce-

ments or irregularities of the laminate. The particularity of this case,
compared with the previous one, is the lost of the periodicity in one pair
of faces on the in-plane. Fig. 5 represents a substructure reinforcement
example. The substructural model shown only presents periodicity in
one in-plane direction meanwhile in the other is lost.

For this substructural scale a combination of Periodic, Linear and
Free boundary conditions is proposed. Periodic boundary conditions
still apply in the in-plane direction where the geometric periodicity
remains (blue faces on Fig. 5). Linear boundary condition are applied
in the perpendicular in-plane direction, where there is no periodicity
(red faces). Finally, Free boundary conditions are used in the upper
and lower face on thickness direction (green faces).

The length of the substructural model of the non-periodic direction
needs to be large enough due to the Linear boundary conditions im-
posed on it. The purpose of this is to minimize the edged effect on
the obtained stresses state of the analysed substructure. Following the
Saint-Venant principle [25] the optimum length varies according to the
thickness. The greater the thickness, the longer the substructural model
has to be.

2.2.2. Laminate stiffness matrix
The laminate stiffness matrix (ABD) is obtained either from the

microstructure model or the substructure model by means of an ho-
mogenization procedure. This is done by applying the six different pure
deformation states .i.e 𝜀 = 0 less 𝜀𝑖 for 𝑖 = 1, 2,… , 6, and computing its
associated displacement field with Eq. (4). Then, the boundary value
problem on each subscales is solved with the specific boundary con-
ditions explained previously. This generates six different stress states
at the subscales. Applying the Hill–Mandel principle [13,22], it can be
obtained the following force per unit length �⃗� =

[

𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦
]

and
moment per unit length �⃗� =

[

𝑀𝑥,𝑀𝑦,𝑀𝑥𝑦
]

as

�⃗� = 1 �⃗�𝜇 𝑑𝛺 (11)
5

𝐴𝜇 ∫𝛺
and

�⃗� = 1
𝐴𝜇 ∫𝛺

�⃗�𝜇 𝑧 𝑑𝛺 (12)

where �⃗� =
[

𝜎𝑥, 𝜎𝑦, 𝜎𝑥𝑦
]

and 𝐴𝜇 is the area of the reference plane at the
subscales models. The ABD constitutive matrix is assembled combining
the resulting �⃗� and �⃗� for each pure deformation states. This stiffness
matrix is the one required by the shell elements at the structural model.

3. Implementation workflow

The implementation of the proposed formulation has been carried
out for linear elastic problems. A brief description of the workflow for
the definition and resolution of these kind of analysis is given below.

The first step consists in assembling the stiffness matrix of each
subscale model. For this, it is necessary to define the models geometry,
and the constitutive behaviour of their composing materials. Every
subscale model is subjected to its six pure strain states corresponding
to each one of the deformations components as shown in Fig. 2. This
is done computing the corresponding displacement fields with Eq. (4)
for each one of the pure strain states and applying the BCs described
in Section 2.2.1 according to the model type and the periodicity of its
faces. Then the homogenization procedure described in Section 2.2.2 is
applied for each one of these pure strain which leads to the constitutive
relationship ABD for each subscale model.

Finally the analysis of the shell structural model can be performed
conventionally. Thus, the obtained ABD relationships are assigned to
each region of the geometry and the loads and boundary conditions
are applied over the structural model. After the analysis has been
completed, detailed representations of the stresses and strains on the
corresponding microstructure and substructure models can be obtained.

To this end it is necessary to extract the deformation state of each
one of the points of interest in the structural model. Then the associated
displacement field for each one of these points is obtained by means
of Eq. (4). These fields can be applied to the subscale models in the
same way as it is done during the homogenization process, i.e. with
the corresponding boundary conditions for each model, leading to a
detailed representation of the strains and stresses for a given structural
point in the solid model.

4. Numerical example

This section presents a numerical example to show the capabilities
of the proposed formulation when analysing real laminate composite
structures. To validate the whole procedure, two models are defined, a
solid structural model, used as a reference, and its equivalent multi-
scale structural shell model with the same geometry. Both models
reproduce an structure of composite laminate with a central omega
reinforcement subjected to a tensile load.
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Fig. 6. Solid reference model and its analogous shell structural model.
Fig. 7. Subscale models.
Table 1
Properties of the unidirectional long carbon fibre reinforced epoxy
(AS4-3501-6).

Unidirectional composite properties

𝐸1 [MPa] 142,000
𝐸2 = 𝐸3 [MPa] 10,300
𝜈12 = 𝜈13 0.27
𝜈23 0.40
𝐺12 = 𝐺13 = 𝐺23 [MPa] 7,200

4.1. Model description and applied load

The studied specimen has a total length of 740 mm in longitudinal
direction and 200 mm in transversal direction. The stacking sequence of
the laminate is given by [02,±452, 902, 0]𝑠 where each layer is 0.125 mm
thick. All layers are a unidirectional carbon fibre composite with the
properties listed in Table 1. The central reinforcement consists in a
omega profile using the same composite material but containing only
fibres aligned in its longitudinal direction and with a total thickness of
2 mm. The dimensions of its geometry are depicted in Fig. 7(a).

The solid structural model is meshed with Serendipity hexahedral
elements of 20 nodes each and integrated with a 3 × 3 × 3 points
quadrature [26]. Each layer has been discretized separately, as can be
seen in the detail in Fig. 6, which ensure a high level of accuracy [6].
The computational cost of this kind of elements is high but they
are able to capture the strain distribution with high accuracy in the
whole structural model (laminate and omega reinforcement). In order
6

Table 2
Macro-models meshes.

Mesh data

Model # elem. # nodes # DOFs

Solid structural 102,400 465,800 2,329,000
Shell structural 102 126 630
Substructure 13,662 76,274 381,370
Microstructure 512 2,945 14,725

to establish a direct comparison between the obtained results, the
microstructural and substructural models are meshed using the same
kind of finite elements. Similarly to the structural model each layer
has been discretized separately in their out of plane direction but in
this case with more than one element, as can be seen in the mesh
representation of Fig. 7(b).

The structural shell model is meshed with MZC rectangular ele-
ments [27], capable of reproducing the Kirchhoff kinematics, in ad-
dition the membrane behaviour has been added what introduces the
in-plane phenomena [6]. Its integration is performed with a 2 × 2 points
quadrature. Table 2 shows a comparison between the total number of
nodes, elements and degrees of freedom for each model.

The tensile load is applied over the structural models as an imposed
displacement that extends the longitudinal length a 1% of its total
length. This displacement is applied at both ends, locking at the same
time these in all their directions. In the structural shell model, all
rotations are also blocked at both ends.
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Fig. 8. Reinforcement substructure under homogenization procedure (Magnified ×10, ×1, ×50 respectively).
4.2. Subscale models. Geometry and stiffness matrix

The selected geometries of the subscale models are represented in
Fig. 7. Fig. 7(a) shows the microstructural model of the continuous
laminate and Fig. 7(b) shows the corresponding substructural model
of the omega profile.

The constitutive matrix ABD is obtained following the homoge-
nization procedure described in Section 2.2.2. The constitutive matrix
obtained for the microstructure of the laminate is shown in Eq. (13).
This ABD matrix is exactly the same that is obtained with the Classical
Lamination Theory (CLT) [7], which validates the result obtained and
the procedure developed. Although in this case the use of a microstruc-
ture to obtain this matrix is proved unnecessary, this will not the case
when analysing laminates with a more complex microstructure that
cannot be captured by the CLT, such as sandwich materials with a
honeycomb core.

The constitutive matrix for the substructure is shown in Eq. (14). In
this case, this matrix cannot be obtained analytically. As can be seen,
a non-zero B submatrix (top-right and bottom-left) is obtained due to
the presence of the Omega reinforcement. The comparison of Eq. (14)
with Eq. (13) shows a substantial increase in stiffness in the direction
of the Omega, defined along y-direction according to Fig. 7. In this
direction there is a three-times higher in-plane stiffness (submatrix A)
and a three orders of magnitude gain on bending stiffness (submatrix
D). The coupling that introduces the B submatrix can be appreciated in
Fig. 8(a), where it is shown the deformation of the substructure during
the homogenization procedure for a structural strain of 𝜀𝑟𝑥 = 0.01.

𝐀𝐁𝐃𝑚𝑠 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

159119 35970 0 0 0 0
35970 126019 0 0 0 0

0 0 45879 0 0 0
0 0 0 91572 14865 2585
0 0 0 14865 29337 2585
0 0 0 2585 2585 19046

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13)

𝐀𝐁𝐃𝑠𝑠

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

162507 36905 0 8077 2181 0
36905 381581 0 2181 2911311 0

0 0 53201 0 0 74520
8077 2181 0 121558 22966 2569
2181 2911311 0 22966 53844221 2581
0 0 74520 2569 2581 1156870

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(14)

4.3. Results obtained

The results obtained for the structural solid model and the equiv-
alent structural shell model are compared below. Fig. 9 shows the
displacement field comparison in directions 𝑥, 𝑦 and 𝑧. The displace-
ment fields represented for the volumetric models correspond to the
mid plane.
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A very good correlation can be appreciated between the displace-
ment field of both models as the resultant displacement fields only
differ on the edges of the laminate next to the transition elements. In
these edges, the stiffness difference between the shell and the omega
profile generates a variation in the result of the solid model that
is not captured by the shell one, which provides more regular and
smooth results. This behaviour cannot be captured by the structural
shell model, as shell elements only can reproduce periodic behaviour
in this direction. Despite the aforementioned difference, the agreement
on the displacements validates the methodology and shows the need
of including the effects produced by laminate discontinuities (such the
omega profile) in the laminate response, as these modify substantially
the displacement field and, therefore, the performance of the whole
structure.

The proposed procedure is able to analyze the local performance of
the subscales using the strain states provided by the structural model.
Using the strain at point 𝐴 (Fig. 9) in the shell model, and applying it
on the substructural model (Fig. 7(b)), leads to the stress distribution
shown in the right hand side of Fig. 10. The stresses obtained in
equivalent location of the solid reference model are shown in the left
hand side of Fig. 10 in order to establish a direct comparison.

The obtained results in both models, shown in Figure and Fig. 10
and 3 respectively, are in good agreement. In the first place the values
of the 𝑥-direction stresses are almost identical. As it is also identical
the distribution of these stresses in the laminate layers, and in the
reinforcement. As for the stresses obtained in 𝑦-direction, they are also
very similar in their distribution in the laminate layers and omega
reinforcement, however the solid model shows larger values in some
regions as can be seen in the figures of point’s ‘‘a’’ in Table 3. This
phenomena is mainly caused by the sensibility of 𝑦-direction stresses to
the 𝜅𝑦 curvature. The height of the substructure and the high stiffness
of the composite material leads to very sharp changes on the stress
distribution for a small variations of 𝜅𝑦.

Having proved that the results provided by the proposed methodol-
ogy are in a good agreement with the ones provided by a detailed 3D
model, the other outcome that has to be highlighted is the reduction of
the computational cost of the analysis. The direct comparison between
the number of degrees of freedom on the structural models, solid and
shell, already reflects the significant savings. As it can be seen in
Table 2 the total number of DOF is four orders of magnitude lower
in the shell model, a pattern that also holds true when it comes to
comparing the computational time. Therefore using the proposed multi-
scale method larger structures can be analyzed much faster than using
a conventional solid model.

On the other hand, the computational cost of homogenization pro-
cedure is low and only takes place once at the beginning of the
simulation. In addition the subscale models have a much smaller num-
ber of elements in comparison with the structural model discretized
with a similar mesh (see Table 2). Moreover, once homogenized, the
ABD matrix of each subscale models can be stored and reused, thus
bypassing the homogenization procedure and moving directly to the
resolution of the structural shell model.
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Fig. 9. Comparison between the displacement fields from the solid reference and shell structural models.
Fig. 10. Comparison between the stresses in the 𝑥 and 𝑦 directions on the solid reference model and the corresponding substructure (Magnified ×10).
Table 3
Stress value in the indicated points of Fig. 10 [MPa].

a b c d e

𝜎𝑥 𝜎𝑦 𝜎𝑥 𝜎𝑦 𝜎𝑥 𝜎𝑦 𝜎𝑥 𝜎𝑦 𝜎𝑥 𝜎𝑦
Solid Ref. Model 1.7 39.0 53.4 −202.1 1019.9 3.6 84.7 −209.6 1302.9 8.1
Substruc. Model 0.6 −60.5 47.5 −188.3 1024.4 5.3 84.5 −190.4 1304.4 9.8
5. Conclusions

This paper presents a new theoretical framework, and its numerical
implementation, for the analysis of composite laminar structures. The
proposed procedure obtains the mechanical performance of the shell
structural model, either in the continuous laminate zones or in any
possible irregularity existing in it, from the numerical analysis of a
microstructure and a substructure, respectively. In addition, a suitable
combination of mixed boundary conditions is proposed for the study of
the subscale models in which periodicity conditions are lost.
8

The validation example included has proved the accuracy of the
procedure proposed, showing that the results obtained with it are prac-
tically identical to the results obtained with a detailed 3D solid model
of the structure; and has also shown the capabilities of the method,
and the results that can be obtained with it. Following the proposed
approach, it is possible not only to obtain a close approximation of the
mechanical behaviour of complex laminate configurations and laminate
irregularities (e.g. transition reinforcements or changes in the laminate
thickness) with a high level of detail, but also to accurately predict their
stiffness participation in the overall structure.
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Despite all the advantages provided by the formulation developed,
due to the assumptions made during the homogenization procedure,
this approach has also some limitations. A continuous state of de-
formation is considered on the subscale models when defining their
constitutive ABD matrix. For this reason, when the structural model
shows pronounced changes in the deformation field, the obtained result
may have some slight variations in comparison the real kinematics.

Nevertheless, having the complete macro-structure analysed with
the shell elements defined in this work, provides the high result accu-
racy proved in the validation example with a minimal computational
cost in terms of computing time and required memory. This capability
opens a new path on the numerical analysis of large laminate composite
structures, which now can take into account the effects of different
laminate configurations and irregularities, in the overall structural
response. This capability is expected to improve the design of laminate
structures such as airplanes and ships, increasing their safety, reducing
their weight, and minimizing their environmental impact.
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Appendix. Integration of the deformation field

In this appendix the in-plane strain at the structural level defined in
Eq. (2) is used to obtain the displacement field given at the subscales
level. Based on the principle of scales separation, the structural strains
can be considered constant at the subscales domain. Under this assump-
tion, the displacement field at the subscale level is obtained with the
following expressions:

𝑢𝜇(𝜀, �⃗�𝜇) = 𝑢𝜀𝜇(𝜀, �⃗�𝜇) + 𝜔𝑥(�⃗�𝜇)

= 𝑢𝜇𝑟 (𝜀𝑟, �⃗�𝜇) + 𝑢𝜇𝜅 (�⃗�, �⃗�𝜇) + 𝜔𝑥(�⃗�𝜇)

𝑣𝜇(𝜀, �⃗�𝜇) = 𝑣𝜀𝜇(𝜀, �⃗�𝜇) + 𝜔𝑦(�⃗�𝜇)

= 𝑣𝜇𝑟 (𝜀𝑟, �⃗�𝜇) + 𝑣𝜇𝜅 (�⃗�, �⃗�𝜇) + 𝜔𝑦(�⃗�𝜇)

𝑤𝜇(𝜀, �⃗�𝜇) = 𝑤𝜀
𝜇(𝜀, �⃗�𝜇) + 𝜔𝑧(�⃗�𝜇)

= 𝑤𝜇
𝜅 (�⃗�, �⃗�𝜇) + 𝜔𝑧(�⃗�𝜇).

(A.1)

Where 𝑢𝜇𝑟 =
[

𝑢𝜇𝑟 , 𝑣
𝜇
𝑟
]

is the part of the displacements given by the
strains in the reference plane, 𝑢𝜇𝜅 =

[

𝑢𝜇𝜅 , 𝑣
𝜇
𝜅 , 𝑤

𝜇
𝜅
]

is the part induced by
the curvature effect and �⃗� =

[

𝜔𝑥, 𝜔𝑦, 𝜔𝑧
]

is the displacement fluctuation
field at the micro or substructural scales [22].

The different components of the proposed displacement field are
obtained using differential analysis. Assuming an infinitesimal volume,
the variation of 𝑢𝜀𝜇 is given by

𝑑𝑢𝜀𝜇 =
𝜕𝑢𝜇𝑟 (𝜀𝑟, �⃗�𝜇)𝑑�⃗�𝜇 +

𝑢𝜇𝜅 (�⃗�, �⃗�𝜇)𝑑�⃗�𝜇 (A.2)
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𝜕�⃗�𝜇 𝜕�⃗�𝜇
where, the first term can be obtained by,

𝜕𝑢𝜇𝑟 (𝜀𝑟, �⃗�𝜇)

𝜕�⃗�𝜇
𝑑�⃗�𝜇 =

𝜕𝑢𝜇𝑟
𝜕𝑥𝜇

𝑑𝑥𝜇 +
𝜕𝑢𝜇𝑟
𝜕𝑦𝜇

𝑑𝑦𝜇 +
𝜕𝑢𝜇𝑟
𝜕𝑧𝜇

𝑑𝑧𝜇 . (A.3)

Then, based on the Kirchhoff–Love (KL) theory it is assumed the
following:

𝜕𝑢𝜇𝑟
𝜕𝑥𝜇

= 𝜀𝑟𝑥 ;
𝜕𝑢𝜇𝑟
𝜕𝑦𝜇

=
𝛾𝑟𝑥𝑦
2

;
𝜕𝑢𝜇𝑟
𝜕𝑧𝜇

= 0. (A.4)

he displacement 𝑢𝜇 depends on the reference plane strain, and it is
integrated as,

𝑢𝜇𝑟 = ∫𝜕𝛺𝑥

𝜀𝑟𝑥𝑑𝑥𝜇 + ∫𝜕𝛺𝑦

𝛾𝑟𝑧𝑦
2

𝑑𝑦𝜇 = 𝜀𝑟𝑥𝑥𝜇 +
𝛾𝑟𝑧𝑦
2

𝑦𝜇 . (A.5)

A similar procedure is followed for second term of Eq. (A.2)

𝜕𝑢𝜇𝜅 (�⃗�, �⃗�𝜇)

𝜕�⃗�𝜇
𝑑�⃗�𝜇 =

𝜕𝑢𝜇𝜅
𝜕𝑥𝜇

𝑑𝑥𝜇 +
𝜕𝑢𝜇𝜅
𝜕𝑦𝜇

𝑑𝑦𝜇 +
𝜕𝑢𝜇𝜅
𝜕𝑧𝜇

𝑑𝑧𝜇 , (A.6)

and, on the KL theory:

𝜕𝑢𝜇𝜅
𝜕𝑥𝜇

= 𝜅𝑥𝑧𝜇 ;
𝜕𝑢𝜇𝜅
𝜕𝑦𝜇

=
𝜅𝑥𝑦
2

𝑧𝜇 ;
𝜕𝑢𝜇𝜅
𝜕𝑧𝜇

= 0. (A.7)

he displacement 𝑢𝜇 depends on the out of plane strain, and it is
integrated as,

𝑢𝜇𝜅 = ∫𝜕𝛺𝑥

𝜅𝑥𝑧𝜇𝑑𝑥𝜇 + ∫𝜕𝛺𝑦

𝜅𝑥𝑦
2

𝑧𝜇𝑑𝑦𝜇 = 𝜅𝑥𝑧𝜇𝑥𝜇 +
𝜅𝑥𝑦
2

𝑧𝜇𝑦𝜇 . (A.8)

The same procedure described for 𝑢𝑛𝑢 is followed to obtain the
displacement in 𝑦 direction i.e. 𝑣𝜇 .

The last term to be computed are the out-of-plane displacements 𝑤𝜅
due to the curvatures 𝜅𝑥 and 𝜅𝑦 are calculated based on the definition
of the curvatures, for both 𝑥 and 𝑦 directions.

𝑑𝑤𝜀
𝜇 =

𝜕𝑤𝜇
𝜅 (�⃗�, �⃗�𝜇)

𝜕�⃗�𝜇
𝑑�⃗�𝜇 =

𝜕𝑤𝜇
𝜅

𝜕𝑥𝜇
𝑑𝑥𝜇 +

𝜕𝑤𝜇
𝜅

𝜕𝑦𝜇
𝑑𝑦𝜇 +

𝜕𝑤𝜇
𝜅

𝜕𝑧𝜇
𝑑𝑧𝜇 (A.9)

here 𝜕𝑤𝜇
𝜅

𝜕𝑧𝜇
is equal to zero according to KL theory.

The other two derivatives of 𝑤 in expression (A.9) can be obtained
from the definition of an infinitesimal change in the angles of rotation:

𝑑𝜃𝑥 =
𝜕𝜃𝑥
𝜕𝑥𝜇

𝑑𝑥𝜇 +
𝜕𝜃𝑥
𝜕𝑦𝜇

𝑑𝑦𝜇

𝑑𝜃𝑦 =
𝜕𝜃𝑦
𝜕𝑦𝜇

𝑑𝑦𝜇 +
𝜕𝜃𝑦
𝜕𝑥𝜇

𝑑𝑥𝜇 ,
(A.10)

here,
𝜕𝜃𝑥
𝜕𝑥𝜇

= 𝜅𝑥 ;
𝜕𝜃𝑦
𝜕𝑦𝜇

= 𝜅𝑦 ;
𝜕𝜃𝑥
𝜕𝑦𝜇

=
𝜕𝜃𝑦
𝜕𝑥𝜇

=
𝜅𝑥𝑦
2

. (A.11)

Then, integrating the previous equations and using the definition of
the rotations,

𝜃𝑥 = ∫𝜕𝛺𝑥

𝜅𝑥 𝑑𝑥𝜇 + ∫𝜕𝛺𝑦

𝜅𝑥𝑦
2

𝑑𝑦𝜇 =
𝜕𝑤𝜇

𝜅
𝜕𝑥𝜇

𝜃𝑦 = ∫𝜕𝛺𝑦

𝜅𝑦 𝑑𝑦𝜇 + ∫𝜕𝛺𝑥

𝜅𝑥𝑦
2

𝑑𝑥𝜇 =
𝜕𝑤𝜇

𝜅
𝜕𝑦𝜇

(A.12)

Finally, replacing (A.12) to (A.9) and integration the resulting ex-
pression leads to the 𝑤𝜀

𝜇 definition

𝑤𝜀
𝜇 = ∫𝜕𝛺𝑥

∫𝜕𝛺𝑥

𝜅𝑥𝑑𝑥𝜇𝑑𝑥𝜇 + ∫𝜕𝛺𝑦
∫𝜕𝛺𝑦

𝜅𝑦𝑑𝑦𝜇𝑑𝑦𝜇 + ∫𝜕𝛺𝑦
∫𝜕𝛺𝑥

𝜅𝑥𝑦𝑑𝑥𝜇𝑑𝑦𝜇

(A.13)
𝜅𝑥
2
𝑥2𝜇 +

𝜅𝑦
2
𝑦2𝜇 + 𝜅𝑥𝑦𝑥𝜇𝑦𝜇 (A.14)

Rearranging all expressions derived in this annex, the displacement
field 𝑢 = [𝑢 , 𝑣 ,𝑤 ] for a given structural deformation state can be
𝜇 𝜇 𝜇
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calculated as the addition of the following terms,

𝑢𝜇(𝜀, �⃗�𝜇) = 𝜀𝑟𝑥𝑥𝜇 +
𝛾𝑟𝑥𝑦
2

𝑦𝜇 + 𝜅𝑥𝑧𝜇𝑥𝜇 +
𝜅𝑥𝑦
2

𝑧𝜇𝑦𝜇 + 𝜔𝑥(�⃗�𝜇),

𝑣𝜇(𝜀, �⃗�𝜇) = 𝜀𝑟𝑦𝑦𝜇 +
𝛾𝑟𝑥𝑦
2

𝑥𝜇 + 𝜅𝑦𝑧𝜇𝑦𝜇 +
𝜅𝑥𝑦
2

𝑧𝜇𝑥𝜇 + 𝜔𝑦(�⃗�𝜇),

𝑤𝜇(𝜀, �⃗�𝜇) =
𝜅𝑥
2
𝑥2𝜇 +

𝜅𝑦
2
𝑦2𝜇 + 𝜅𝑥𝑦𝑥𝜇𝑦𝜇 + 𝜔𝑧(�⃗�𝜇).

(A.15)
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