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Abstract. Widespread deployment of multicast depends on the exis-
tence of congestion control protocols that are provably fair to unicast
traffic. In this work, we present an optimization-based congestion con-
trol mechanism for single-rate multicast communication with provable
fairness properties. The optimization-based approach attempts to find
an allocation of rates that maximizes the aggregate utility of the net-
work. We show that the utility of multicast sessions must be carefully
defined if a widely accepted property of aggregate utility is to hold. Our
definition of session utility amounts to maximizing a weighted sum of
simple utility functions, with weights determined by the number of re-
ceivers. The fairness properties of the optimal rate allocation depend
both on the weights and form of utility function used. We present anal-
ysis for idealized topologies showing that while our mechanism is not
strictly fair to unicast, its unfairness can be controlled by appropriate
choices of parameters.

1 Introduction

Widespread deployment of multicast communication in the Internet depends
critically on the existence of practical congestion control mechanisms that al-
low multicast and unicast traffic to share network resources fairly. Most ser-
vice providers recognize multicast as an essential service to support a range
of emerging network applications including audio and video broadcasting, bulk
data delivery, and teleconferencing. Nevertheless, these network operators have
been reluctant to enable multicast delivery in their networks, often citing con-
cerns about the congestion such traffic may introduce. There is a clear need for
multicast congestion control algorithms that are provably fair to unicast traffic
if these concerns are to be addressed. In this paper, we present a congestion
control mechanism for single-rate multicast traffic based on an economic theory
of resource allocation and show that although it is not strictly fair to unicast
traffic, its unfairness is bounded and can be controlled.

We first formulate the multicast congestion control problem as a utility maxi-
mization problem, extending existing work for unicast. A naive, sender oriented,
� This work was supported in part by the National Science Foundation (NSF) under

grant number ANI-9980552

E. Gregori et al. (Eds.): NETWORKING 2002, LNCS 2345, pp. 423–442, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



424 J.K. Shapiro, D. Towsley, and J. Kurose

generalization of existing formulations for unicast treats single-source multicast
sessions no differently from unicast sessions, modeling each by an unweighted
utility function and maximizing the sum of session utilities. One problem with
this naive approach is that it penalizes individual multicast sessions for using
more network resources than unicast sessions without rewarding them for the
bandwidth saved on links shared by multiple receivers. More serious than its un-
fairness to multicast sessions, the sender-oriented approach turns out to violate
a generally accepted property of aggregate utility, namely, that the preference
of the aggregate does not change if we simply measure utility on a different
scale. This common-sense notion is why, for example, we reject as nonsense the
statement that, as a group, residents of New York prefer a temperature of 70
degrees to 60 degrees Fahrenheit, but prefer a temperature of 15.5 to 21 degrees
Celsius. If this invariance property is violated in the congestion control problem,
the network will be controlled about an operating point determined by an arbi-
trary choice of utility scale. We introduce a receiver-oriented approach that uses
session weights based on the number of receivers and preserves invariance under
a change in utility scale. Moreover, we show that such an approach is necessary
a neccessary condition for satisfying this property.

A consequence of adding session weights based on the number of receivers
is that the resulting rate allocations tend to favor sessions with more receivers
over those with fewer. Since the weighted sum does not remove the original
penalty against sessions that use more resources, it is not immediately clear
whether multicast sessions fare better or worse than unicast sessions under our
formulation. We show that while our formulation favors multicast sessions, the
resulting unfairness can be controlled and remains bounded in the simple network
topologies we have considered.

Our work is based on a promising economics-inspired approach called opti-
mization based congestion control, which casts the congestion problem as one
of utility maximization (alternately, cost minimization). This approach provides
an elegant theoretical framework in which congestion signals are interpreted as
prices, network users are modeled as utility maximizers, and the network sets
prices in such a way to drive a set of self-interested users toward an operat-
ing point at which their aggregate utility is maximized. Specific link service
disciplines and rate-control algorithms at end-hosts can be thought of as com-
ponents of a distributed computation to solve the global optimization problem.
Thus, improvements in congestion control can proceed in a principled fashion,
driven by improvements in the underlying optimization algorithm. While the
optimization-based approach has received much attention [1,2,3,4,5,6,7,8], it has
only recently been applied to multicast congestion control [9,10]. Many existing
mulicast congestion control schemes [11,12] rely on heuristic techniques, such as
adapting to a single receiver or a small group of representatives. In contrast,
the optimization-based approach offers a formal foundation with which to de-
velop congestion control mechanisms and understand their fairness properties
and impact on the global behavior of the network.
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The rest of this paper is structured as follows: In Section 2 we extend a uni-
cast congestion control problem formulation to single-rate multicast. In Section
3 we consider multicast session utility functions in detail, presenting a axiomatic
argument in favor of a particular definition. The fairness properties of our def-
inition are analyzed in Sections 4-6 where we show that multicast sessions are
favored over unicast sessions and present evidence that such unfairness can be
controlled. We conclude by briefly discussing the development of practical control
mechanisms based on our results and highlighting future work.

2 Problem Formulation

Optimization-based congestion control casts the problem of bandwidth sharing
as one of utility maximization. Consider a network modeled as a set of directed
links L, with capacity cl for each link l ∈ L. Let C = (cl, l ∈ L). The workload
for the network is generated by a set of sessions1 S, which consume bandwidth.
The set of links used by a particular session, s, is L(s) ⊆ L. The set of sessions
using any particular link, l, is S(l) ⊆ S.

Each session is characterized by a utility function Us, which is assumed to
be increasing and concave in the session rate xs. Session utility may also be a
function of other parameters in addition to rate, such as number of receivers,
but we will sometimes suppress these additional dependencies in the notation,
writing Us(xs). The network’s objective is to optimize social welfare, defined as
the sum of session utilities.

max
xs≥0

∑
s∈S

Us(xs) (1)

subject to
∑

s∈S(l)

xs ≤ cl l ∈ L (2)

The problem (1-2) can be solved using convex optimization techniques [13].
Under a standard economic interpretation, the Lagrange multipliers of such tech-
niques are referred to as shadow prices and can be shown to function as prices of
network links [14]. The essential step in developing practical rate-control algo-
rithms is to find a distributed algorithm for solving (1-2) in which each individual
session need only compute a local optimization to set its own rates. There is a
growing body of research devoted to finding such a distributed algorithm and
using it as a basis for unicast rate-control in practical protocols [1,2,3,4,5,6,8,7,
15].

Observe that the topologies of sessions are not explicit in the formulation.
For a unicast session, the links of L(s) are arranged end-to-end, forming an
acyclic path between a source and a receiver. However, L(s) can be any subset
of links—for example, a tree in the case of multicast. There is a requirement that
the session employs a single rate xs on all of its links. Thus, this formulation is
readily generalized to single-rate multicast sessions.
1 The terms ’session’ and ’user’ are synonymous in this paper.
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The case of multi-rate multicast is somewhat more complicated since the
singe rate requirement is replaced with a constraint that a session’s rate on link
l, be the maximum of its rate on any downstream link. Since a session can now
have different rates on different links, it makes little sense to endow the session
with a utility that is a function of scalar rate. Instead, recent treatments of the
multi-rate problem [9,10] have altered the model by associating a utility function
with each receiver. It is worth observing that this change to the model, while
arising naturally from the multi-rate constraint, has been introduced without
consideration of its effect on the global operating point. While a complete so-
lution to the multi-rate problem is beyond the scope of this paper2, our work
provides a formal justification for the use of receiver utility functions even in the
case of single-rate multicast where no such modelling pressure exists.

2.1 Application to Multicast

Single-rate multicast represents an important class of multicast applications.
Many important applications, such as bulk data transfer [16] typically operate
at a single rate. Even applications such as streaming video, for which multi-rate
multicast is often considered well suited, single-rate multicast is used in current
practice. It remains unclear whether multi-rate multicast for video is viable on
the Internet, where it must be implemented using layered multicast schemes that
have substantial overhead [17]. Furthermore, even if layered multicast is used,
single-rate congestion control techniques may be appropriate to adapt the rates
of individual layers.

It would appear that congestion control for single-rate multicast is a trivial
extension of the unicast problem and can take advantage of existing approaches.
It is important, however, to evaluate this claim carefully, given the importance
of single rate multicast in practice. Certainly there are implementation issues in
multicast that complicate the extension of unicast optimization-based rate con-
trol protocols based on packet marking schemes [5,6,4]. Equally serious, are the
conceptual difficulties that arise in an uncritical application of the unicast solu-
tion of the underlying optimization problem. It is not immediately clear what the
fairness properties of the resulting rate allocations are and, more fundamentally,
what it means to define a utility function for a multicast session.

To develop our intuitions about the conceptual problems mentioned above,
consider the approach of Low and Lapsley [5]. This approach finds a solution to
problem (1-2) by solving its dual to obtain the following optimality condition
for session rate xs:

xs(λs) = U ′
s
−1 (λs) (3)

λs =
∑

l∈L(s)

λl (4)

2 Solving the resulting multi-rate optimization problem is further complicated by the
coupling of problem variables due to the multi-rate constraint and because the max
function is nondifferentiable. See recent works by Kar, Sarkar, and Tassioulas [9] and
Deb and Srikant [10] for treatments of the multi-rate problem.
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where λl is the shadow price of link l and U ′
s
−1 is the inverse marginal utility

function for session s. It can be shown that U ′
s
−1(λs), and, hence, the rate

allocated to session s is a decreasing function of the total session price λs. A large
multicast session typically uses many more links than would a unicast session
between the source and any single receiver and can therfore expect to see a higher
session price than the unicast session. since U ′

s
−1(λs) is decreasing, multicast

sessions will receive lower rates than unicast sessions along the same end-to-
end paths, casting doubt on whether individual receivers have any incentive to
join multicast groups. It may be reasonable to adopt a new definition of session
utility with a bias in favor of multicast sessions to encourage bandwidth sharing.
However, we must be careful not to overcompensate for the high session prices
seen by multicast sessions, yielding allocations one would not consider fair to
unicast sessions.

In the following sections we analyze the impact of such definitions on the
fairness properties of the resulting congestion control mechansim. It will turn out
that the class of receiver-oriented session utility functions, while not absolutely
fair to unicast sessions, does not starve them in the presence of larger sessions.
Moreover, we will see that utility functions in this class make sense in a way
that other functions do not.

3 Multicast Utility Functions

In Section 2.1, we generalized the unicast optimization problem formulation to
accommodate single rate multicast sessions. However, there is a subtle problem
with this model that makes it difficult to apply to single-rate multicast. The
problem concerns the definition of utility for an individual multicast session.
An unweighted utility function is used to characterize the benefit of a higher
rate to the session. For a unicast session, it makes little difference whether we
consider this benefit to belong to the sender or receiver. For the purpose of
unicast congestion control, we can treat the sender’s and receiver’s objectives
as being one and the same. For a multicast session with multiple receivers it is
unclear whether session utility belongs to the sender or should be split in some
way among the receivers.

One approach towards defining multicast session utility ignores the multiplic-
ity of receivers and defines it only with respect to the sender.3 An alternative
approach would be to define session utility as a function of the utilities of the
receivers in the session. We informally refer to these two approaches as sender-
oriented and receiver-oriented, respectively. While a receiver-oriented approach
emerges naturally from the model in the case of multi-rate multicast, it is not
immediately clear which approach is most appropriate for single-rate multicast.
Later in this section we will formalize these definitions and argue in favor of a
receiver-oriented approach. Before doing so, however, we will digress briefly to
provide some background about the use of utility functions in economics and
the theory of social choice.
3 We are assuming that multicast sessions have a single source.
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3.1 Utility Functions and Social Welfare

The use of concave increasing utility functions to represent session utility has a
natural and intuitive interpretation. Utility is a monotonically increasing func-
tion of its input when individuals prefer having as much of the input as possible.
The concavity of the utility function captures the idea of diminishing marginal
utility4. Both concavity and monotonicity are appropriate assumptions in the
case of bandwidth for elastic traffic [18], where the input to the utility function
is the session rate.5

Utility can be difficult to quantify precisely; there is no clear unit of util-
ity and no agreed upon scale. Comparing the utility of two individuals can be
tricky, particularly when they do not share the same utility function. Because
of the difficulty in performing interpersonal comparisons of utility, economists
customarily think of utility as an ordinal magnitude, meaning that the absolute
magnitude of utility is meaningless, but that the relative magnitudes of utilities
at various rates for an individual session define preferences among rates and the
relative differences in magnitude indicate the strength of the preferences [19].
A consequence of considering only ordinal magnitudes is that utility functions
are unique only up to a linear transformation. That is, the utility maximizing
behavior of an individual with utility function u(x) is indistinguishable from one
whose utility function is a linear transformation of u(x). This restriction makes
intuitive sense because a linear transformation simply represents a change in
scale and a translation of the zero point of the utility function.

The notion of an aggregate utility function is a compelling extension of the
concept of individual utility. Aggregate utility is defined by a social welfare
function (SWF) that maps the vector of all session utilities to a scalar utility
value representing the social desirability of the corresponding vector of rates.
Since the SWF is not one-to-one, it induces a partial ordering over allocations of
rates, known as the social preference relation (SPR). As with individual utility
functions, we are primarily interested in this preference relation rather than the
absolute magnitude of the SWF.

In optimization-based congestion control, we adopt the sum of individual
utilities as the SWF. In general, there are many ways to define the SWF, each
carrying with it some subjective judgment about how individual preferences
should be combined to determine a social preference. It is possible to specify
desirable properties for a SWF axiomatically. Perhaps the most important result
of social choice theory is Arrow’s Impossibility Theorem, which states that it is
not always possible to satisfy all desidirata [20].

For example, a commonly cited property of SWFs is independence of irrel-
evant alternatives, which states that the socially preferred allocation should be
4 The term ’marginal utility’ is used in economics to refer to the first derivative of the

utility function.
5 In this section, utility will be assumed to be a function of session rate; we do so

for the sake of concreteness and continuity with the rest of the paper. It should
be understood, however, that the discussion presented here applies to any utility
function.
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invariant under a change in individual utility functions that leaves individuals’
preferences unaffected. It is straightforward to show that the sum of individual
utility functions violates this property. Indeed, it is precisely this violation that
allows Kelly to associate optimal rates under different functional forms of utility
with different formal definitions of fairness [1].

Although independence of irrelevant alternatives is neither required nor (in
light of Arrow’s Impossibility Theorem) worth pursuing for the congestion con-
trol application, a related but weaker property is still worthy of consideration.

– Invariance Under Linear Transformation (ILT): Let u be a vector of
utility functions and v be a transformed vector such that vi(x) = αui(x) +
β. Let U(u(x)) be a SWF, where u(x) = (ui(xi)) is the vector of session
utilities for rate vector x. We say that a SWF is invariant under a linear
transformation if, for any two rate vectors x and y,

U(u(x)) ≥ U(u(y)) ⇒ U(v(x)) ≥ U(v(y))

for any values of α, β. In words, the SWF induces the same preference relation
for u and v.

The ILT property builds on the assertion that individual utility functions are
unique up to a linear transformation, saying that aggregate preferences, too,
should be invariant under such a transformation. We will see shortly that under
some definitions of multicast session utility the ILT property is satisfied, while
under others it is not.

3.2 Sender- and Receiver-Oriented Utility Functions

We now formally define sender- and receiver-oriented concepts of session utility.
Consider a single-rate multicast session s with rate x and receiver set R with
size R. In the sender-oriented approach, session utility function is a concave
increasing function us of the session rate.

Usnd = us(x) (5)

In the receiver-oriented approach, each receiver i ∈ R has a utility function
ui(x), which is concave and increasing. The session utility function is the sum
of receiver utilities.

Urcv =
∑
i∈R

ui(x) (6)

We can convert these definitions into an alternate form by introducing two
requirements. First, we require that all receivers in a session have identical utility
functions.

ui(x) = ur(s) ∀ i ∈ R
We typically think of utility functions as representing application characteristics
and sometimes as being imposed by network mechanisms. For example, following
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the example of Kunniyur and Srikant [4], we use u(x) = -1/x to model TCP-style
congestion control.6 To the extent that receivers within a session share the same
application requirements, it is also reasonable to assume they share a utility
function. We feel that this is a natural assumption in the case of single-rate
multicast. The second requirement is that both sender- and receiver-oriented
utility functions should reduce to the same standard unicast utility function up
to a linear transformation when R = 1. These two restrictions allow us to express
both types of session utility functions as the product of a base utility function
u(·) and a scaling function f(·). The base utility function, u(·) depends only on
the session rate and is concave and increasing. It can be thought of as the utility
function of a session with a single receiver. The scaling function f(·) depends on
the number of receivers in the session. It must be monotonic in its argument,
although it need not be strictly increasing.

For a sender-oriented definition of session utility, f(R) = κ, where κ is a
constant.

Usnd(x,R) = κu(x) (7)

For a receiver-oriented definition, f(R) = κR, where κ is a constant.

Urcv(x,R) = κRu(x) (8)

It is possible to entertain other definitions of session utility. We choose these be-
cause they are commonplace and mathematically tractable. One obtains equation
(7) by treating all sessions equivalently, regardless of the number of receivers.
Equation (8) reflects the idea that multicast session utility is itself a social wel-
fare function, representing the aggregate utility of the receiver set. Under our
assumptions, this equation is equivalent to the sum of receiver utilities—a simple
and commonly used social welfare function

3.3 The Session-Splitting Problem

In Section 3.2, we identified two alternative definitions of multicast session utility
based on sender- or receiver orientation. Now we consider these two definitions
in more detail and determine which makes sense in the context of congestion
control. We begin by attempting to capture the effect of flexible group member-
ship using an optimization-based approach. Golestani and Sabnani [23] observe
that if receivers in a session can be dropped and reassigned to a different session
in response to congestion, it is often desirable to split a multicast group into
subgroups with different rates. One can think of this approach as an approxi-
mation of multi-rate multicast that does not violate the constraint of having a
single rate per session and requires less overhead at the receiver [17].

The presence of additional sessions in the network after splitting may increase
contention on existing bottlenecks or even create new bottlenecks. Thus not all
6 A more accurate TCP utility function is u(x) = (

√
2/T ) tan−1(T x/

√
2), where T

is the round trip time [21,22]. Kunniyur and Srikant’s approximate function u(x) =
−1/x is valid for small end-to-end loss probabilites.
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ways of splitting a session lead to an overall improvement in received rates.
Ideally, one would like to find a way to split the session that offers a higher
rate to some receivers without reducing the rates of any others. A less ideal, but
perhaps still tolerable split might reduce some receivers’ rates but improve the
utilization of the network and allow many more receivers to receive at a higher
rate. In this section, we consider the use of sender- and receiver-oriented social
welfare functions to determine whether splitting a session will improve aggregate
utility.

In general, the choice of sender- or receiver-oriented utility as well as the
form of the base utility function will affect the social welfare function. However,
for a fixed choice of these factors, we expect the SWF to be well-defined for all
possible ways of splitting the session. Additionally, the optimal way of splitting
a session should be invariant under a linear transformation of the base utility
function. If this were not the case, an arbitrary rescaling of utility could deter-
mine whether splitting a session is preferred over not splitting. We will observe
that this invariance holds in the case of a receiver-oriented SWF but not in the
case of a sender-oriented one.

We begin by formalizing the session splitting problem in terms of utility
maximization. In the session-splitting problem, we have a network (N,L) with
link capacities C = (cl, l ∈ L). A set of receivers R ⊂ N could be served by
one or more multicast sessions with source s ∈ N − R. We assume that the
number and rates of all other sessions in the network are fixed. Capacities in
C thus represent the available capacity for multicast sessions serving receiver
set R. Each session’s rate is limited by its most constrained receiver, that is,
by the receiver with the lowest link capacity along the path between it and the
source. If this bottleneck link is not shared by all of the receivers, then it may
be possible to split the session into two or more sessions yielding a higher rate
to some receivers.

Splitting the session is equivalent to partitioning the receiver set into disjoint
subsets P = {P1, P2, . . . , PN}. We will use P to denote the set of all possible
partitions of R. Each partition in P represents one possible way to divide the
receiver set into sessions. Each element of a partition represents a subset of
R to be served by a different session. Rates may vary among sessions, but all
receivers within a session must receive at a single rate. Computing the rates for
each session is, itself, a non-trivial problem since some links will be shared by
more than one session. There are many possible mechanisms for determining
session rates. One example is the greedy algorithm suggested by Rubenstein,
Kurose and Towsley [24] to achieve max-min fairness among the sessions.

For our purposes, it is sufficient to assume that we have some deterministic
mechanism to perform this rate assignment, which we model as a rate allocation
function X : P×Z

+ → R. Given a partition P and an index i, the rate allocation
function returns the rate of the session serving Pi.

The session-splitting problem requires us to find a partition that maximizes
the aggregate utility of the network. Recall that the optimization-based approach
defines aggregate utility as the (possibly weighted) sum of all session utilities.
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Thus the optimal splitting is a partition that solves

max
P∈P

U(P ; f, u,X)

where

U(P ; f, u,X) =
|P |∑
i=1

f(|Pi|)u(X(P, i))

is the aggregate utility function. We can choose the scaling function f from
equations (7) and (8) to solve this problem for sender- and receiver-oriented
definitions of session utility.

The aggregate utility function defines a partial ordering over P. In economic
terms, this ordering is the social preference relation over all possible partitions
of the receiver set. As explained in Section 3.1, it is customary to regard util-
ity functions as unique up to a linear transformation. A reasonable restriction,
therefore, is only to allow social preference relations that remain invariant under
a linear transformation of the base utility function, as captured by the following
axiom, similar to the ILT property in Section 3.1:

Axiom 1 Let f(·) be a fixed scaling function and X(·, ·) be a fixed rate allocation
function. For any base utility fuction u(·), let v(·) be another base utility function
such that

v(x) = αu(x) + β

where α and β are constants. Then for all P,Q ∈ P,

U(P ; f, u,X) ≥ U(Q; f, u,X)
⇐⇒ U(P ; f, v,X) ≥ U(Q; f, v,X)

Theorem 1. Let fsnd(R) = κ and frcv(R) = κR be sender- and receiver-
oriented scaling functions. For any base utility function u and rate allocation
function X(·, ·), the aggregate utility function U(·; frcv, u,X) satisfies Axiom 1,
while U(·; fsnd, u,X) does not. Furthermore, Axiom 1 can only be satisfied using
the scaling function f(R) = frcv(R).

The proof of Theorem 1 is quite straightforward and is omitted here due to
space limitations. Interested readers can find it in [25]. One immediate conse-
quence of this theorem is that if one accepts that Axiom 1 is indeed an appro-
priate requirement for any “reasonable” definition of aggregate utility, then our
sender-oriented utility definition is not “reasonable”. In fact, the only reasonable
definition of session utility is a receiver-oriented one.

4 Consequences of Receiver-Oriented Utility

In Section 3.3 we argued that receiver oriented session utility functions are an
appropriate model for multicast session utility in the session splitting problem.
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In this section, we return to the original congestion control problem and de-
termine whether using receiver-oriented utility functions leads to fair sharing
of bandwidth between unicast and multicast sessions. We rewrite the network
optimization problem (1-2) as

max
x=(xs,s∈S)

∑
s

κRs u(xs) (9)

subject to
∑

s∈S(l)

xs ≤ cl, ∀l ∈ L (10)

The Kuhn-Tucker conditions for optimality are

κRs d u/d x =
∑

l∈L(s)

λl (11)

λl(xl − cl) = 0, (xl − cl) ≤ 0 (12)

where the λl are Lagrange multipliers or link prices and xl =
∑

s∈S(l) xs is the
aggregate rate seen at link l. As before, we also write λs =

∑
l∈L(s) λl as the

total session price seen by session s.
From the first Kuhn-Tucker condition (11), we observe that the use of

receiver-oriented utility functions creates a bias in favor of sessions with large
numbers of receivers. To see this, note that

d u/d x = λs (κRs)−1 (13)

The optimal rate for session s, x∗
s is given by

x∗
s = u′−1 (

λs (κRs)−1) (14)

Equation (13) states that, at optimality, the a session’s marginal utility should
be proportional to its price divided by the number of receivers. We refer to the
ratio λs/(κRs) as the effective session price. The optimal rate can therefore be
obtained by taking the inverse of the marginal utility function as shown in (14).
Since Us is concave, u′ is a strictly decreasing function of x and its inverse is also
a decreasing function. For a fixed session price, a session with a larger number
of receivers has a lower effective session price and thus receives a higher rate.
We refer to this effect as “tyranny of the majority” (ToM).

ToM is a source of unfairness against unicast flows since multicast flows
with the same total session price will receive a higher rate. However, the fact
that multicast sessions tend to use more links than unicast sessions, particularly
as the number of receivers becomes large, means that the session price λs for a
multicast flow is likely to be higher than that of a unicast session. To understand
the fairness properties of rate allocations under receiver oriented utility functions
we must determine whether the price increase associated with the scaling of
multicast trees is sufficient to limit the effect of ToM as more receivers are
added.7

7 If one holds that improving the rate of many receivers at the expense of a few is
reasonable, giving a larger share of bandwidth to larger groups may not seem unfair.
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5 Effect of Multiple Points of Congestion

In the previous section, we saw that ToM and the scaling of multicast trees have
opposite effects. As we will see shortly, these effects are not necessarily equal
in strength. The effect of ToM is likely to be the stronger of the two, allowing
sessions with more receivers to receive a greater share of bandwidth. Whether
we choose to accept this form of controlled unfairness or introduce a correction,
we require a more precise understanding of the interaction of the two effects. In
this section, we show that the functional form of the base utility function can
be chosen to limit the strength of the ToM bias.

0

1

2

3

depth

unicast multicast

Fig. 1. A binary multicast tree of depth 3 with a sharing depth of 3.

Consider a multicast session in the form of a complete tree of degree k and
depth D, such as the one shown in Fig. 1. Each link of the tree has capacity c.
We will use a receiver-oriented definition of session utility, but allow an arbitrary
base utility function u(x). The tree has a receiver at each leaf, giving R = kD

receivers in total. The multicast session shares the network with a set of kD

one-hop unicast sessions, which are evenly distributed accross the links at depth
d. There are kD−d unicast sessions on each of kd links at level d. We refer
to d, the depth in the multicast tree at which unicast sessions share links, as
the sharing depth. Let x = (xs) be the vector of session rates, where x0 is the
multicast rate and x1, . . . , xR are the rates of the unicast sessions. Shadow prices
are represented by a vector of multipliers λ = (λ1, . . . , λL), where L = kd.8 For
a particular choice of sharing depth d, we can now form the Lagrangian for the
basic optimization problem (1).

We take the position that a bounded bias in favor of large groups is a defensible form
of “controlled unfairness” but that there must be a mechanism to prevent starvation
of unicast flows.

8 The vector λ contains elements for only those links with nonzero price, namely, the
kd links at depth d.
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Ld(x, λ) = kD u(x0) +
R∑

i=1

u(xi) −
L∑

j=1

λj gj(x) (15)

where {gj} is the set of capacity constraints for the shared links.

gj(x) = x0 +
L(j,k,d,D)−1∑

l=L(j−1,k,d,D)

xl − c ≤ 0 (16)

L(j, k, d,D) = j kD−d

We use the symmetry of the tree topology to reduce the problem to three vari-
ables: the multicast session rate xm, the unicast session rate xi, and the shadow
price of a congested link λ. We rewrite the link capacity constraint

gj(x) = g(x) = xm + kD−d xi − c (17)

Solving the first-derivative conditions of the reduced problem for the loga-
rithmic base utility function u(x) = log(x) gives

xm = c/2, xi = c/(2 kD−d), λ = 2 kD−d/c (18)

We observe the following facts about this result:

– At the system optimum, the multicast session receives rate xm = c/2. This
result is independent of the tree depth D, the sharing depth d, and the tree
degree k.

– The invariance of the optimal multicast rate is a direct result of the choice
of a logarithmic base utility function. As we will see, this property does not
hold for other utility functions.

– The remaining capacity on the shared links is split evenly among the sharing
unicast sessions. Since the number of sharing sessions is kD−d, the optimal
unicast rate depends on D, d and k.

– The total price charged to the multicast session is

λ kd = 2 kD/c,

which is independent of the sharing depth. Under a receiver-oriented defi-
nition of session utility, this price is divided by the number of receivers to
obtain the effective session price. Thus, effective session price is independent
of d, D and k under a logarithmic utility function.

Since the invariance of the multicast session rate appears to derive from a
special choice of utility function, it is interesting to explore the behavior as we
modify the functional form. We can derive the following optimality condition:

u′(xm) =
1

kD−d
u′(

c − xm

kD−d
), (19)
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Equation (19) relates the marginal utility function u′(x) to the function
u′∗(x) = a u′(a (c − x)) obtained when we rotate u′ about the line x = c and
scale both the argument and the result by the same factor a. Any point at which
these two functions intersect satisfies the optimality condition. Note that u′(x) is
the derivative of a concave and strictly increasing utility function, and therefore
must be strictly decreasing. Thus, u′(x) and u′∗(x) intersect in exactly one point,
establishing the uniqueness of the solution. Observe also that the scaling factor
a = 1/kD−d ≤ 1. Scaling the argument of u′(c − x) compresses the function
along the horizontal axis and moves the point of intersection to the left, while
scaling its result compresses the function along the vertical axis and moves the
point of intersection to the right.

Figure 2 shows how the allocated multicast rate changes as we vary the
sharing depth d (hence, the number of congested links) in a binary tree for
three choices of base utility function: u(x) = log(x), u(x) = −1/x and u(x) =
−(− log(x))α. The first function is the now familiar logarithmic utility function.
The second is the minimum potential delay (MPD) utility function introduced
by Massoulie and Roberts [26] and shown by Kunniyur and Srikant to model the
utility of TCP traffic [4]. The third function is shown by Kelly to yield max-min
fairness in the limit as α → ∞ [1].9 In all three graphs, the single decreasing
function is u′(x), the first derivative of the base utility function, and the family
of increasing functions are u′∗(x) for decreasing a (increasing D−d). The points
where u′∗(x) intersects u′(x) give the optimal rates for the multicast session as
a fraction of available capacity.

As established above, the intersection point is invariant and equal to c/2
for logarithmic utility. The intersection point is also fixed at c/2 when a = 1
for all three functions, corresponding to a sharing depth equal to the maximum
tree depth. In both the MPD and max-min fair utility functions, however, the
intersection point moves to the left as a decreases. That is, as the sharing depth
moves closer to the top of the tree, the number of bottleneck links decreases.
However, as more unicast sessions share each bottleneck, the price on each con-
gested link increases and the multicast session receives a smaller fraction of the
available bandwidth.

Under the definition of max-min fairness for single-rate multicast [24], the
multicast session must share bandwidth equally with all sessions on its most
congested link. Thus, in the max-min fair allocation for our k-ary tree example,
xm = c/(kD−d + 1). In the case of Kelly’s max-min fair utility function, we see
that the optimal rates approach the max-min fair allocations, indicated by the
tick-marks along the x-axis in Fig. 2. It appears that the points of intersection
converge to these values as we transform the logarithmic utility function into
the max-min fair utility function by increasing the exponent α. Demonstrating
this convergence formally is somewhat difficult.

We can establish a similar result for a family of utility functions that includes
both the logarithmic and MPD utility functions and also yields max-min fairness
as a limiting case. Consider the family of utility functions u(x) with first deriva-

9 In our numerical analysis, we take α to a reasonably high power. (α = 250)
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Fig. 2. Figure showing the effect on the optimal allocation for a binary multicast tree as
we vary the sharing depth. These graphs show three different marginal utility functions,
u′(x) along with their transformations u′∗(x) for various choices of D − d with the y-
axis shown in log scale. The x-coordinate of the points of intersection give the optimal
session rates as a fraction of available capacity. Max-min fair allocations for different
values of D − d are indicated along the x-axis. The figure shows that the logarithmic
utility function (top) gives the multicast session half the available bandwidth regardless
of the number of sharing unicast sessions, whereas the max-min fair utility function
(bottom) splits bandwidth evenly among all sessions on the shared link regardless of
the number of receivers. The MPD utility function (center) represents a compromise
between these two extremes.

tives u′(x) = 1/xα+1. Such functions include u(x) = log(x), u(x) = −x−α/α.
This family of functions was originally identified by Mo and Walrand [7]. Mem-
bers of this family are mathematically tractable since the functions u′(x) are
homogeneous, satisfying

u′(t x) = t−r u′(x) (20)

where r = α + 1. We can simplify the optimality condition of (19).

xm/ (c − xm) = a(1−r)/r (21)
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As a further simplification, we can express the multicast rate as a fraction, p, of
available capacity, xm = p c. Solving for p, we get

p =
(
1 + a(1−r)/r

)−1
. (22)

In the limit of large α, p converges to the max-min fair allocation.

lim
r→∞

(
1 + a(1−r)/r

)−1
= a/(1 + a) = 1/(kD−d + 1). (23)

Following Kelly’s example in [1], we can prove that u(x) = −x−α/α always
gives max-min fairness in the limit α → ∞, by providing an absolute priority to
smaller flows.10 For two rates such that xs∗ < xs,

u′(xs∗)/u′(x) = (xs/xs∗)α+1 → ∞ as α → ∞

6 Fairness to Unicast Sessions

In Section 5, we observed that a multicast session was able to obtain a higher
rate than unicast sessions sharing the same bottleneck links. We showed that this
unfairness is bounded in the presence of multiple points of congestion. However,
this result exploited features of an idealized multicast session topology. Adopting
a somewhat more realistic model in this section, we investigate whether the same
type of bounded unfairness is possible in a more general setting with receiver-
oriented utility functions. We also consider whether there is any multicast utility
function that allows a strictly equal split of shared bottleneck bandwidth between
a multicast an unicast session.

Adopting the fairness objective proposed by Handley, Floyd and Whetten
[28]—that the algorithm be provably fair relative to TCP in the steady state,
we define a generalized notion of TCP fairness. We say that a multicast session
utility function U(x; r) = f(R)u(x) is strictly unicast-fair if the optimal rate
for the multicast session is the same as would be obtained by a unicast session
with utility function u(x) along the most congested source-to-receiver path in
the multicast tree. This definition is equivalent to TCP-fairness in the case where
u(x) = −1/x, the MPD utility function.

We first show that neither sender nor receiver oriented multicast utility func-
tions lead to strict unicast-fair allocations and derive a result suggesting that
strict fairness is difficult to achieve under any definition of session utility. Con-
sider the modified star network topology shown in Figure 3. A single multicast
session with source node s and receivers {1, . . . , R} shares the network with R
unicast sessions, one from s to each receiver. Link l0 from the source to the
central node is shared by all sessions and has effectively infinite capacity. Each
link li from the center to receiver i is shared by the multicast session and one
unicast session. Link l1 is the bottleneck link, with capacity β c, where β < 1
and c is the capacity of all other links li, i > 1. Receiver 1 is the most congested
receiver in the multicast session.
10 A similar result is reported in recent work by Bonald and Massoullie [27].
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...
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1 R-1 R2
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capacity = ccapacity = βc

capacity = infinite

Fig. 3. A multicast tree with a modified star topology. Receiver 1 is most congested.

We give the unicast sessions the MPD utility function u(x) = −1/x. The
multicast function has utility function u(x;R) = f(R)u(x). Let xm be the rate
of the multicast session and xi be the rate of the unicast session to receiver i. A
strictly tcp-fair allocation would split the bandwidth on l1 equally between xm

and x1, xm = x1 = β c/2. We can substitute this rate into the optimality con-
ditions of the optimization problem (9-10) to determine the appropriate scaling
function f(R) that will lead to the tcp-fair allocation, obtaining

f(R) = 1 +
(R − 1)β2

2
√
2 (2 − β)2

(24)

This result shows that tcp-fairness can be achieved in the optimization-based
framework by maximizing a weighted sum of utilities with weights given by a
scaling function f(R). However, the presence of β, a topological parameter, in the
scaling function suggests that the correct scaling function depends on topological
properties of the network.

We now consider a generalized version of the previous example with no ex-
plicitly defined network topology. Consider a network containing a set of links
L. The network is shared by two sessions v and w, which have rates xv and xw,
respectively. Each session uses a subset of links in the network and session w only
uses a proper subset of links that are also used by v. Formally, L(w) ⊂ L(v) ⊆ L.
The sessions have Rv and Rw receivers with Rv > Rw. We assume that the path
to the most constrained receiver in both v and w is the same and is therefore
entirely contained in L(w). The Lagrangian for the optimization problem is.

L(x;λ) = f(Rv)u′(xv) + f(Rw)u′(xw) +∑
l∈L(w)

λl(xv + xw − cl) +
∑

l∈L(v)−L(w)

λl(xv − cl) (25)

From the Kuhn-Tucker conditions, we derive an optimality condition on the
ratio of marginal utilities.

u′(xv)/u′(xw) = (f(Rw)λv)/(f(Rv)λw) (26)

where
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λv =
∑

l∈L(v)

λl, λw =
∑

l∈L(w)

λl (27)

Consider the family of base utility functions satisfying u′(x) = −1/xα, α ≥ 1.
Note that this family includes both the MPD and logarithmic utility functions.
The ratio of session rates is

xw/xv = ((f(Rw)λv)/(f(Rv)λw))1/α (28)

In a strictly tcp-fair allocation, the ratio xw/xv = 1. From equation (28), it is
clear that the actual value of this ratio depends on both the choice of scaling
function and the ratio λv/λw. It is also apparent that the ratio xw/xv approaches
1 in the limit as α → ∞. Thus, the exponent α offers one way to control un-
fairness for any choice of scaling function; increasing it moves the resulting rate
allocation closer to max-min fairness. However, only the max-min utility function
can guarantee strict unicast fairness for an arbirtary choice of scaling function.

If a utility function other than max-min is used, providing strict unicast
fairness requires careful selection of the scaling function. For example, strict
unicast fairness could be achieved by exploiting a scaling law relating the total
price of a multicast session to its number of receivers. Chuang and Sirbu propose
such a law for static multicast costs [29] with the form

λs ∝ Rk
s (29)

The authors empirically evaluate the scaling exponent k, finding its value to be
constant over a wide range of network topologies. This law assumes, however,
that link costs in the network are static. To be applicable for the purposes of
congestion control, such a scaling law would have to be established for dynam-
ically changing prices that reflect link congestion. If such a scaling law can be
found, then strict unicast fairness would result from a multicast session utility
function

Us(x) ∝ R−k
s u(x).

We leave the search for such a scaling law as direction for future research, but
note here that, as presented in Section 3.3 the sum of session utilities under such
a multicast utility function would not be invariant under a linear transformation
of u(x).

7 Conclusion

This paper presented an optimization based scheme for multicast congestion
control based on utility maximization. Appealing to the economic theory un-
derlying this approach, we proposed the use of a receiver oriented definition of
session utility. By considering the incentive to split multicast sessions into smaller
sessions, we showed that only receiver oriented utility functions ensure that the
optimal solution of the session-splitting problem remains invariant under a linear
transformation of the utility scale.
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We identified two sources of unfairness that arise when maximizing the sum of
receiver oriented utility functions, one favoring unicast sessions and one favoring
multicast. Unicast sessions are favored because they tend to use fewer links than
multicast sessions and thus are charged a lower price for bandwidth. Multicast
sessions are favored by the tyranny of the majority effect because the the sum of
link prices in the session session is divided by the number of receivers and this
reduced price is used to compute the session rate. When these two effects are
combined, a net unfairness results that favors sessions with many receivers over
sessions with few, with unicast sessions faring worst of all. This unfairness can
be controlled, however, by choosing the form of the base utility function. While
it is difficult to achieve strict fairness between unicast and multicast traffic, we
argue that controlled unfairness is a reasonable goal, particularly as it provides
an incentive to use multicast by rewarding larger groups.

Much work still remains to be done in this area. In the work presented here,
we have focused on the economic interpretation of the optimization-based ap-
proach to reason about the fairness properties resource allocation at system
equilibrium. A complimentary line of enquiry concerns the convergence and sta-
bility properties of the equilibria in the multicast case. A promising direction of
future work is to extend the growing body of relevant research for unicast [30,
31,32,33] to the multicast case.
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