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Summary. Topology optimization generates optimal designs for specified loads. This includes
designs with minimal mass subject to a constraint on a system response, such as deformation.
Many loading scenarios, and, thus, many constraints on the system response can make topology
optimization expensive. This is relevant, e.g., under uncertain loading conditions. Similarly,
in optimization problems subject to constraints on the total eigenfrequency, many vibrational
modes have to be considered.

For these problems, it is beneficial to formulate constraints on the stiffness of the structure
rather than on its response to individual loads. In the approach introduced by Frank et al. [1] and
Frank and Zimmermann [2], this is done using a so-called interface stiffness matrix (or similarly
its inverse, an interface compliance matrix). More specifically, the lowest eigenvalue λmin of
the so-called stiffness excess matrix, i.e., the difference between the interface stiffness matrix K
and a limit matrix Kc, are subject to the constraint to be positive to ensure sufficient overall
stiffness.

In this paper we present (1) a motivation of a meaningful limit stiffness matrix Kc for many
loads, and (2) an algorithm to solve the topology optimization problem subject to the con-
straint λmin (K−Kc) ≥ 0 to ensure sufficient stiffness.

1 INTRODUCTION

Structural optimization plays a crucial role in achieving lightweight design goals by optimiz-
ing the distribution of materials in order to maximize structural efficiency, typically reflected in
improved stiffness-to-weight ratios. System requirements typically include displacement, stress,
or compliance constraints for specific load cases. Optimization is computationally expensive
when multiple loading scenarios or uncertain loading conditions are considered. In contrast, the
stiffness matrix, which contains the structure’s geometric and material characteristics, is inde-
pendent of the loading conditions. By formulating constraints directly on the stiffness matrix by
setting a limit stiffness matrix, the optimization can be effectively decoupled from the loading
scenarios. This approach reduces the computational cost by eliminating the need to address
each load case individually and enhances the flexibility of the design process. Krischer and Zim-
mermann [3] successfully applied this principle by employing so-called informed decomposition
to break down complex optimization problems into manageable components. They used spe-
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Figure 1: Design domain with a rigid interface with two degrees of freedom

cific entries of the interface stiffness matrix and topology optimization to develop meta-models
that predict mass and feasibility, which facilitated the assignment of target stiffness values to
individual components.

This work addresses both establishing a limit on the interface stiffness matrix and the mass
minimization based on that limit stiffness matrix.

The advantage of using interface stiffness matrices as optimization constraints lies in its
load independence during the topology optimization. This makes it particularly suitable for
scenarios with uncertain loading conditions, which can be addressed using sampling strategies
(e.g., [4, 5, 6]). Additionally, it is effective for optimization involving a wide range of loads e.g.
from dynamic cases [7] or other uncertain loading scenarios [8, 9]. Requirement formulations on
stiffness entries can also be used for optimization of larger systems where system requirements
are to be broken down on component level as demonstrated by Krischer [3, 10].

The constraints are set on the eigenvalues of the stiffness excess matrix, i.e., the difference
between the interface stiffness matrix K and the limit matrix Kc. In literature, eigenvalues are
often involved in structural optimization, particularly when manipulating the natural frequen-
cies of a system to avoid resonance or prevent buckling [11, 12]. These applications highlight
the importance of eigenvalues in determining structural behavior under various operational con-
ditions. In the present work, eigenvalues are not used to address dynamic or failure problems,
but to formulate requirements on the stiffness of components.

This work explores the implementation for the minimum eigenvalue constraint with respect
to the interface stiffness matrix based on [13]. The method directly imposes constraints on the
eigenvalues of the interface excess matrix, while the eigenvalues and eigenvectors are tracked,
meaning that the order of eigenvalues and eigenvectors does not change. This ensure differ-
entiability for repeated eigenvalues. Topology optimization will generate structures that meet
stiffness requirements efficiently.

2 METHODS AND PROBLEM STATEMENTS

2.1 Setup

To demonstrate the concept, a simple rectangular design domain Ω is used. The structure
is fixed on the left side and features a rigid interface on the right, as shown in Figure 1. The
load is introduced at the interface node as f = [F,M ]T , which possesses one translational and
one rotational degree of freedom. These are represented in the interface displacement vector
q = [u, φ]T . Using linear elastic material behavior, the response of the structure can be modelled
by
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Figure 2: Visualization of C̃c enclosing all directional stiffness vectors rj .

Kq = f . (1)

2.2 Problem statement

Starting point is a structural design optimization problem for design variables x, which may
be nodal densities ρ for topology optimization, as presented in Equation 2, where a constraint
ljc is imposed on the compliance lj of the interface,

min
x

m(x)

s.t. lj ≤ ljc for j = 1, . . . , nlc.
(2)

The problem can be split into two parts: The first part identifies a minimum limit stiffness
matrix, ensuring that the displacement constraints are fulfilled for all load cases j

min
Kc

||Kc||

s.t. lj ≤ ljc for Kcqj = fj .
(3)

The second part is then given by

min
x

m(x)

s.t. λi(K(x)−Kc) ≥ 0, i = 1, . . . , ndim,
(4)

where λi denote the eigenvalues of the matrix argument. This works because the inequality
constraint implies that for any arbitrary vector q, the inequality qTKq ≥ qTKcq must hold.
Now, if we choose q = qj , this leads to fTj qj = qT

j Kcqj = lj , where lj ≤ ljc. This means that
the constraint of the initial problem is satisfied.

The construction of Kc is described in the following section.

2.3 Constructing Kc

We seek the smallest Kc, or equivalently, the largest limit compliance matrix Cc that still
satisfies the condition
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Figure 3: Design domain is discretized by finite elements, (b) slave nodes are removed with Guyan
reduction, and (c) remaining nodes are connected rigidly to the interface node with an RBE2 element.

fTj Ccfj ≤ ljc ∀j, where Cc = K−1
c . (5)

First, force vectors are normalized by the compliance limits, yielding

rj =
fj»
ljc
El3

. (6)

This way, Equation 5 can be replaced by

rTj C̃crj ≤ 1, with C̃c =
1

El3
Cc. (7)

The solution of Equation 7 satisfies the initial constraint of the optimization problem as long
as the constraint in expression 4 is satisfied. In two dimensions, the equation can be represented
geometrically as an ellipse. In Figure 2 the red ellipse shows all rj for which rTj C̃crj = 1 and is,

thus, a visualization of the magnitude of C̃c. The larger C̃c, the smaller is the ellipse. Once, C̃c

encloses all load vector rj , Equation 5 is satisfied. This problem is treated, e.g., in [15]. Imposing
the constraint fTj Cfj ≤ fTj Ccfj ∀fj will ensure that the constraint in Equation 5 is satisfied.
For invertible Cc using C ≤ Cc ⇔ K ≥ Kc, we finally obtain the limit stiffness matrix Kc.

The advantage of using the limit stiffness matrix over the limit compliance matrix lies in its
simplicity. Handling zero stiffness values is more stable compared to managing infinite entries in
the compliance matrix. Furthermore, the limit stiffness matrix enables zero entries in directions
where stiffness is not required, making it more versatile for application.

2.4 Topology optimization

For topology optimization with SIMP, a finite element model of the system is required.
Therefore, the domain is discretized using 60 × 30 quadrilateral plane stress elements. The
finite element model includes a large nodal stiffness matrix, which requires a two-step reduction
process for condensation on the interface node. First, the right-most nodes of the structure are
treated as slave degrees of freedom using Guyan reduction. Then, these nodes are connected to
a rigid interface, as shown in Figure 3. The interface stiffness matrix K is calculated as follows:

K = TT
r T

T
g KFETgTr, (8)

whereKFE represents the nodal stiffness matrix andTr andTg including the static condensation
for the rigid interface and onto the interface node, respectively.
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Figure 4: Density distribution of the optimized structure for benchmark cases. B1 corresponds to
Kc = ( 0 0

0 20Nmm ) and B2 to Kc =
(
0.01Nmm−1 0

0 0

)
The structural behavior can be fully described by the derived 2 × 2 stiffness matrix. This

allows the prescription of the interface stiffness properties by a limit matrix used for a constraint.
Topology optimization is carried out using the Solid Isotropic Material with Penalization

(SIMP) method, applying a penalty factor of 3. A density filter with a minimum radius rmin =√
2mm is employed to prevent checkerboard patterns. All elements are initialized with a uniform

density distribution at a 50% volume fraction. The Method of Moving Asymptotes (MMA) is
used to solve the optimization problems, with algorithmic hyperparameters set according to the
guidelines provided by Svanberg in [14].

3 TOPOLOGY OPTIMIZATION

The gradient of the constraint function is calculated based on the free vibration example of
Bendsøe and Sigmund [16]. The eigenvalue problem for this scenario is defined as

(D− λiI)vi = 0, (9)

where D = K−Kc is the so-called stiffness excess matrix and vi is the eigenvector corresponding
to the eigenvalue λi. The gradient of λi with respect to the design variables ρe is derived to

∂λi

∂ρe
= vT

i

∂K(ρe)

∂ρe
vi = vT

i T
T
g

∂K(ρe)

∂ρe
Tgvi = pρp−1

e vTTT
g KeTgv. (10)

For topology optimization with finite elements, the problem reads now

min
ρe

m(ρe)

s.t. λi(D(ρe)) ≥ 0, i = 1, . . . , ndim

0 ≤ ρe ≤ 1, e = 1, . . . , n.

(11)

To verify the correctness of the implementation, two benchmark cases were employed: (B1)
for pure bending moment and (B2) for pure shear force. These cases are chosen due to their
simplicity and the predictable outcomes derived from standard sample problems in topology
optimization. The resulting density distributions for the minimum eigenvalue constraint are
shown in Figure 4. For case (B1), the theory predicts maximum normal stress at the upper and
lower boundaries of the domain. Correspondingly, the density distribution reveals beam-like
structures forming at these boundaries, aligning with theoretical expectations. For case (B2),
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Figure 5: Topology optimization results for different limit stiffness matrices Kc and the realized stiffness
matrices K. Units are [K] =

(
Nmm−1 N

N Nmm

)
.

the stress distribution increases towards the support, manifesting a typical cantilever design,
which also accords with the expected outcome.

Figure 5 displays a selection of topology optimization results for various limit stiffness matri-
ces. As observed in the benchmark cases, an increase in the k22 entry results in thicker structures
at the boundary of the domain, whereas a decrease in the k11 entry gradually removes the struc-
ture in the middle of the domain. For the examples presented, the eigenvalues of the stiffness
excess matrix exhibit similar behavior. Specifically, the smaller eigenvalue λ1 approaches zero,
while the larger eigenvalue λ2 remains greater than zero. In scenarios where the two eigenvalues
do not both approach zero, the optimization process tends to converge effectively, producing
stable and feasible designs.

However, when off-diagonal terms are included in the limit stiffness matrix, the optimization
landscape changes significantly. In such cases, the limit stiffness matrix can be exactly matched
by a structure, leading to a stiffness excess matrix with all zero entries. This situation causes both
eigenvalues to become zero, which creates convergence problems for the optimization algorithm.
When both eigenvalues approach zero, one of the constraints is violated by MMA, resulting
in difficulties for the algorithm to find a feasible solution. Therefore, the current approach is
primarily useful in scenarios where this specific issue of both eigenvalues becoming zero cannot
occur.

The implementation of the eigenvalue constraints requires careful handling to avoid problems
associated with eigenvalue ordering. In the constraint functions, it is not sufficient to only use
the smallest eigenvalue as described in the initial problem formulation. This approach can lead
to complications when the order of the eigenvalues switches during the optimization process.
To address this, constraints are imposed on both eigenvalues, ensuring that they are each larger
than or equal to zero. This results in two separate constraint functions being incorporated into
the optimization problem. The eigenvalues and their corresponding eigenvectors are tracked
throughout the optimization process. Tracking helps to prevent the switching of eigenvalue
order, which can disrupt the convergence of the algorithm. While this approach makes the
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convergence process smoother, there are still instances where a constraint becomes temporar-
ily violated, leading to oscillations. These oscillations can cause the algorithm to struggle to
maintain feasibility, resulting in a less stable convergence process.

4 CONCLUSION

This study delves into topology optimization subject to constraints on the interface stiffness
matrix. A method was proposed that decouples the optimization process from specific loading
scenarios. The proposed approach ensures sufficient stiffness for multiple load cases by speci-
fying a limit stiffness matrix, which is used for constraint formulation in the subsequent mass
minimization process.

Formulating constraints on the stiffness matrix, rather than on individual load responses,
offers significant advantages, especially in handling uncertain or numerous loading conditions.
This method was demonstrated on benchmark cases, aligning with theoretical expectations.
However, the study also highlights persistent challenges such as repeated eigenvalues and eigen-
value switching, which can hinder the convergence of gradient-based optimization algorithms,
confirming issues identified in prior research in [17, 18, 19].

Overall, the proposed methodology provides a framework for optimizing lightweight struc-
tures. Open questions for further research include managing eigenvalue constraints to prevent
convergence issues with specific limit stiffness matrices.
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