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Summary. The multi-material design setting offers additional design freedom, which can lead 

to structures with lower stress levels compared to the single-material case. The present work is 

focused on multi-material stress-based topology optimization. Specifically, the maximum von 

Mises stress is minimized inside a design domain through material selection. Two solid 

materials are mixed to generate an advanced composite, i.e., a Functionally Graded Material 

(FGM). The FGM’s mechanical properties are here provided by the well-known RAMP 

interpolation scheme, which falls within the Hashin-Shtrikman bounds for the elastic moduli of 

isotropic composite materials. The proposed stress-based formulation is applied to a beam 

under pure bending. From a manufacturing standpoint, this example is possibly the easiest one 

to fabricate, since the FGM solution corresponds to a layer-by-layer gradation of properties 

(concept of layer-wise FGM). The change (or gradient) in the material property is unidirectional 

along the vertical direction of the beam only. The obtained FGM beam leads to evenly 

distributed stresses of lower magnitude, apart from the neutral surface zone, when compared to 

the classical linear stress distribution of the homogeneous beam. The FGM beam deformed 

shape is also presented and compared to the homogeneous case. 
 

1 INTRODUCTION 

Due to the advent of new manufacturing techniques, materials science has foreseen a 

transition from conventional metals to advanced composites and smart materials. In this 

context, a new class of composite materials, known as Functionally Graded Materials (FGMs), 

has received significant attention from the scientific community due to the FGM’s intrinsic 

mechanical performance. The concept of FGMs was first introduced in Japan in 1984 by a 

group of researchers for the development and application of thermal barrier materials [1]. 
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Basically, FGMs are advanced engineering materials designed for a specific performance or 

function in which a spatial gradation in structure and/or composition lend itself to tailored 

properties. Over traditional composites, FGMs improve structural strength by replacing sharp 

interfaces with gradually changing interfaces, producing then a smooth transition between two 

distinct materials. Additionally, FGMs can achieve tailored structural properties in specific 

directions. These advantages have driven the research and development of FGMs for various 

high-tech applications, including aerospace, bioengineering, and the nuclear industry.  

In recent years, there has been a growing trend of designing FGMs through Topology 

Optimization (TO). TO aims to find the optimal material layout within a given design space for 

a given set of loads, boundary conditions, and constraints, with the goal of maximizing 

performance or minimizing material usage. By iteratively adjusting the distribution of material, 

TO can create highly efficient structures that often feature complex and organic shapes, which 

makes it a powerful tool in engineering and architectural applications for developing innovative 

and lightweight designs. Although TO may render very efficient design solutions, they often 

present geometrical complexity which challenges their manufacture. In fact, the current state-

of-the-art on available manufacturing technologies may prevent attaining the extreme (optimal) 

predicted performance levels obtained by TO [2]. 

Beams are one of the main structures in mechanical engineering designed primarily to resist 

loads applied perpendicular to their longitudinal axis. Many studies on FGM beams use power-

laws to impose the material gradient along one direction, e.g., the transverse (thickness) 

direction or axial (length) direction, so-called Uni-directional (UD) FGM beams [3-4]. Due to 

the limited precision of the manufacturing equipment, these layer-wise FGMs emerge as ideal 

candidates for manufacturing and thus warrant particular focus. The first attempt on an elasticity 

solution of FGM beams subjected to static transverse loads was proposed by Sankar [5] 

assuming the beam properties to vary through thickness following an exponential-law. Many 

works have since followed this thematic [6-9]. These previous references primarily focus on 

the modelling and analysis of FGM beams, yet optimization remains a significant and relevant 

issue. Many researchers have applied optimization to FGM beams for different objectives. For 

instance, Noh et al. [10] employed the Reliability Based Design Optimization (RBDO) method 

to minimize thermal stresses in FGM beams under thermal loads. Meanwhile, Taheri and 

Hassani [11] focused on minimizing the mass of a clamped-clamped FGM beam with an eigen-

frequency constraint. In the field of TO, Xia and Wang [12] developed a level set based 

optimization approach with the aim of minimizing the compliance of FGM beams. Maleki 

Jebeli and Shariat Panahi [13] integrated their Bi-directional Evolutionary Structural 

Optimization (BESO) method with GA to prove the outperformance of their methodology over 

that of Xia and Wang [12]. Later, Almeida et al. [14] implemented the Continuous 

Approximation of Material Distribution (CAMD) method for TO of FGM beams subjected to 

thermal and mechanical loads. Their aim was to find the best material distribution for such 

materials, which resulted in the minimum compliance of the beams taking into consideration 

symmetry and pattern repetition constraints. More recently, Cheng et al. [15] proposed an 

efficient Collaborative Robust Topology Optimization (CRTO) method considering hybrid 

bounded uncertainties applied to several numerical examples, including the MBB beam. Both 

the relative density of every finite element and the volume fraction of reinforcement in each 

layer are regarded as design variables in the SIMP-based CRTO process of FGMs. In addition, 

Silva et al. [16] solved the maximum von Mises stress minimization problem for a beam under 
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pure bending using an FGM material model, which led to a layer-wise FGM beam solution with 

a lower peak stress compared to the homogenous beam counterpart.  

The present work applies TO techniques to determine the optimal pointwise material 

distribution of a beam subject to pure bending in order to minimize the maximum von Mises 

stress. The optimal solution of this optimization problem is a layer-wise FGM (easy-to-

manufacture design), as all stresses are unidirectional (normal to the cross-section of the beam). 

Conceptually, material gradation along the beam’s height redistributes stresses, reducing them 

as shown in this work. Afterwards, the stress distribution and deformed shape of the obtained 

FGM beam are shown and further discussed.  

The remainder of the paper is organized as follows. Section 2 presents the material model 

within the framework of material selection optimization. The problem statement is presented in 

Section 3. The sensitivity analysis of stress w.r.t. density is in Section 4. Section 5 shows the 

numerical results, including an FGM beam design (layer-wise FGM) and the corresponding 

property post-processing, as well as the stress and displacement analyses of such FGM design. 

Finally, Section 6 points out conclusions. 

2 MATERIAL MODEL 

Consider the in-plane arbitrary shape of an elastic body in Figure 1, under an applied external 

traction load 𝐭 on the boundary segment Γt ⊂ 𝜕Ω of the reference domain Ω, with fixed 

displacement boundary conditions on segment Γ𝑢. Within Ω, two subregions can be 

distinguished: (1) a non-design region, Ωnd, which can be solid (black) or void (white); and (2) 

a design region (gray), Ωd, wherein optimal material selection takes place in order to find the 

FGM that minimizes the peak stress in the structure.  

As sketched in Figure 1, the reference domain Ω is discretized by a Finite Element (FE) 

mesh. Each design element of Ωd is associated with a density design variable, which is assumed 

constant within that element. There are as many design variables as the number of elements 

discretizing Ωd. This design variable sets the volume fraction (between 0 and 1) of one of the 

two materials mixed together to form an FGM. In this case, one assumes that such volume 

fraction (e.g., 0.3) corresponds to the stiffest material volume fraction, i.e., Mat 1. The 

respective complement (e.g., 0.7) is the Mat 2 volume fraction. This way, the optimization 

problem based on such density variables is, in fact, a material selection problem of pointwise 

choice of compositional grading across the structure’s design domain Ωd, so-called FGMO 

problem in Section 3. The type of FGM generated in this problem features a gradient in material 

composition, in contrast to other types of FGM that might alternatively involve gradients in 

porosity or microstructure. The variation of the material property (Young’s Modulus in this 

case) within the interval of the material volume fraction is thus an important data that should 

be available in practice to serve as an input for the FGM computational design. Typically, this 

is an experimental type of data, obtained from mechanical testing of samples. Each sample 

corresponds to the deposition of a specific composition (e.g., 0% Mat 1 with 100% Mat 2, 10% 

Mat 1 with 90% Mat 2, and so forth, till 100% Mat 1 and 0% Mat 2) in a layer-wise fashion 

resorting to additive manufacturing.  

In this work, it is assumed that the mixture of two solid materials is possible for the entire 

volume fraction range (or composition percentages). The success of mixing dissimilar materials 

is out of the scope of this work. In fact, it raises important metallurgy issues that warrant in-
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depth research work, particularly in the field of materials science. For now, a preliminary 

approach based entirely on computational design under a few hypotheses is presented. Such 

approach can be applied either to metals or polymers and considering different Young’s 

Modulus ratios. In the absence of experimental data, which is the case in the present framework, 

the properties of solid mixtures can be predicted by the Hashin-Shtrikman (HS) bounds [17] for 

the elastic moduli of isotropic composite materials. These theoretical bounds depend on the 

volume fractions of each constituent materials, while assuming they are mixed uniformly with 

no microstructure (homogeneous resulting solid). The average of such bounds is approximated 

here by the RAMP interpolation scheme [18], given by: 

 

𝐄 = [
𝜌

1 + 1.0399(1 − 𝜌)
𝐄1 + (1 −

𝜌

1 + 1.0399(1 − 𝜌)
) 𝐄2] (1) 

 

where 𝜌 ∈ [10−3, 1] is the density design variable for the material selection purpose, and 𝐄1 

and 𝐄2 are the isotropic stiffness tensors of the stiffest (Mat 1) and weakest (Mat 2) solid phases, 

respectively. 

 

 
Figure 1 Arbitrary domain, presenting design and non-design subregions, with a FE mesh, where a density-

based variable, per element, measures the volume fraction of one of the two constituents mixed to render a 

compositional grading across Ω. 

 

3 OPTIMIZATION PROBLEM 

In the present framework, the minimization of the maximum von Mises stress, 𝜎𝑒
VM, in 

the structure’s domain is sought [16,19-20]. However, a min–max problem raises non-

differentiability issues. To tackle this, the so-called bound formulation, as suggested by Taylor 

and Bendsøe [21], is adopted here. This means replacing the objective function max(𝜎VM) by 

the function 𝓏 to be minimized on the design variables, i.e., the original ones, plus another one 

that is the 𝓏 itself, with 𝓏 ∈]0, +∞[. The search is carried out within an enlarged constraint set 

to include 𝜎VM < 𝓏, where 𝓏 here means the stress limit. The original points of non-

differentiability correspond now to corners in the constraint set of the enlarged space and arise 

from intersections of differentiable constraints. Many constraints thus appear now in the 
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problem statement, but that also means stresses are treated as they are, i.e., local, which allows 

skipping here any aggregation method that could otherwise compromise pointwise control of 

stresses.  

The stress-based problem formulation in this work comprises the material selection 

density variables, 𝛒, and the artificial design variable, 𝓏. The problem at hand is thus a material 

optimization problem, denoted here as Functionally Graded Material Optimization (FGMO). 

Basically, this means that each point of the structure’s design domain is a material point (no 

void), and thus the problem only involves the pointwise selection of material. The topology of 

the structure is fixed. This optimization problem is formulated as follows: 

 

min
𝛒,𝓏

𝓏 

 s. t.   
(2a) 

𝜎𝑒
VM(𝐮(𝛒), 𝛒)

𝓏
≤ 1,      𝑒 = 1, … , 𝑁d (2b) 

 

where u is the displacement field obtained by solving the equilibrium equation 𝐊𝐮 = 𝐟 and 𝑁d 

is the number of design elements present in the FE mesh. The stress constraints (2b) are written 

according to the input format of constraints as adopted by MMA (Fortran version) [22], i.e., 

g ≤ 1. 

4 STRESS SENSITIVY ANALYSIS 

This work uses the Method of Moving Asymptotes (MMA, [22]), as the optimizer, to 

solve the proposed stress-based problem (2). Since this is a gradient-based optimizer, one needs 

to perform sensitivity analysis.  

In the equations below, indexes 𝑖, 𝑒 ∈ {1, … , 𝑁d} correspond to the design FE index, 

and indexes 𝑧, 𝑗, 𝑘, 𝑙 ∈ {1,2} are related to the coordinate system directions considering 2D 

problems. Regarding the calculation of the von Mises stress sensitivity with respect to (w.r.t.) 

the design variables 𝜌𝑖, the adjoint method [23] is applied. As for the stress derivatives w.r.t. 

the design variable 𝓏, they are trivial and thus skipped here. 

Assuming a FE discretization of the reference domain Ω, the total derivative of the von 

Mises stress, 𝜎𝑒
VM = 𝜎𝑒

VM(𝛒, 𝐮(𝛒)), at element e, depends explicitly and implicitly on the 

design variables 𝜌𝑖 , such that: 

 

d𝜎𝑒
VM

d𝜌𝑖  
=

𝜕𝜎𝑒
VM

𝜕𝜌𝑖  
− 𝛌T

𝜕𝐊

𝜕𝜌𝑖  
𝑢𝑘  (3) 

 

where the vector 𝛌 is the adjoint variable that solves the following adjoint problem: 

 

𝐊𝛌 = (
𝜕𝜎𝑒

VM

𝜕𝐮
) (4) 
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In the Finite Element Method (FEM), the displacements in nodes 𝐮 are multiplied by 

shape functions 𝜙𝛼 in order to estimate the displacement at any point in the domain of the 

considered element: 

 

𝑢𝑘 = 𝑢̅𝑘𝛼𝜙𝛼  (5) 

 

where 𝛼 ∈ {1, … ,8} is the node number of the 8-node isoparametric quadrilateral FE (Q8) used 

in this work. Therefore, the von Mises stress derivative w.r.t. displacements 𝐮 in (4) is given 

by: 

 

𝜕𝜎𝑒
VM

𝜕𝑢̅𝑘𝛼
=

∫
1
2 [(

𝜕𝜎11
𝑒

𝜕𝑢̅𝑘𝛼
−

𝜕𝜎22
𝑒

𝜕𝑢̅𝑘𝛼
) (𝜎11

𝑒 − 𝜎22
𝑒 ) +

𝜕𝜎11
𝑒

𝜕𝑢̅𝑘𝛼
𝜎11

𝑒 +
𝜕𝜎22

𝑒

𝜕𝑢̅𝑘𝛼
𝜎22

𝑒 + 6
𝜕𝜎12

𝑒

𝜕𝑢̅𝑘𝛼
𝜎12

𝑒 ] dΩ𝑒
d

Ω𝑒
d

|Ω𝑒
d|√

1
2

[(𝜎11
𝑒 − 𝜎22

𝑒 )2 + (𝜎11
𝑒 )2 + (𝜎22

𝑒 )2] + 3(𝜎12
𝑒 )2

 (6) 

 

In order to compute the von Mises stress derivative w.r.t. displacements (6), the Hooke's 

law derivative w.r.t. displacements 𝐮 must be computed first, which gives: 

 

𝜕𝜎𝑧𝑗
𝑒

𝜕𝑢̅𝑘𝛼
= 𝐸𝑧𝑗𝑘𝑙

𝜕𝜙𝛼

𝜕𝑥𝑙
 (7) 

 

As regards the explicit part of the total derivative of the von Mises stress w.r.t. 𝜌𝑖, one 

obtains: 

 

𝜕𝜎𝑒
VM

𝜕𝜌𝑖  
=

∫
1
2 [(

𝜕𝜎11
𝑒

𝜕𝜌𝑖  
−

𝜕𝜎22
𝑒

𝜕𝜌𝑖  
) (𝜎11

𝑒 − 𝜎22
𝑒 ) +

𝜕𝜎11
𝑒

𝜕𝜌𝑖 
𝜎11

𝑒 +
𝜕𝜎22

𝑒

𝜕𝜌𝑖 
𝜎22

𝑒 + 6
𝜕𝜎12

𝑒

𝜕𝜌𝑖  
𝜎12

𝑒 ] dΩ𝑒
d

Ω𝑒
d

|Ω𝑒
d|√

1
2

[(𝜎11
𝑒 − 𝜎22

𝑒 )2 + (𝜎11
𝑒 )2 + (𝜎22

𝑒 )2] + 3(𝜎12
𝑒 )2

 (8) 

 

where the Hooke's law is here differentiated again to obtain the needed stress derivatives w.r.t. 

𝜌𝑖, which gives: 

 
𝜕𝜎𝑧𝑗

𝑒

∂𝜌𝑖
=

𝜕𝐸𝑧𝑗𝑘𝑙

∂𝜌𝑖
𝜀𝑘𝑙𝛿𝑖𝑒 (9) 

 

where 𝛅 is the Kronecker delta. The derivative of the stiffness tensor 𝐄 simply involves the 

straightforward derivative of Eq. (1), which is trivial and thus skipped here.  

5 NUMERICAL RESULTS 

To demonstrate the application of the proposed stress-based formulation (2), a two-

dimensional beam is presented in Figure 2. All dimensions are indicated in meters. To simplify, 

the thickness of the beam is assumed unitary. Plane stress is assumed. To generate a torque of 
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100 kN ∙  m, such that the beam is subject to pure bending at the mid-span, one applies two 

loads of magnitude 𝐹 = 142.857 kN. The beam is meshed with 126 ×  30 8-node 

isoparametric quadrilateral FEs. Due to symmetry, only half of the beam will be modelled, 

which helps reducing the number of design variables and stress constraints. For the sake of 

generalization, normalized material properties are used as the problem input data instead of 

absolute values. Specifically, Mat 1 has a Young’s Modulus of 𝐸1 = 1 GPa, while Mat 2 has a 

Young’s Modulus of 𝐸2 = 0.34 GPa. The Poisson’s ratio of both materials is assumed equal to 

0.3. All stress results in this section are always to be read in MPa units.  

 

 
 

Figure 2 Two-dimensional beam subject to pure bending at the mid-span. 

 

In the example presented in this section, the Neutral Surface (NS) coincides with the 

centroid of the beam's cross-section, allowing for the coupling (or grouping) of design variables 

in elements opposite to the NS. This further reduces the number of design variables and von 

Mises stress constraints, which are inputs to the optimizer. Moreover, the initial design for the 

optimization considers 𝛒 = 0.5, except for the extreme (top or bottom) beam layers, where 𝛒 =
10−3.  

5.1 OPTIMAL FGM 

As depicted in Figure 2, each side of the beam w.r.t. the symmetry line is divided into 

four regions as follows. Region 4 is a homogeneous non-design solid region, composed of the 

stiffest base material (fixed 𝜌 = 1), and it represents 1/3 of half of the beam's length, i.e., 0.7 m. 

Regions 1-3 (in gray) identify the design domain and their combined length is 2/3 of half of the 

beam's length, i.e., 1.4 m . In turn, each one of these 1-3 regions has a length of 2/9 of half of 

the beam’s length, i.e., 0.46667 m .  

The interface between the design and non-design regions (transition zone between 

regions 3-4) generates a non-smooth variation (or perturbation) of the stress field. Therefore, 

the related stress peaks therein could easily unduly occupy the optimizer in region 3 to render 

the FGM that best mitigates such stress concentrations. That is not the purpose of this example. 

Instead, the goal is to modify the purely linear stress distribution associated with pure bending 

on account of an FGM and see strength improvements compared to the original homogenous 

beam case. For that purpose, and bearing in mind the Saint-Venant’s principle, one simply 

minimizes the maximum von Mises stress only inside regions 1 and 2 (far away enough from 

4.2 
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the transition zone between regions 3-4). This way, one avoids the algorithm being trapped in 

reducing stresses of the unwanted transition zone 3. Hence, the free design allowed in zone 3 is 

only expected to promote stress uniformity in regions 1-2. Importantly, one realizes that stress 

sensitivities w.r.t. densities consider that the design variables embrace not only regions 1 and 

2, but also region 3. To sum up, the FGM regions of interest are regions 1 and 2 only. 

From a manufacturing standpoint, this example is possibly the easiest one to fabricate 

since the FGM solution here corresponds to a layer-by-layer gradation of properties (concept 

of layer-wise FGM), where material uniformity along the horizontal direction exists and 

property changes (or gradient) are only obtained along the beam’s vertical direction. Fairly 

enough, by observing the optimization result in Figure 3, the material gradation in region 2 may 

still appear perturbed, as region 3 may not fully absorb the cross-section discontinuity effects. 

Therefore, the desired FGM solution of interest (layer-wise) is purely obtained in region 1. The 

results for the full-length of the beam are simply provided here for the sake of transparency. In 

between regions 1 and 4, perturbations are expected, but not relevant to comprehend the benefits 

of the intended layer-wise FGM here. Finally, one can see that a beam under pure bending is a 

very interesting example here, as it renders a unidirectional property gradient (layer-wise) as 

the simplest proof-of-concept on FGMs mitigating stresses.  

 

 
 

Figure 3 Stress-based FGMO result for the beam sketched in Figure 2. Young’s Modulus, density and 

stress maps. The peak stresses obtained among all regions, as well as in region 1 only, are highlighted at the 

stress color scale.  

 

From a stress analysis perspective, the FGMO stress result presented in Figure 3 (right 

side) shows that, at the mid-span (roughly regions 1-2), each layer has constant stress, and stress 

uniformity is obtained across several layers. This clearly contrasts with the homogenous beam 

case under pure bending, where, in the elastic range, the normal stresses are known to vary 

linearly with the distance from the NS. For comparison purposes, the elastic flexure formula 

𝜎𝑥𝑥 = −𝑀𝑦/𝐼, where 𝑀 is the bending moment, 𝐼 is the second moment of area of the beam’s 

cross-section and 𝑦 is the distance from the NS, is applied here to obtain the maximum absolute 

value of the normal stress (or flexural stress) in the homogenous beam case presented in Figure 

2. This yields 𝜎𝑥𝑥 = 2.40 MPa, considering 𝑀 = 100 kN ∙ m, 𝐼 = 1.042 × 10−2m4 and 𝑦 =
0.25 m. Basically, this means that the FGM beam solution in Figure 3 is 30.8% less stressed 

than the homogenous beam. The stress analysis here is based on region 1 only, as it is where a 

well-defined FGM (unidirectional) is caught and responsible for converting the original (linear) 

stress distribution into a more uniform one.  

Noteworthy is also the fact that the FGM solution can increase or decrease compliance 

0.34 

𝐄 
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𝜎VM 
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depending on the reference material set for the homogenous beam. For the sake of 

simplification, the compliance of the beam is computed considering again region 1 only. As 

regards to the homogenous beam, one obtains 𝐶1 =  224 J for 𝐸1 = 1 GPa, and 𝐶2 = 659 J for 

𝐸2 = 0.34 GPa. As regards to the FGM beam, one obtains 𝐶FGM = 471 J, which falls within 

the interval [𝐶1, 𝐶2].  

5.2 PROPERTIES POST-PROCESSING 

In view of fabrication of the FGM beam solution shown in Figure 3, the layer-wise FGM 

from region 1 is extended along the entire length of the beam. For that purpose, the discrete 

Young's Modulus distribution from region 1 is converted into a continuous function that 

retrieves the Young’s Modulus value at any query point within the beam’s domain upon 

definition of its coordinates, specifically the 𝑦-coordinate. 

To perform the properties' mapping between the FGMO model and a more realistic 

model for fabrication, the centroid coordinate 𝑦 of the elements in the FE mesh are firstly listed. 

Specifically, one focuses on the first half of the elements in the first column of the FE mesh 

(adjacent to the 𝑦 − axis), which are used as sample points. Basically, the 𝑦-coordinate of the 

centroid of these elements is associated with the respective element’s Young’s Modulus from 

the FGMO beam solution, resulting in a stepwise property distribution. Therefore, applying 

curve fitting to the sample data, a response function for the Young’s Modulus [GPa] is 

generated, i.e., 𝐸(𝑦) = 0.08227𝑦−1, if 𝑦 ∈ [0.0833;  0.25], and 𝐸(𝑦) = −0.08227𝑦−1, if 𝑦 ∈
[−0.25; −0.0833]. Based on this piecewise function, one can see that the Young’s Modulus of 

the FGMO solution follows a hyperbolic-law. Noteworthy is also the fact that, for the definition 

of this piecewise function, the origin of the coordinate system is considered to coincide with 

the intersection of both horizontal (𝑥) and vertical (𝑦) axes of the beam, recall Figure 2. With 

the definition of 𝐸(𝑦), the new Young’s Modulus distribution of the FGM beam is 

straightforwardly obtained. However, note that for elements whose 𝑦-coordinate centroid is not 

within the domain of 𝐸(𝑦), the Young’s Modulus value is set to 𝐸1 = 1 GPa. Finally, Figure 4 

shows the Young’s Modulus distribution of the FGM beam after the property post-processing 

just described. The entire FGM beam model is represented in Figure 4. 

 

 
Figure 4 Property post-processing (Young’s Modulus) of the FGM beam solution presented in Figure 3. 

1 0.34 

NS 
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5.3 STRESS AND DISPLACEMENT ANALYSIS 

This section aims to provide a stress and deformed shape analysis of the layer-wise FGM 

beam solution presented in Figure 4, i.e., after the property post-processing. For this purpose, a 

FE mesh with the same number of elements, geometric characteristics, boundary conditions, 

and loading conditions (recall Figure 2) is used. Each FE of the mesh has a Poisson’s ratio of 

0.3, and the Young’s Modulus is computed using the piecewise function 𝐸(𝑦), which depends 

on the elements’ centroid coordinate 𝑦.  

The layer-wise FGM beam is here compared to the single-material counterparts in terms 

of strength and deformed shape. Figure 5 compares the von Mises stress maps between the 

layer-wise FGM beam and the homogenous beam using either Mat 1 or Mat 2. For visualization 

purposes only, elements with higher stress values than those observed in regions 1 and 2 were 

discarded. The stress map of the FGM beam at mid-span is consistent with the one presented in 

Figure 3. The highest stress values of both the homogenous and FGM beams are highlighted at 

the color scale for comparison.  

 

 
 

Figure 5 Comparison between the stress maps of the FGM beam (left side) and the homogenous beam 

(right side).  

 

The deformed shapes of the FGM beam and homogenous beams using Mat 1 and Mat 

2 are plotted in Figure 6. Basically, each point plotted corresponds to an element midside node 

located on the NS of the beam. Consistently, the FGM beam deformed shape lies between those 

of the homogenous counterparts, as also suggested by the compliance values indicated in 

Section 5.1. Specifically, the maximum vertical displacement 𝑈𝑦 observed in the FGM beam 

equals −0.044 m, which is 43% lower than that of the homogenous beam using Mat 2 and 51% 

higher than that of the homogenous beam using Mat 1. As regards to the FGM beam, the 

transverse displacement 𝑢𝑦 analytical expression is given by 𝑢𝑦(𝑥) = −0,00092𝑥4 +

0,00336𝑥3 + 0,00626𝑥2 + 0,00145𝑥 − 0,04411 (m). This is here given as reference for 

comparison purposes with the known analytical homogeneous beam deformed shapes from the 

literature, also given by polynomial functions. 

 

 

0 𝜎VM 2.32 

1.66 
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Figure 6 Deformed shapes of the FGM beam and homogenous counterparts.  

6 CONCLUSIONS 

This research focuses on minimizing stresses within a beam under pure bending utilizing 

an FGM model. This enlarges the design space, allowing for improved structural performance. 

The type of FGM addressed in this work involves gradual changes in the volume fraction of the 

constituent materials such that the heterogeneous resulting beam provides continuous graded 

macroscopic properties (e.g., Young’s Modulus). In the absence of related experimental data, 

theoretical predictions based on the HS bounds have been consistently used to feed numerical 

models and optimize structures, as done in this work. In addition, one uses the RAMP 

interpolation scheme to approximate the average of the HS bounds. 

Unlike previous research works, that resort to predefined property gradient models, e.g., 

exponential or power-law models, the present framework aims to find the optimal property 

gradient across the beam’s domain, thus avoiding a priori any gradient assumption. The design 

approach proposed here adequately predicts the Young’s Modulus gradient to excel in structural 

performance. In the beam example presented in this work, related pure bending stresses are 

minimized on account of a layer-wise FGM, where the Young’s Modulus variation across the 

beam’s cross-section is given by a hyperbolic-law.  

In view of fabrication of the layer-wise FGM beam, the discrete Young's Modulus 

distribution obtained from the optimization process is converted into a continuous function that 

retrieves the Young’s Modulus value at any query point within the beam’s domain upon 

definition of its coordinates. The properties' mapping between the FGMO model and a more 

realistic model for fabrication is performed. Stress and deformed shape analyses are performed 

resorting to a post-processed layer-wise FGM beam.  
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For future works, several avenues of practical research in materials science and 

fabrication technologies can be foreseen for materializing FGMs as designed by TO, not 

forsaking the important metallurgical issues that may arise from combining dissimilar 

materials. 
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