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ABSTRACT  

The conventional particle size test has been a widely used method in the characterization of soils and tailings. Such 

information is particularly useful in the evaluation of materials deposited in tailing stacks or compacted landfills, which 

must follow reference particle size ranges. However, the method has limitations, the main one being the execution time, 

which usually lasts around three days. On the other hand, laser testing appears as a viable alternative. This innovative 

method obtains the grain size curve of the soil through the light dispersion pattern and lasts a few minutes, a significant 

improvement over the conventional method. Furthermore, this method can cover particle size ranges of up to 0.1 

micrometers, while the conventional method is limited to 1 micrometer. Despite the benefits of using this equipment, the 

laser grain size test does not yet have specific standardization for use in the field of soil mechanics. In this context, this 

work proposes the use of machine learning techniques to demonstrate the existence of compatibility between both 

methods. To this end, tests were carried out using both methodologies on different samples of iron ore tailings and an 

algorithm was developed to predict the material classification. The evaluation of the results made it possible to verify the 

consistency and precision of the results between the two methods, reinforcing the reliability and viability of the laser test 

as an efficient alternative to the traditional method. 
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1. Introduction 

The stacking of filtered tailings presents an 

alternative to the use of dams for tailings disposal in 

mining, aiming to reduce the risk of catastrophes. 

However, challenges are associated with stacking due to 

the complexity of these structures, as the properties of the 

tailings and the storage processes vary for each mine 

(Cruz 2023).  

Alves (2020) suggests that the most relevant physical 

properties within the characterization of tailings include 

granulometric distribution, presence of clays, specific 

mass, rheology, plasticity, consolidation, and hydraulic 

conductivity. The granulometry of the tailings influences 

the behavior of stacking structures and dams, as the grain 

size impacts their stability. Fine particles can increase the 

permeability of the material, while larger particles can 

compromise structural integrity (Pinheiro et al., 2018). 

The granulometric distribution curve is a fundamental 

physical property of the soil and is presented as the 

percentage of the total dry weight of the soil occupied by 

a certain granulometric fraction. This property is 

commonly used for soil classification and for estimating 

some hydraulic properties (Campbell & Shiozawa, 

1994). 

To determine the particle size distribution curve of the 

material in the conventional way, the NBR 7181 standard 

(ABNT 2016) is used. It is possible to determine the sand 

fraction by sieving and the silt and clay fractions through 

the sieve-hydrometer method (SHM), using a glass 

cylinder, densimeter, and deflocculant. 

According to the preparation standard for compaction 

and characterization tests, NBR 6457 (ABNT 2024), to 

carry out this test on material with particles smaller than 

5 mm, it is necessary to use 1 kg of sample. Furthermore, 

the granulometry test by sieving and sedimentation, 

according to NBR 7181 (ABNT 2016), lasts 

approximately 3 days. The stages include drying the 

sample in an oven until a constant mass is achieved, 

sieving the coarse material, and dispersing the material in 

deflocculant for 12 hours. 

Following this, a sedimentation stage is carried out 

using a symmetric bulb densimeter and graduated rod. 

The fine material is also sieved after being dried in an 

oven. In addition to the long time to obtain the particle 

size distribution curve, the sedimentation stage also gives 

unreliable results for particles of 0.001 mm due to the 

effect of Brownian motion on the sedimentation rate 

(Stefano et al., 2010). 

The potential use of laser diffraction method (LDM) 

was identified due to its ability to reduce both the time 

and the amount of material required for analysis. Pinheiro 

(2018) highlights several advantages of granulometric 

analysis by laser diffraction. These include a short 

analysis period, high repeatability, the use of a smaller 

sample (as shown on Figure 1), and the ability to 

determine fine particles up to 0.1 μm. This method is 

simple and quick, thus facilitating its use and potential 

for wider application. 



 

 
Figure 1. Sample required for the execution of (a) 

SHM test and (b) LDM test 

The methodology of this test is based on the principle 

that particles have a certain size. Therefore, when 

dissolved in a standardized medium and subjected to 

incident light, they absorb and diffract part of the light at 

a certain angle, which is inversely proportional to the 

particle size. The model (Anton Paar – PSA 1190) of 

equipment used (Figure 2) has a measuring range of 0.1 

to 2500 μm, with a measurement principle of laser 

diffraction, repeatability less than 1%, and a 

measurement time less than 1 minute. The complete 

process, considering the preparation of the sample and 

the equipment, lasts about 15 minutes.  

 

 
Figure 2. LDM equipment 

Considering that the SHM is an accepted and 

standardized method, and that the LDM provides 

reliable, quick, and highly repeatable information, a 

relevant question is whether there is a correlation 

between the fine size fractions obtained by both methods. 

2. Particle Shape Parameters 

• D10, D30, D60: Terms used in soil mechanics to 

represent the particle size distribution of a soil 

sample. The D10, D30, and D60 values represent the 

particle sizes at which 10%, 30%, and 60% of the 

soil particles are finer, respectively. 

• Coefficient of Curvature (CC): Measure of the 

curvature of a soil particle size distribution curve. 

It is a dimensionless value, usually between 1 and 

5, calculated using Eq.1. 

C𝐶 =
(𝐷30)

2

(𝐷10×𝐷60)
 (1) 

• Coefficient of Uniformity (CU): Defined as the 

ratio of the D60 to the D10. A larger CU indicates a 

wide range of particle sizes (non-uniform soil).  

3. Method 

The study conducted consisted of creating supervised 

machine learning models for the prediction of particle 

shape parameters from LDM - traditionally obtained by 

SHM. 

3.1. Tailing 

For the execution of the tests, filtered iron ore tailings 

were used, originating from the Iron Quadrangle in 

Minas Gerais, Brazil.  

The collection of this material took place on various 

dates over a span of three months, all from the same plant. 

This approach was adopted to ensure the 

representativeness and variability of the tailings used in 

the experiments, thereby enhancing the robustness of the 

results. 

3.2. Tests 

Approximately 180 granulometry tests were 

conducted using both SHM and LDM. According to 

Papini (2003), it is essential to ensure material dispersion 

so that fragile aggregates and agglomerates are not 

considered as single particles. This enhances the stability 

of the analyses and improves reproducibility.  

For the SHM tests, chemical dispersion was used, 

with sodium hexametaphosphate at a concentration of 

45.7 g of salt per 1000 ml of distilled water. Additionally, 

the solution was buffered with sodium carbonate until it 

reached a pH between 8 and 9, as recommended by the 

reference standard NBR 7181 (ABNT 2016). 

For the LDM tests, a physical dispersion method can 

be employed, using the ultrasound present in the 

equipment. As Pinheiro (2018) points out, despite the 

procedures for its use in soils not being standardized, 

physical dispersion with the aid of ultrasound proves 

efficient in some cases. Tests were conducted with an 

amplitude of 50 w. Furthermore, tests were also carried 

out without ultrasound. 

From the results of the tests performed, it is possible 

to observe the particle size distribution of the material. 

Figure 3 presents a graph with the variation of 

percentages by fraction – defined in accordance with 

NBR 6502 (ABNT 2022). 

 

 
Figure 3. Box plots illustrating the distribution of values for 

Clay, Silt, Fine Sand, Medium Sand, and Coarse Sand 

from the conducted tests 

The Silt and Fine Sand fractions concentrate the 

largest quantities in the granulometric distribution of the 

samples, followed by Medium Sand. 



 

3.3. Machine Learning 

The results derived from both laser and conventional 

granulometry tests were paired and archived in a 

database. This dataset was then utilized as a training set 

for the machine learning algorithm. The training process 

involved the algorithm learning to establish a correlation 

between the laser and conventional granulometry tests. 

This correlation served as the foundation for the 

algorithm’s capability to predict material classification 

parameters, using only the data derived from the laser 

granulometry test. This methodological approach ensures 

a robust and reliable prediction model for material 

classification. 

 Algorithm 

The aforementioned database was initially utilized for 

training the prediction model for D10, with the objective 

of pinpointing the most effective algorithm for the task. 

At this juncture, three algorithms were put to the test: 

Decision Tree, K-Nearest Neighbor, and Voting 

Regressor. The performance of these algorithms was 

assessed based on the maximum error and mean absolute 

error, with the Decision Tree algorithm emerging as the 

most efficient, as evidenced in Table 1. 

Table 1. Evaluation of machine learning methods 

 
Mean Absolute 

Error 
Maximum Error 

Decision Tree 0.000993 0.004128 

KNN 0.001415 0.005592 

Voting Regressor 0.001216 0.012657 

 

 Prediction 

The algorithm was meticulously designed to predict 

the results of D10, D30, D60, CC, CU, as well as the 

percentages of Clay, Silt, Fine Sand, Medium Sand, and 

Coarse Sand. To prevent overfitting of the model, it was 

configured such that the minimum number of samples in 

the leaves was set to 5. This methodological approach 

ensures a robust and reliable prediction model for 

material classification. 

 Evaluation 

The evaluation of the results was conducted through 

the calculation of the Mean Absolute Error (Eq. 2), the 

Maximum Error, and the Mean Absolute Percentage 

Error (Eq.3). 

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑝𝑖|
𝑛
𝑖=1  (2) 

MAPE =
1

𝑛
∑ |

𝑦𝑖−𝑝𝑖

𝑝𝑖
|𝑛

𝑖=1  (3) 

Furthermore, the results were assessed by creating 

scatter plots with the actual and predicted values. In this 

type of plot, exemplified in Figure 4, the closer the values 

are to the highlighted diagonal, the higher the model’s 

accuracy. 

 

 
Figure 4. High and low accuracies examples shown 

on scatter plots 

4. Results and Discussion 

The results obtained by the prediction with the 

Decision Tree model are presented in Table 2, where for 

each parameter, the Mean Absolute Error, the Maximum 

Error, and the Mean Absolute Percentage Error are listed. 

Table 2. Evaluation of machine learning methods 

 

Mean 

Absolute 

Error 

Maximum 

Error 

Mean 

Absolute 

Percentage 

Error 

D10 0.000986 0.006474 14.1% 

D30 0.001576 0.006659 3.1% 

D60 0.001908 0.009200 1.8% 

CC 0.532 3.646 15.7% 

CU 3.74 38.07 16.5% 

Clay (%) 0.007068 0.023129 12.7% 

Silt (%) 0.012507 0.047097 3.4% 

Fine Sand 

(%) 
0.013075 0.060339 1.9% 

Medium 

Sand (%) 
0.007995 0.036249 4.0% 

Coarse 

Sand (%) 
0.002666 0.009177 14.5% 

4.1. D10, D30 and D60 

Among the prediction results of D10, D30, and D60, the 

first presents the highest percentage error, as shown in 

Table 2. However, Figure 5 displays an acceptable 

distribution of the predicted values, with few outliers and 

a uniform shape. 

 



 

 
Figure 5. Prediction accuracy for D10 

This occurs because, for D10, due to the characteristics 

of the tested material, the values are much lower than 

those obtained for the other parameters, but with greater 

variability.  

Regarding D30 and D60, presented in Figure 6 and in 

Figure 7, respectively, greater accuracy is observed in the 

results. 

 
Figure 6. Prediction accuracy for D30 

 

 
Figure 7. Prediction accuracy for D60 

4.2. CC and CU 

The prediction of the CC (Figure 8) and the CU 

(Figure 9) exhibited larger errors, along with less 

uniformity in the graphs and a higher number of visible 

outliers. 

 
Figure 8. Prediction accuracy for CC 

 

 
Figure 9. Prediction accuracy for CU 

4.3. Clay, Silt and Sand 

The forecast of the Clay percentage value, despite 

indicating a higher error (as indicated in Table 2), 

presents satisfactory values.  

Similar to the findings in the D10 values, the Clay 

percentage values in the granulometric distribution are 

smaller. Therefore, even with a lower maximum error 

and less than the maximum error of other fractions, the 

error relative to the clay percentage value stands out.  

However, the shape of the graph presents 

homogeneity and proximity of the values to the 

highlighted diagonal, without presenting a large number 

of outliers, as in the case of CU. 

 
Figure 10. Prediction accuracy for percentage of Clay 

For the prediction of the percentages of Silt (Figure 

11), Fine Sand (Figure 12), and Medium Sand (Figure 

13), which correspond to the largest granulometric 

fractions in the tested material, satisfactory results were 

obtained, with a mean absolute percentage error up to 

4%. 

 

 

 
Figure 11. Prediction accuracy for percentage of Silt 

 



 

 
Figure 12. Prediction accuracy for percentage of Fine Sand 

 

 
Figure 13. Prediction accuracy for percentage of Medium 

Sand 

For coarse sand (Figure 14), among the predicted 

values, on average the mean absolute percentage error 

was 14.5% of the predicted value. However, when 

analyzing the maximum error of the coarse sand range in 

the granulometric distribution, the maximum error was 

0.9% - a fact that occurs due to the low representation of 

coarse sand in the tested material. 

 

 
Figure 14. Prediction accuracy for percentage of Coarse Sand 

5. Conclusion 

This study has successfully demonstrated the 

potential of laser granulometry as a viable and efficient 

alternative to the conventional method for characterizing 

iron ore tailings. By employing machine learning 

techniques, a significant correlation was established 

between the outcomes derived from both methods. This 

correlation facilitated the prediction of material 

classification parameters using data exclusively from the 

laser granulometry test. 

The Decision Tree algorithm, in particular, exhibited 

remarkable consistency and precision, especially in 

predicting D30 and D60 parameters, which showcased 

superior accuracy. While certain parameters such as D10, 

clay percentage, and coarse sand percentage exhibited 

higher MAPE values, the distribution of predicted values 

was deemed satisfactory, characterized by minimal 

outliers and a uniform shape. 

It was observed that the prediction errors were 

notably larger for the CU and the CC. This could be 

attributed to the fine-grained nature of the material tested. 

Given these findings, it is suggested that further tests be 

conducted on a variety of materials, including those with 

different granular compositions.  

In conclusion, this study represents a step towards 

exploring the potential of laser granulometry in 

characterizing iron ore tailings. It offers an alternative 

approach that may be more efficient and expedient than 

conventional methods.  
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