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ABSTRACT  

Obtaining soil parameters through laboratory tests and solving the governing equations that describe soil settlement can 

be time-consuming, making immediate on-site predictions of soil settlement challenging. In-situ testing provides a more 

efficient approach to obtain soil parameters than laboratory tests. Data from the Piezocone penetration test (CPTu) can be 

used for on-the-spot interpretation of soil mechanical parameters, which can then be incorporated into the governing 

equations for soil settlement calculation. Physics Informed Neural Networks (PINNs) algorithm uses automatic 

differentiation method to directly embed partial differential equations (PDEs) into a deep learning neural network and 

provides solution for these PDEs in a cost-effective manner compared to traditional numerical methods. In this paper, a 

framework integrating data from CPTu and PINNs to predict soil settlement is proposed and evaluated through 

comparison with numerical simulations from Finite Element Methods (FEMs). Results show that the framework gave a 

reasonably good agreement with the FEMs benchmark while substantially reduced the computation time. This method 

allows for immediate on-site prediction of soil settlement during site investigations, thus better guiding surveying and 

construction activities.  

 

Keywords: CPTU; SCPTU; PINNs; Settlement; 2D settlement; Biot’ s theory. 

 

1. Introduction 

The occurrence of unexpected consolidation and 

settlement in soil can pose risks and hazards to 

engineering practices. Like most geotechnical 

engineering problems, theories of soil consolidation 

involving complex nonlinear relationships often 

described by partial differential equations (PDEs), such 

as the one-dimensional consolidation theory (Terzaghi 

1925), the Terzaghi-Rendulic three-dimensional 

consolidation theory (Rendulic 1936), and Biot's three-

dimensional consolidation theory (Biot 1941). Solving 

PDEs for most engineering problems analytically under 

various initial and boundary conditions is challenging. 

Therefore, common methods for solving PDEs are 

numerical, like finite difference methods (FDMs) 

(Shwetank et al. 2023) and finite element methods 

(FEMs) (Sandhu and Wilson 1969; Ferronato 2010; 

Rodríguez et al. 2023). These numerical approaches 

often require discretization of calculations, and the best 

balance between the efficiency and accuracy of 

calculation depend on adjusting grid density and 

computational step size. 

Neural networks serve as universal function 

approximators (Hornik et al. 1989) and, as a mesh-free 

algorithm, its computation accuracy is independent of the 

step size. Theoretically, neural networks can accurately 

solve all types of PDEs with sufficient training data. 

Furthermore, the recently developed Physics-Informed 

Neural Networks (PINNs) algorithm informs physical 

knowledge to introduce physics-driven constraints into 

neural networks (Raissi et al. 2019). It leverages 

automatic differentiation (Baydin et al. 2018), an 

underutilized yet powerful technique in scientific 

computing to formulate loss functions according to the 

governing PDEs. This dual-drive approach reduces the 

demand for extensive training data. Raissi et al. (2019) 

demonstrated the research value and application 

capabilities of PINNs by solving the Schrödinger 

equation and the Korteweg-de Vries equation. 

However, certain physical parameters in engineering 

problems PDEs need to be determined before conducting 

PINNs algorithm on PDEs. Commonly, corresponding 

laboratory tests are conducted to obtain these parameters, 

but the in-situ test, such as the piezocone penetration test 

(CPTu), provides another efficient, cost-effective, and 

convenient method. Geotechnical practitioners can 

stratify subsurface layers or interpret geological 

parameters through analysing the measurements of CPTu 

test (Robertson 2009). Some of the detailed 

specifications for the equipment, test procedures, and 

methods for interpreting CPTu results are provided by 

Lunne et al. (1997), Mayne (2007), Schnaid (2008), and 

Mayne (2023). A standard CPTu involves the static 

penetration of the cone into the soil at a constant rate of 

20 mm/s, accessing three parameters that vary 

continually with depth, including: measured cone tip 

resistance ( 𝑞𝑐 ), sleeve friction ( 𝑓𝑠 ), and porewater 

pressure at the shoulder (𝑢2) schematically shown in Fig. 

1. In the case of clayey soils, the parameter 𝑞𝑐  is 

converted to total cone tip resistance (𝑞𝑡) using 𝑞𝑡=𝑞𝑐+ 

(1-𝑎𝑛𝑒𝑡 ) *𝑢2 , where 𝑎𝑛𝑒𝑡  is defined as net area ratio 

(Campanella and Robertson 1988). Furthermore, some 

other CPTu includes additional equipment that enable the 

measurement of other soil properties. For example, the 

Seismic Cone Penetration Test with pore pressure 

measurements (SCPTu) can determine the seismic shear 
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wave velocity (𝑉𝑠) of the soil (Schneider et al. 2000). This 

can be utilized to interpret additional soil parameters. 

 
Figure 1. CPTU test and soundings. 

This study proposes a framework that integrates 

CPTu and PINNs to predict the muti-dimensional 

settlement of soil without prior investigation and 

laboratory tests. This framework initially conducts a 

CPTu test on the soil, and by interpreting the 

measurements of the CPTu test, it determines the relevant 

physical parameters involved in the theory describing the 

settlement of the soil. Subsequently, the governing 

equations, the initial and the boundary conditions of the 

soil with known physical parameters will be inputted into 

PINNs for mesh-free solving. This method combines the 

advantages of CPTu, which provides a rapid and cost-

effective on-site continuous depth testing of soil, with the 

fast and convenient PDEs solving capabilities of PINNs. 

As a result, it enables quick on-site predictions of 

settlement for soil over large scale space after fully 

consolidation without the time-consuming and complex 

steps of obtaining soil parameters through laboratory 

tests and numerical methods in traditional approaches. 

2. Physical theory base 

In soil mechanics, Biot’s theory is a three-

dimensional consolidation theory for soils based on the 

principle of effective stress (Biot 1941). This theory, 

assuming small strains in the soil, with the pore fluid 

being saturated and incompressible, establishes a system 

of equations that combines the equilibrium equation 

within the framework of effective stress principle, stress-

strain relationships of the soil skeleton, deformation 

compatibility conditions, and continuity conditions. By 

solving these equations, it provides insights into the 

evolution of stress, strain, and pore pressure in the soil 

under loading conditions. It is also capable of predicting 

and describing the Mandel-Cryer effect (Mandel 1953; 

Cryer 1963) and is theoretically rigorous. In this study, it 

is assumed that the soil behaves as a linear elastic 

material, whereas the volume of soil particles remains 

constant, the volume of voids changes and the pore fluid 

follows Darcy's law. Under these assumptions, the 

settlement of the soil and the pore water pressure can be 

described by the Biot consolidation theory as follows: 
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where, 𝐺 is the small-strain shear modulus of the linear 

elastic material, 𝑣  is the Poisson's ratio, 𝑢𝑆  and 𝑣𝑆 are 

displacements in the 2 directions, 𝑢  is the pore water 

pressure, 𝛾 is the saturated unit weight of the soil, 𝑘 is the 

coefficient of permeability, and 𝛾𝑤 is the unit weight of 

the fluid (water in this study) in the porous medium. 

3. PINNs algorithm 

In the context of the PINNs algorithm, a neural 

network is needed to be constructed as an approximator 

for the solutions to PDEs. The chosen neural network 

model in this study is the Multilayer Perceptron (MLP), 

known for its simplicity and clarity (Bishop 1995). The 

MLP structure comprises an input layer, an output layer, 

and hidden layers, with no connections within each layer, 

but fully connected between adjacent layers in a 

unidirectional forward pass, as in Fig. 2. The 

computation process of MLP proceeds from the input 

layer through the hidden layers to the output layer and the 

computation for each neuron is defined as (Pinkus 1999): 

𝑥𝑖,𝑗 = 𝜎𝑖,𝑗(𝒘𝑖−1,𝑗 ∗ 𝒙𝑖−1 + 𝑏𝑖,𝑗) (2) 

where, 𝑥𝑖,𝑗  represents the output of the 𝑗-th neuron in the 

𝑖 -th layer, 𝒘𝑖−1,𝑗  is the weight matrix linking all the 

neurons in the (𝑖 − 1)-st layer to the 𝑗-th neuron in the 𝑖-
th layer, 𝒙𝑖−1 is the output matrix of the neurons in the 

(𝑖 − 1)-st layer, 𝑏𝑖,𝑗 is the bias of the 𝑗-th neuron in the 

𝑖-th layer, and 𝜎𝑖,𝑗  is the activation function of the 𝑗-th 

neuron in the 𝑖-th layer. These parameters collectively 

form the neural network internal parameter set 𝜽 =
{𝒘, 𝒃} . One of the sources of nonlinear ability of the 

neural network is the multiple hidden layers, the other 

one is the nonlinear activation functions, which makes 

the fitting ability of neural network stronger. The 

common activation functions include the Sigmoid 

function, the Hyperbolic Tangent (Tanh) function, the 

ReLU function and its improvements, and the ELU 

function (Ding et al. 2018). A well-constructed neural 

network should include an appropriate number of the 

hidden layers, with the careful selection of activation 

functions and the quantity of neurons within each layer. 

The output of the output layer is denoted as u (θ, x), 

where x represents the input to the input layer. 

The necessary steps of training a neural network 

involve feeding it a suitable database comprising N sets 

of inputs x = {x1, x2, x3...xn} (also referred to as “feature” 

in deep learning) and the corresponding "correct" outputs 

u (x) = {u1, u2, u3...um} (also referred to as “label”). For 

an untrained neural network which means its internal 

parameters set θ has not adjusted based on this database, 

the output of the neural network result unn (θ, x) will 

exhibit residuals compared to the labels from the 

database. The residuals are quantitatively described by a 

loss function, commonly formulated using the Mean 

Squared Error (MSE) function in mathematics: 
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Building upon this foundation, the loss function will 

be minimized and converged using a gradient descent 

optimizer. This process, referred to as the training of the 

network, is achieved by adjusting the parameters θ of the 

network through the optimizer. From the dataset being 

passed forward along the neural network until the 

optimizer finishes adjusting θ, it is called an epoch for 

training. There will be many epochs until the optimizer 

finishes a reduction in the loss function as people want.  

Common gradient descent optimizers include the 

Adam algorithm (Kingma and Ba 2014), and the L-BFGS 

algorithm (Byrd et al. 1995). The Adam algorithm 

terminates when the neural network training reaches a 

specified number of iterations, impacting its 

computational precision but offering a fast convergence 

rate. On the other hand, the L-BFGS algorithm terminates 

the iteration when the relative change in the loss function 

is below a set threshold, demonstrating superior 

performance for smaller training datasets. 

In general, the mathematical form of PDEs with 

physical information (governing equations, initial 

conditions, and boundary conditions) can be unified as: 
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where，x (={x1, x2, x3...xn}) are the variables of the 

PDEs, 𝝀 (= {𝜆1, 𝜆2, 𝜆3... 𝜆p}) are the parameters，and u 

= ({u1, u2, u3...um }) are the solutions. For each PDE, a 

certain number of points are selected on each 

computational domain where each PDE is defined, 

referred as residual points. x (as features), u (as labels), 

and 𝝀 of those residual points are used as the database for 

constructing the residual for that corresponding PDE. By 

leveraging automatic differentiation, the residual of the 

particular PDE with physical information can be 

individually formulated using the mathematical form of 

MSE with the parameters, features and labels from 

residual points. For each PDE, the above steps are 

performed. And the entire database for training PINNs is 

the sum of the data provided by residual points for each 

PDE. Then, sum those MSEs up with timing suitable 

weights 𝜏𝑗 , the loss function that is informed all the 

physical information is constructed: 
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Unlike the original loss function only simply 

reflecting residuals between unn and u as in Eq. (3), the 

loss function informed physics information goes beyond 

the conventional purely data-driven neural network 

training. The MSEs, incorporating physical information, 

achieves the regularization of embedding physics 

information into the neural network. It constrains the 

neural network training with known physical information. 

This makes PINNs satisfy the corresponding physical 

regulations during the training process, which enhances 

the training speed of the model and reduces the demands 

on neural network complexity.  

 
Figure 2. Structural diagram of PINNs. 

4. CPTU interpretation theories 

The soil parameters the elastic modulus 𝐸  (or the 

small-strain shear modulus 𝐺𝑚𝑎𝑥), Poisson’s ratio 𝑣 , the 

coefficient of permeability 𝑘, and the soil unit weight 𝛾 

contained in the Eq. (1) applied in this study to 

characterize soil settlement, can all be interpretated with 

the measurements ( 𝑞𝑡 , 𝑓𝑠 , 𝑢2 , and 𝑉𝑠 ) of the CPTU 

(SCPTU) test. CPTU tests is a fast and inexpensive 

method of acquiring the soil parameters, serving as a key 

step for achieving in situ prediction of soil settlement. 

The small-strain shear modulus 𝐺𝑚𝑎𝑥  can be 

calculated from elasticity theory using the total soil mass 

density 𝜌 and shear wave velocity 𝑉𝑠 (Mayne 2023): 

𝐺𝑚𝑎𝑥 = 𝜌 ⋅ 𝑉𝑠
2 (6) 

where 𝜌 = 𝛾/𝑔 , where gravitational acceleration 

constant 𝑔 = 9.8𝑚/𝑠2 . According to the mechanics of 

materials, 𝐸  and 𝐺𝑚𝑎𝑥  can be interconverted 

incorporating Poisson's ratio 𝑣, while Poisson’s ratio 𝑣 

can be calculated through the relationship with the at-rest 

lateral stress coefficient (𝐾0) (Federico and Elia 2009): 

𝐾0 =
𝑣

1 − 𝑣
 (7) 

𝐾0  can be estimated as 𝐾0 = (1 − 𝑠𝑖𝑛 𝜑′) ⋅

𝑂𝐶𝑅𝑠𝑖𝑛 𝜑′
(Kulhawy and Mayne 1990), where 𝜑′  is 

effective friction angle, and 𝑂𝐶𝑅 (= 𝜎𝑝
′ /𝜎𝑣0

′ )  is the 

overconsolidation ratio.  

The well recognized CPTu interpretation theory of 

the effective friction angle 𝜑′ is proposed and calibrated 

by Ouyang and Mayne (2018, 2019): 

𝜑′ = 29.5𝐵𝑞
0.121 ⋅ [0.256 + 0.336 ⋅ 𝐵𝑞 + 𝑙𝑜𝑔𝑄′] (8) 

where 𝐵𝑞(=
𝑢2−𝑢0

𝑞𝑡−𝜎𝑣0
)  is normalized pore-water pressure 

parameter and the modified cone resistance number 𝑄′ 
was defined as: 

𝑄′ =
𝑞𝑡−𝜎𝑣0

𝜎𝑣0
′ ⋅𝑂𝐶𝑅𝛬 , when OCR ≥ 2.5 

𝑄′ =
𝑞𝑡−𝜎𝑣0

𝜎𝑣0
′  , when 0 > OCR > 2.5 

(9) 

The effective vertical stress 𝜎𝑣0
′  is determined by the 

total unit weight and the ground water level, and the total 

vertical stress 𝜎𝑣0  is only determined by the soil unit 

weight. 𝛬  is plastic volumetric strain potential. The 

effective preconsolidation stress 𝜎𝑝
′  can be estimated by 

a general estimation theory proposed by Mayne (2017) 

and Agaiby and Mayne (2019):  



 

𝜎𝑝
′ = 0.33(𝑞𝑡 − 𝜎𝑣0)𝑚 (10)  

where the exponent parameter m values can be 

assigned as: m = 0.72 in clean quartz sands, 0.8 in silty 

sands, 0.85 in silts, 0.9 in organic clays, and 1.0 in intact 

clays of low sensitivity (Agaiby and Mayne 2019). 

A quick estimation theory of soil unit weight 𝛾  is 

proposed by the studies that used data from offshore sites 

(Mayne and Peuchen 2013) and onshore location (Mayne 

2014):  
𝛾 = 𝛾𝑤 ⋅ [1.22 + 0.345 ⋅ 𝑙𝑜𝑔10(102(𝑓𝑠/𝜎𝑎𝑡𝑚) + 10−2)] 

(11)   

where, 𝜎𝑎𝑡𝑚  is atmospheric pressure (kPa), 

approximately equals to 100kPa in common. 

The normalized CPT soil behavior type chart (SBTn) 

method including three normalized CPTu measurements: 

𝑄, 𝐹, and 𝐵𝑞 , was suggested by Robertson 1990, where 

𝐹(=
𝑓𝑠

𝑞𝑡−𝜎𝑣0

⋅ 100%)  was defined as the normalized 

parameter of the sleeve friction 𝑓𝑠. 

Jefferies and Davies 1993 identified a Soil Behavior 

Type Index (𝐼𝑐) that can represent the soil behavior type 

zones in the SBTn. Regarding the calculation of 𝐼𝑐 , 

Robertson 2009 defined the updated normalized cone 

resistance 𝑄𝑡𝑛(=
𝑞𝑡−𝜎𝑣0

𝜎𝑎𝑡𝑚
(

𝜎𝑎𝑡𝑚

𝜎𝑣0
′ )

𝑚

) and presented the now 

commonly used formula for 𝐼𝑐 based on the relationship 

with 𝐹: 

𝐼𝑐 = [(3.47 − 𝑙𝑜𝑔𝑄)2 + (𝑙𝑜𝑔𝐹 + 1.22)2]0.5 (12) 

where the parameter n varies with soil type and is 

calculated as 𝑛 = 0.381 ⋅ 𝐼𝑐 + 0.05 (
𝜎𝑣0

′

𝜎𝑎𝑡𝑚
) − 0.15 ≤ 1 . 

In the above equations, it can be observed that there is a 

mutual dependence between 𝐼𝑐  and 𝑛 . Therefore, it is 

necessary to iterate from n=1, calculate 𝑄𝑡𝑛, 𝐼𝑐  and 𝑛 

twice, and determine the convergence of the iterative 

calculation of them. Then, the calculated 𝑄𝑡𝑛 and 𝐹 can 

be used for soil classification based on the SBTn. 

Lunne et al. 1997 provided estimated values and 

ranges of soil permeability for each type of soil in SBTn. 

On this basis, Robertson and Cabal (2010) proposed an 

algorithm that relates the coefficient of permeability k in 

terms of 𝐼𝑐 for soil zones 2 to zone 7 in SBTn: 

𝑘(𝑚/𝑠) = 100.952−3.04⋅𝐼𝑐; 1.0 < 𝐼𝑐 ≤ 3.27 

𝑘(𝑚/𝑠) = 10−4.52−1.37⋅𝐼𝑐; 3.27 < 𝐼𝑐 ≤ 4.0 
(13) 

5. Case study 

5.1. CPTU data and interpretation 

To illustrate the CPTU-PINNs method for predicting 

soil settlement, a field case study is presented using 

SCPTU data from Mount Pleasant in Chelston, USA, as 

reported by Mayne and Woeller (2008). At a depth of 

approximately 15-20m at this location, there is a thick 

marine deposit consisting of calcareous clay named as 

Cooper marl, which is typically the bearing layer for local 

engineering structures (Camp 2004). Therefore, in this 

case study, the multi-settlement prediction for the soil is 

focused on the Cooper marl. 

A series of in-situ tests and laboratory tests were 

conducted to investigate the site for constructing a bridge 

spanning the Cooper River. Specifically, a total of 55 

SCPTU tests were conducted. The representative 

piezocone data (𝑞𝑡 , 𝑓𝑠, and 𝑢2) as shown in Fig. 3 are 

from No. 31 SCPTU test, while 𝑉𝑠  is averaged from 5 

nearby SCPTs. The Cooper marl layer has a high calcite 

content ranging from 60 to 80%, an average plasticity 

index (PI) of 38%, a typical water content (wn) of 48%, 

and a clay content of 78% (Camp et al. 2002). 

 
(a) (b) (c) (d) 

Figure 3. No. 31 SCPTU data at the Mount Pleasant Shaft 

MP-1 (data from Mayne and Woeller 2008). 

Its depth ranges from 20m to 50m where the 

porewater pressures sounding of SCPTU are high. Above 

the Cooper marl layer, there is a fill layer with low 

porewater pressure soundings, ranging from 0m to 20m 

in depth. Other essential geotechnical parameters for the 

test site, such as unit weight, are interpreted from SCPTU 

test data using the aforementioned interpretation theories, 

the average values of them are as shown in Table 1. 

Table 1. Parameters interpreted from SCPTU data 

𝜸 OCR 𝝋′ 𝑲𝟎 

17.2kN/m3 2.21 44.3° 0.89 

E 𝒗 𝑰𝒄 𝐤 

118Mpa 0.47 2.68 1.84*10-7 m/s 

Typically, a Poisson’s ratio 𝑣 of 0.47 is not entirely 

accurate and may not be reflective of engineering reality. 

In certain depths, significant interpreted values may arise 

due to disturbances or errors in CPTu testing, leading to 

an elevated mean of interpreted 𝑣. However, as Poisson’s 

ratio is not a primary determinant in this case study and 

other parameters exhibit no significant issues with the use 

of mean values, the interpretation criterion for the 

Poisson’s ratio remains consistent with other parameters, 

employing a mean value of 0.47. 

While still focusing on the performance of the CPTU-

PINNs framework on prediction for the settlement during 

the multi-dimensional consolidation of soil, in this case 

study the consolidation problem is simplified to the free 

drainage (except the loading area) consolidation process 

of a semi-infinite homogeneous, isotropic, linearly elastic 

strip of Cooper marl with a thickness of 10m and a width 

of 10m under a semi-infinite strip instant loading with 

uniform load that does not vary with time as illustrated in 

Fig. 4. Therefore, the consolidation problem is simplified 

to a two-dimensional stress-strain problem coupled with 

pore pressure, and the soil parameters interpreted from 



 

SCPTU data will be averaged. The boundary conditions 

are detailed as: 

𝑢 (0, 𝑦, 𝑡) = 𝑢 (10, 𝑦, 𝑡) = 0 

𝑢𝑆 (0, 𝑦, 𝑡) = 𝑢𝑆 (10, 𝑦, 𝑡) = 0 

𝑢 (𝑥, 10, 𝑡) = 𝑢𝑆 (𝑥, 10, 𝑡) = 𝑣𝑆 (𝑥, 10, 𝑡) = 0 

𝑢 (0~4, 0, 𝑡) = 𝑢 (6~10, 0, 𝑡) = 0 

(14.1-14.4) 

 
Figure 4. Simplified Cooper marl two-dimensional 

consolidation problem under free drainage conditions. 

5.2. Finite element methods 

To evaluate the accuracy of PINNs in solving the two-

dimensional consolidation problem of Cooper marl, the 

results are compared with numerical simulation results 

from FDMs. 

The symmetrically loaded 2D consolidation problem 

of Cooper marl in the case study is modeled using a 1/2 

model in finite element software. The Cooper marl model 

in the simulation analysis is 10m thick and 5m wide, 

simplified as an isotropic, uniformly elastic, two-

dimensional porous material with constant parameters. 

The material has a linear elastic modulus (𝐸) of 118 MPa, 

a Poisson's ratio (𝑣) of 0.47, a dry density of 804.35 

kg/m³ (dry unit weight of 7400 N/m³), a cofficient of 

permeability (𝑘) of 1.84*10-7 m/s (6.624*10-4m/h). The 

pore fluid is assumed to be pure water, resulting in a fluid 

density of 9800 N/m³. Symmetric boundary conditions 

required for the 1/2 model, drainage and displacement 

boundary conditions described by Eq. (14), instantaneous 

uniformly distributed loads, and the gravitational field of 

the Earth's stress are all applied to the model. Predefined 

fields of pore pressure are also applied according to the 

gravity direction to ensure that the model represents a 

saturated soil model.  

When seeding for meshing in the load region (0𝑚 ≤
𝑥 ≤ 1𝑚) along the x-axis, 15 seeds are set every meter, 

and in the non-load region (0𝑚 < 𝑥 ≤ 1𝑚), 10 seeds are 

set every meter. Along the y-axis, in the region 0𝑚 ≤
𝑦 ≤ 4𝑚, 15 seeds are set every meter, and in the region 

4𝑚 < 𝑦 ≤ 10𝑚, 10 seeds are placed every meter. A total 

of 6600 four-node plane strain quadrilateral elements, 

with bilinear displacement and bilinear pore pressure 

(CPE4P), are used to mesh the soil, as shown in Fig. 5. 

With this model, a simulation of the consolidation 

process for 100 hours is conducted, outputing the 2D 

distribution of displacement and pore pressure after 

consolidation, as shown in Fig. 6. These results are used 

for comparison with the outcomes from PINNs. 

 
Figure 5. Finite element model of the Cooper marl 2D 

consolidation problem. 

 
Figure 6. Spatial distribution cloud plots of vertical 

displacement (𝑣𝑆) and pore pressure (u) after 100 hours of 

consolidation from FEMs (y-axis is positive upwards). 

5.3. PINNs methods 

The governing equations for the 2D consolidation 

problem of Cooper marl are given by Eq. (1), and the 

boundary conditions are described by Eq. (14). Based on 

these equations, the PDEs are nondimensionalized and 

normalized using the interpreted parameters as 

aforementioned as follows: 

−1.8 (
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𝑦
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dimensionless and normalized space and time 

coordinates in the consolidation process, �̅� =
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10000𝑃𝑎
, 
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𝑚

 are the dimensionless and 

normalized pore water pressure and displacements. Eq. 

(15) & (16) together constitute the nondimensionalized 

and normalized PDEs describing the consolidation 

problem in the study case. 

As shown in Fig. 2, a neural network is initially 

constructed with 𝒙, �̅�, �̅� as inputs and 𝒖𝒔𝒏𝒏
̅̅ ̅̅ ̅̅ , 𝒗𝒔𝒏𝒏

̅̅ ̅̅ ̅̅ , 𝒖𝒏𝒏̅̅ ̅̅ ̅ as 

outputs, with internal parameters as θ. This neural 

network serves as a numerical approximation for Eq. (15). 

Residual points are selected within the computational 

domain for Eq. (15) & (16), serving as training database 

to create specific assigned loss functions. Finally, a 

gradient descent optimizer is employed to adjust the 

neural network parameters θ, minimizing the loss 

function until the neural network is appropriately trained. 

For the neural network in this case, there are 12 

hidden layers, each consisting of 360 neurons. Each 

neuron includes a Tanh activation function and bias. The 

Tanh function is chosen for its infinite differentiability, 

and the outputs are within the range of -1 to 1: 

𝑇𝑎𝑛ℎ(𝑥) =
ⅇ𝑥 − ⅇ−𝑥

ⅇ𝑥 + ⅇ−𝑥
 (17) 

For the output layer, no activation function is set. In 

the choice of the gradient descent optimizer, the 

commonly used Adam optimizer is selected with an 

initial learning rate of 10−5, decayed by 20% every 100 

steps, and a total of 15,000 epochs. For the MSE of Eq. 

(15), there are 1000 residual points, and for the MSE of 

Eq. (16), there are 100 residual points, sampled using 

Latin hypercube sampling. The total loss function of the 

neural network can be summed up after giving proper 

weights 𝜏 to each MSE according to its magnitude and 

importance. 

The numerical solutions obtained based on the PINNs 

algorithm are shown in Fig. 7, while the absolute errors 

compared to the FEMs solutions are illustrated in Fig. 8. 

After 100 hours consolidation is completed, the pore 

pressure is almost zero, and its small magnitude renders 

the spatial distribution analysis less meaningful. 

Nevertheless, PINNs still successfully achieve a 

magnitude of pore pressure comparable to FEMs. 

However, the key distinction between the Biot's theory 

employed in this study and the commonly used Terzaghi 

one-dimensional consolidation theory or Terzaghi-

Rendulic multi-dimensional consolidation theory lies in 

its incorporation of the stress-strain relationships of the 

soil skeleton, enabling the prediction of soil deformation. 

Therefore, the predictive performance of PINNs in terms 

of the vertical displacement 𝑣𝑆 of the soil is worthy of 

evaluation. In the PINNs results, 𝑣𝑆 in the loaded region 

of the soil is much greater than in the unloaded region, 

with specific values close to the FEMs results, both at 

magnitude of 10-3m while the errors are maintained at the 

smaller magnitude. This indicates that the neural network 

accurately captures the influence of the load, which is 

only present in a specific region in this case, and 

effectively handles the abrupt change in the load 

distribution along the x-axis. The results above indicate 

that PINNs, by solving Biot's theory, not only effectively 

captured the dissipation of pore pressure under fully 

drainage conditions but also demonstrated proficiency in 

directly predicting soil settlement. This capability allows 

for the assessment of potential soil deformations, 

providing insights into the likelihood of ground 

movements at the site. 

 
Figure 7. Spatial distribution cloud plots of vertical 

displacement (𝑣𝑆) and pore pressure𝑣𝑆after 100 hours of 

consolidation from PINNs(y-axis is positive upwards). 

 



 

Figure 8. Spatial distribution cloud plots of the absolute error 

of vertical displacement (𝑣𝑆) and pore pressure (u) between 

results from PINNs and FEMs after 100 hours of consolidation 

(y-axis is positive upwards). 

 

6. Discussion 

In the case study presented in this paper, to simplify 

the problem, the research object is assumed to be a 

homogeneous soil, and mean values interpreted from 

CPTU data are used in both FEMs and PINNs. However, 

one significant advantage of CPTU is it can provide 

continuous responses of soil properties along the depth, 

allowing for the interpretation of soil parameters that 

vary continuously with depth. The simplification in the 

case study weakens the advantage of CPTU. In future 

work, incorporating depth-varying soil parameters 

interpreted from CPTU into the PINNs framework 

should enhance the precision and reliability of the 

predictions made by the CPTU-PINNs framework. 

Since this study is using the Biot‘s theory to describe 

the two-dimensional consolidation problems, the 

advantages are evident. Not only can it predict variations 

in pore water pressure, but it can also forecast soil strain. 

However, the drawback lies in the increased complexity 

of the PDEs describing this problem, including the 

governing equations and boundary conditions, compared 

to previous works, like Raissi et al. 2019, Lu et al. 2019, 

and Tartakovsky et al. 2020. This also requires the 

assignment of weights to more loss functions embedded 

with PDEs when forming the overall loss function. It is a 

more difficult Multi-Task Learning (MTL) problem. 

Properly assigning weights to those MSEs is not a trivial 

or insignificant task. Loss functions assigned with too 

small weights may fail to make the neural network 

adequately reflect the physical relationships inherent in 

the corresponding PDEs.  

In this study, the evolution of each loss function 

corresponding to PDEs is monitored during training. 

Adjustments are made to the weights of those loss 

functions whose magnitudes differ significantly from 

others during the training process. In the field of deep 

learning, a common approach for MTL problems is to 

employ random weighting (Lin et al. 2022). However, 

since the magnitudes of loss functions for different PDEs 

can vary significantly, simply using random weighting 

might disproportionately diminish the weights of loss 

functions with inherently larger magnitudes. Therefore, 

there is much room for improvement in using PINNs to 

solve problems described by a greater number of PDEs, 

such as higher-dimensional consolidation problems. 

7. Conclusions 

This paper proposes a data-driven CPTU-PINNs 

method, incorporating Biot's theory to predict multi-

dimensional soil settlement. The analysis is based on 

field data from an SCPTU test, and the main conclusions 

are as follows: 

PINNs as a new deep learning algorithm that informs 

physical information into regularization, it has low 

requirements for the complexity of the neural networks, 

which also makes training faster. Additionally, the 

introduction of physical constraints in PINNs means that 

the training is not purely data-driven. This not only 

improves the fitting capability of the neural network to 

relevant problems but also reduces the demand for the 

size of training database. These advantages, compared to 

traditional data-driven neural networks, make PINNs less 

demanding on training equipment and more suitable for 

training on portable devices. Therefore, the collaboration 

between PINNs and CPTU is more efficient, enabling a 

swift process from in-situ testing to settlement prediction. 

As an attempt to address the multi-task learning 

problem in PINNs, the results of the CPTU-PINNs 

framework in solving multi-dimensional consolidation 

problems under continuous drainage boundary 

conditions, as presented in the article, have successfully 

produced numerical results for soil strain and pore water 

pressure that have reference value.  It means the CPTU-

PINNs framework can be considered as a part of 

engineering reconnaissance that can rapidly and cost-

effectively identify high-risk areas in engineering 

projects, thereby reducing the need for time-cost and 

expensive investigations such as drilling. 

Although this study utilized Biot's theory for PINNs 

to solve consolidation problems, there were significant 

simplifications in the case study. Better and more general 

solutions for addressing the challenges of multi-

dimensional consolidation problems in PINNs were not 

explored extensively. Additionally, the advantages of 

CPTU in interpreting continuous soil parameters in depth 

were not fully token in the presented case. These suggest 

that the CPTU-PINNs framework is a method with 

further research and practical value. 
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