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Summary. This paper presents a hierarchic large rotation Kirchho�-Love shell model with
warping. Two unknowns are introduced for each through-the-thickness function warping, rep-
resenting its amplitudes in two directions tangent to the shell surface. NURBS are used to
approximate reference surface displacement and warping amplitudes in the weak form. The
transverse shear strains depend only on the warping parameters linearly and are free from lock-
ing. A patch-wise reduced integration avoids membrane locking and improves e�ciency. Focus is
given to composites made up of multiple sti� layers coupled with soft interlayers. The alternat-
ing layup with high sti�ness ratios induces a signi�cant sectional warping with transverse shear
strains concentrated in the soft layers. Two warping models are investigated: WI) all sti� layers
maintain the same director orthogonal to the deformed surface with independent transverse shear
deformations of the soft layers; WZ) a single zigzag function linking these deformations. The
numerical tests con�rm the great accuracy of the hierarchic shell model in reproducing the solid
solution with a small number of discrete parameters, provided that the correct warping model is
chosen. WI is reliable for all alternating layups. WZ reduces the unknowns to �ve per surface
point, regardless of the number of layers, and is accurate for uniform soft layers.

1 INTRODUCTION

Laminated composites are obtained by a piling of layers of di�erent materials, or of plies of
the same material but with di�erent orientation, as in �ber-reinforced composites. The non-
uniform distribution of the material properties over the thickness direction accentuates a certain
deformation phenomenology: transverse shear strains become important and the planarity of
the deformed section is often lost even for rather slender structures. Each layer may exhibit a
di�erent angle of rotation and the �nal con�guration of the deformed cross-section assumes a
zigzag shape, that is a piece-wise linear con�guration. Although the application of these materials
is now widespread, the development of accurate and a�ordable analysis and design methods is
still an open topic in the scienti�c community, in particular because the layup con�guration
in�uences signi�cantly the modeling rules. Concerning plate/shell models, two main approaches
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are usually followed: the equivalent single-layer theories (ESL) and the layer-wise theories (LW).
Multi-layered composite shells made of a number of sti� plies shear-coupled by soft interlayers

are a typical case of laminates whose mechanics is dominated by the zigzag e�ects. Among
many others, typical examples are represented by laminated glass and metal-polymer laminates,
i.e. glass or metal plies bonded by polymeric interlayers. Although the soft interlayers have
in practice no bending sti�ness by themselves, they can restrain the shear-sliding of the sti�
plies increasing the overall bending capacity of the laminate [1], which varies [2] between the
lower bound of free-sliding sti� plies (layered limit) and the upper-bound of perfectly coupled
plies (monolithic limit). The alternating layup induces a speci�c straining/deformation pattern,
which distinguishes them from other composites [3, 4]. In fact, the transverse shear strains
tend to concentrate in the soft interlayers, with a nearly constant distribution in the thickness,
while they are negligible in the sti� plies. Moreover, although the interlayers are soft, they
constrain the relative distance between the surfaces to which they adhere. The consequence
is that the sti� layers are all subjected to almost identical rotations with respect with their
normals in the initial con�guration, while the soft layers undergo independent transverse shear
strains. Di�erent plate/shell models have been proposed for alternating layups. A reference
paper in the �eld is [3] where, for the �rst time, a shell model imposing equal rotation of the sti�
layers and independent shear deformations of the soft interlayers was proposed. This is a Mindlin-
Reissner model enriched by independent in-plane displacements of the soft layers. The same work
implements a locking-free shell �nite element with the geometrically nonlinear model recovered by
the co-rotational approach [5]. The kinematics with independent shear deformations of the soft
layers [3] results useful also for including thermal and viscous e�ects [6] and for modeling more
general boundary conditions. Most often, the sti� layers tend to exhibit negligible transverse
shear strains. Although limited to small-displacement analyses, the Kirchho�-Love assumption
of neglecting the transverse shear strains in the sti� layers was exploited in [4], with the aim of
further reducing the model variables. The C1 continuity requirement is met with special �nite
elements. In [7] a hierarchic implementation of the Re�ned Zig Zag theory (ZZT) [8] is proposed,
adopting �nite elements based on the geometrically exact shell theory of Simo [9], in order to
economically describe the behavior of composite laminates undergoing large deformations but
small strains by adding only two additional DOFs. A linear �nite element approximation of
geometry and kinematics is considered in this work.

In [10], a nonlinear KL model is extended hierarchically with linearized transverse shear com-
ponents. Two formulations are proposed, using hierarchic rotations or hierarchic displacement to
include the transverse shear e�ects. The basic assumption, con�rmed by numerical investigation,
is that the transverse shear strains remain small in most simulations involving large de�ections.

Inspired by this work, this paper proposes a large deformation/small strain Kirchho�-Love
shell model hierarchically enhanced with warping. The warping displacement is additional with
respect to the arbitrarily large displacement of the shell reference surface. Hence, it is purely
deformational, i.e. not a�ected by rigid body motions, and small allowing an additive split
of the strain into the nonlinear part of the basic Kirchho�-Love model and a linear part of the
additional warping deformation. The resulting model is geometrically exact, in the sense that the
overall strain measure is not in�uenced by arbitrarily large rigid motions. Warping is described
as combination of a number of through-the-thickness shape functions, generically selected by the
user. Two unknowns are introduced for each warping shape, representing its amplitudes in two
directions tangent to the shell surface. The plane stress condition is exploited as usual. In the
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framework of the isogeometric analysis, NURBS basis functions are used to approximate reference
surface displacement and warping amplitudes, in order to meet the continuity requirement of the
weak form. The transverse shear strains depend only on the warping amplitudes. They are linear
with the corresponding DOFs and naturally free from locking. Membrane locking is avoided by
a proper choice of the basis functions degree and the adoption of an e�cient patch-wise reduced
integration scheme for the strain energy associated to the in-plane strain components, the only
integration to be repeated in the nonlinear analysis. Particular focus is given to the modeling of
composite plates and shells with alternating sti�/soft layups, for which two warping models are
investigated. The �rst one assumes that all sti� layers maintain the same director orthogonal
to the deformed surface with independent transverse shear deformations of the soft layers. This
can be considered as an exact geometry, Total-Lagrangian, rotation-free, higher order version of
the proposal in [3], that exploits the negligible transverse shear deformations of the sti� layers to
reduce the number of variables per surface point. A second model uses a single zigzag function
linking the transverse shear deformations of the soft layers to further reduce the variables to �ve
per surface point, regardless of the number of layers. A set of numerical tests is reported to assess
the validity of the hierarchic formulation and the coarse-mesh accuracy of the discretization. In
addition, a critical evaluation of the reliability of the two warping models compared to the solid
solution is carried out, showing in which cases one model is preferable to the other.

The article is organized as follows. After a brief introduction to the Kirchho�-Love shell
model, Section 2 formulates the Kirchho�-Love model hierarchically enhanced with generic warp-
ing functions in a large deformation/small strain context. Warping models for laminates with
alternating sti�/soft layups are presented in Section 3. Details concerning the isogeometric dis-
cretization and the nonlinear analysis are reported in Section 4. Section 5 contains a signi�cant
set of numerical tests. Conclusions are drawn in Section 6.

2 HIERARCHIC KIRCHHOFF-LOVE SHELL MODEL WITH WARPING

2.1 Standard Kirchho�-Love shell

A set of convective coordinates ξα, with α = 1, 2 is considered over a suitable reference shell
surface (not necessarily being the middle surface of the shell), while in the thickness direction
the coordinate ξ3 ∈ [ξ3b , ξ

3
t ] is assumed with ξ3b and ξ3t identifying the o�set of bottom and top

surfaces of the body with respect to the reference one. The position of a point in the undeformed
con�guration is de�ned by the position vector X

X = R(ξ1, ξ2) + ξ3A3(ξ
1, ξ2) (1)

where R(ξ1, ξ2) represents the position of the corresponding point on the reference surface and
A3 the initial shell normal taken as

A3 =
A1 ×A2

|A1 ×A2|
. (2)

with vectors

Aα =
∂R

∂ξα
with α = 1, 2
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de�ning a tangent plane to the shell surface. Covariant base vectors Gα in the reference con�g-
uration can be then evaluated as

Gα =
∂X

∂ξα
= Aα + ξ3A3,α with α = 1, 2

G3 =
∂X

∂ξ3
= A3

(3)

The current deformed con�guration is described as

x = r(ξ1, ξ2) + ξ3a3(ξ
1, ξ2) (4)

where r = R + v is the current position of the reference surface, with v its displacement.
Introducing the reference surface covariant basis vectors in the deformed con�guration

aα =
∂r

∂ξα
= Aα + v,α with α = 1, 2

the current normal is de�ned as

a3 =
a1 × a2
|a1 × a2|

, (5)

according to the Kirchho�-Love shell assumption that the director remains straight and normal
to the shell surface during deformation. The covariant basis vectors in the deformed con�guration
can be computed over the body as

gα =
∂x

∂ξα
= aα + ξ3a3,α with α = 1, 2

g3 =
∂x

∂ξ3
= a3(ξ

1, ξ2)

(6)

Denoting the displacement of the body with

u = x−X = v(ξ1, ξ2) + ξ3(a3(ξ
1, ξ2)−A3(ξ

1, ξ2)) (7)

the Green-Lagrange strain tensor can be written as

E =
3∑

i,j=1

ĒijG
i ⊗Gj with Ēij =

1

2
(gi · gj −Gi ·Gj) =

1

2
(u,i ·Gj + u,j ·Gi + u,i ·u,j ) (8)

where Ēij are the covariant strain components. The partial derivatives of the displacement vector
are

u,α = v,α+ξ3(a3,α−A3,α ) with α = 1, 2

u,3 = a3(ξ
1, ξ2)−A3(ξ

1, ξ2)
(9)

The reference surface and body contravariant basis vectors are obtained from the dual basis
condition aα · aβ = Aα ·Aβ = δβα and gα · gβ = Gα ·Gβ = δβα, with α, β = 1, 2. Due to Eq. (2)
and (5), the transverse shear strains vanish, that is Ēα3 = 0, α = 1, 2. The same holds for the
thickness strain, i.e. Ē33 = 0. Assuming its components to vary linearly through the thickness,
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it is possible to separate the strain into a constant part due to membrane action and a linear
part due to bending. The covariant strain coe�cients are:

Ēαβ = ēαβ + ξ3χ̄αβ =
1

2
(aαβ −Aαβ) + ξ3(Bαβ − bαβ) with α, β = 1, 2 (10)

with the metric coe�cients aαβ = aα · aβ and Aαβ = Aα ·Aβ with α, β = 1, 2. The curvature
tensor coe�cients [11] are de�ned as

Bαβ = −1

2
(Aα ·A3,j +Aβ ·A3,α) = Aα,β ·A3

bαβ = −1

2
(aα · a3,j + aβ · a3,α) = aα,β · a3

(11)

The curvature components for the Kirchho�-Love shell can be then computed as

χ̄αβ = Bαβ − bαβ = Aα,β ·A3 − aα,β · a3 with α, β = 1, 2

The presence of the norm |a1 × a2| in the denominator of a3 leads to a rather complicated
expression of the curvature in terms of the displacement �eld and, then, a computationally
expensive evaluation of the discrete operators coming from the strain variations. A simpli�ed
formula for the curvature proposed in [12] is here adopted, exploiting the hypothesis of large
deformations but small membrane strains. It is based on the following simpli�cation in Eq. (5):

|a1 × a2| ≈ |A1 ×A2|.

Consequently, bαβ is simpli�ed as

bαβ ≈ aα,β · a1 × a2
|A1 ×A2|

.

and the curvature components reduce to

χ̄αβ = Bαβ − bαβ ≈ 1

|A1 ×A2|
(Aα,β · (A1 ×A2)− aα,β · (a1 × a2)) α, β = 1, 2 (12)

that is a third order dependence on the displacement. The in-plane strain components of the KL
model can be written in Voigt's notation as

ε̄p = ē+ ξ3χ̄ with ε̄p =

 Ē11

Ē22

2Ē12

 , ē =

 ē11
ē22
2ē12

 , χ̄ =

 χ̄11

χ̄22

2χ̄12

 . (13)

2.2 Hierarchic shell model with warping

Multiple warping deformations, assumed to be small, can be hierarchically added to the KL
shell kinematics. Let us consider the case of an overall warping pro�le expressed as a combination
of n shapes wk(ξ

3). The current con�guration is de�ned as:

x = r(ξ1, ξ2) + ξ3a3(ξ
1, ξ2) +

n∑
k=1

2∑
β=1

µβk(ξ
1, ξ2)wk(ξ

3)aβ(ξ1, ξ2) (14)

5



Domenico Magisano, Antonella Corrado, Leonardo Leonetti, Josef Kiendl and Giovanni Garcea

where µβk(ξ
1, ξ2) represents the amplitude of the kth warping shape directed along the surface

tangent vectors aβ with β = 1, 2 respectively. The pro�le is assumed to be approximated
by the same shapes (with di�erent amplitudes) along the 2 directions, as typical for example
for composites made of isotropic layers, also if the generalization to di�erent shapes could be
considered for generic composites [7]. The covariant base vectors are de�ned as:

gα =
∂x

∂ξα
= aα + ξ3a3,α+

n∑
k=1

2∑
β=1

(
µβk(ξ

1, ξ2)wk(ξ
3)aβ,α+µβk,αwk(ξ

3)aβ
)
, α = 1, 2

g3 =
∂x

∂ξ3
= a3(ξ

1, ξ2) +
n∑

k=1

2∑
β=1

µβkwk,3 aβ(ξ1, ξ2)

(15)

Using (14) and (1), the displacement �eld assumes the expression:

u = x−X = v(ξ1, ξ2) + ξ3(a3(ξ
1, ξ2)−A3(ξ

1, ξ2))︸ ︷︷ ︸
uKL

+

n∑
k=1

2∑
β=1

µβkwk(ξ
3)aβ(ξ1, ξ2)︸ ︷︷ ︸

uZ

(16)

where uKL represents the displacement coming from the KL model and uZ is the contribution
given by warping. Analogously, the derivatives of the displacements can be expressed as the sum
of the KL and warping contributions:

u,α = u,KL
α +u,Zα with u,Zα =

n∑
k=1

2∑
β=1

(µβkaβ,α+µβk,α aβ)wk, α = 1, 2

u,3 = u,KL
3 +u,Z3 with u,Z3 =

n∑
k=1

2∑
β=1

µβkaβwk,3

(17)

The covariant strain components can be linearized with respect to the warping amplitudes,
collected in vector µ, as

Ēij =
[
Ēij

]
µ=0︸ ︷︷ ︸

ĒKL
ij

+

[
∂Ēij

∂µ

]
µ=0

· µ︸ ︷︷ ︸
ĒZ

ij

, with i, j = 1, 2, 3 (18)

and, neglecting terms more than linear in ξ3 and wα, we obtain the additional warping contri-
bution to the strain.

In compact notation, the in-plane warping strains are

ε̄zp =

Ēz
11

Ēz
22

Ēz
12

 =

n∑
k=1

ψ̄kwk, ψ̄k ≈
2∑

β=1

 µβkA1 ·Aβ,1+µβk,1A1 ·Aβ

µβkA2 ·Aβ,2+µβk,2A2 ·Aβ

µβk(A1 ·Aβ,2+A2 ·Aβ,1 ) + µβk,2A1 ·Aβ + µβk,1A2 ·Aβ

 .

(19)
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Figure 1: Warping functions with independent transverse shear deformations of the soft interlayers (WI)
for 5 alternating sti�/soft layers.

and the transverse shear ones are

ε̄zt =

[
2Ēz

13

2Ēz
23

]
=

n∑
k=1

γ̄kwk,3 , γ̄k ≈
2∑

β=1

[
µβkA1 ·Aβ

µβkA2 ·Aβ

]
. (20)

under the condition of large deformations but small strains (aα ·aβ ≈ Aα ·Aβ , aα ·aβ,1≈ Aα ·Aβ,1
and aα ·aβ,2≈ Aα ·Aβ,2 with α, β = 1, 2). The equivalence of strain energy per unit of reference
surface in terms of Cartesian strains

W =
1

2

∫ ξ3t

ξ3b

(εTpCpεp + ε
T
t Ctεt)dξ

3 =
1

2
(εTPDPεP + εTTDTεT ) (21)

provides the generalized constitutive matrices.

3 WARPING MODEL

3.1 Warping with independent transverse shear deformations of the soft layers

This warping pro�le is chosen as proposed for the �rst time in [3]. In practice, a number
of warping pro�les equal to the soft interlayers is considered. The same pro�les, but with
independent amplitudes, can be assumed along both the directions de�ned by the tangent vectors
A1 and A2. The total number of variables of the model at each point over the shell surface is
nt = 3 + 2ns: 3 components of the reference surface displacement and 2 amplitudes for the
warping pro�le associated to each of the ns soft layers. For the case of 5 layers, the 2 warping
functions are illustrated in Fig. 1.

3.2 Warping with a single zigzag shape

The re�ned ZZT provides a single piecewise linear shape of the warping pro�le over the whole
thickness of the laminate, denoted in following as w(ξ3), avoiding the subscript k previously used

7



Domenico Magisano, Antonella Corrado, Leonardo Leonetti, Josef Kiendl and Giovanni Garcea

ξ3(0)

ξ3(1)

ξ3(2)

ξ3(3)

ξ3(4)

ξ3(5)

STIFF

SOFT

STIFF

SOFT

STIFF

w

ξ3

(a) ZZ function

ξ3(0)

ξ3(1)

ξ3(2)

ξ3(3)

ξ3(4)

ξ3(5)

STIFF

SOFT

STIFF

SOFT

STIFF

w̃

ξ3

(b) Rotated ZZ function

Figure 2: Zigzag warping function (WZ) for 5 alternating sti�/soft layers: the function coming from the
re�ned ZZT on the left and the function rotated in order to minimize the shear deformation of
the sti� layers on the right.

in the case of multiple shapes. According to this theory, the zigzag function is de�ned by the
N + 1 interface values w(j), with j = 0, 1, ...N and N the overall number of layers. The theory
sets w(ξ3) to vanish at the top and bottom surfaces of the laminate, i.e. w(0) = w(N) = 0. The
internal interface values are computed as

w(j) = w(j−1) + h(j)β(j) with j = 1, ..., N − 1 (22)

where h(j) is the thickness of the jth layer. β(j) is the slope of the zigzag function in each layer
j, and is obtained as

β(j) =
Ḡ

G(j)
− 1 with j = 1, ..., N (23)

where G(j) is the shear modulus of the jth layer and Ḡ denotes a weighted average of G over the
laminate thickness, i.e.

Ḡ =

1

h

N∑
j=1

h(j)

G(j)

−1

(24)

The complete derivation of these equations can be found in [13]. Let us consider a layup made
of 5 alternating sti�/soft layers. As we can observe on the left side of Fig. 2, the constraint
of vanishing zigzag function at the top and bottom surfaces produces a pro�le characterized by
non-null slop, and then transverse shear strain, in all layers including the sti� ones.

Starting from the one obtained with the formulas above, the rotated zigzag function w̃ is
obtained as

w̃(ξ3) = w(ξ3)− φξ3 with φ =

∑N
j=1G

(j)h(j)β(j)∑N
j=1G

(j)h(j)
(25)

where φ represents a weighted average of the zigzag function slop over the laminate thickness,
in order to concentrate the transverse shear deformation in the soft layers only. Finally, a rigid
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displacement, e.g. the value of w̃(ξ3) at the reference shell surface, can be also subtracted to w̃ for
an easy imposition of the support boundary condition. The rotated zigzag function is illustrated
on the right side of Fig. 2 for a layup with 5 alternating sti�/soft layers. The resulting shell model
is accurate also when the zigzag e�ects become important, although based on just 5 DOFs per
reference surface point, i.e. 3 displacements and the 2 amplitudes of w̃ along the two directions
identi�ed by the tangent vectors A1 and A2, regardless of the number of layers.

4 THE ISOGEOMETRIC SHELL ELEMENT

Following the isoparametric concept, geometry and displacement �eld of the reference surface
and warping amplitudes are approximated, over each element, as follows

X(ξ, η) = Nu(ξ, η)Xe, u(ξ, η) = Nu(ξ, η)de, µ(ξ, η) = Nµ(ξ, η)µe (26)

where Xe, de and µe collect the discrete parameters at the control points of the element as-
sociated to geometry, reference surface displacement and warping amplitudes respectively. The
matrices Nu(ξ, η) and Nµ(ξ, η) collect bivariate NURBS functions [14]. Exploiting the isogeo-
metric approximation, the strain components become

εP = εP (qe) εT = εT (qe) with qe =

[
de

µe

]
. (27)

We adopt cubic NURBS basis functions with C2 continuity and the patch-wise reduced integra-
tion named S3

0 ([15]) to avoid membrane locking. The nonlinear load-displacement curves are
traced using the Riks arc-length method improved with MIP (Mixed Integration Point) Newton
iterative solver [16, 17].

5 NUMERICAL TESTS

The layups illustrated in Fig. 3 are considered in the simulations. A rectangular simply
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Figure 3: Illustration of the layups used in the analyses with thicknesses (mm), Young modulus E (MPa)
and Poisson coe�cient of the layers.

supported plate made of 5 alternating layers (layup L5) is considered with a transverse distributed
load q = 10−3 MPa. Geometry, loads and boundary conditions are depicted in Fig. 4. The
equilibrium paths are plotted in Fig. 5. The comparisons of the di�erent models con�rms the
accuracy of the proposed KLWI model also in case of multiple soft layers, unlike the basic KL
model. Also in this case, coarse meshes are su�cient to obtained the solid reference solution.
It is possible to observe that KLWZ (single ZZ function) proves to be a convenient alternative
(fewer DOFs) to KLWI (independent shear deformations) for alternating layups with uniform
soft layers, while it results less accurate for non-uniform soft layers.
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Figure 4: Rectangular plate: geometry (mm), loads, and boundary conditions.
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Figure 5: 5-layer rectangular plate: equilibrium paths.

6 CONCLUSIONS

The investigation demonstrated the correctness of the hierarchic formulation in large dis-
placement and buckling problems. Two warping models were studied: 1) independent transverse
shear deformations of the soft layers and 2) single zigzag function linking these deformations.
The comparison with the reference solid solution showed the great accuracy and reliability of the
�rst warping model, whose number of DOFs depends on the number of soft layers, when usual
shell models provide largely wrong predictions. On the other hand, the second warping model
allows to reduce the unknowns to �ve per surface point regardless of the number of layers with no
loss of accuracy for uniform soft interlayers. Further details are reported in [18]. The application
of the model to thermal loads and temperature-dependent material properties can be found in
[19], where the present work is combined with the generalized path-following method developed
in [20]. A reduced model cane also obtained for buckling problems as in [21, 22]. Finally, it is
wroth citing also [23], where a di�erent model is proposed to include the independent interlayer
thickness strain when it is relevant.
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