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1 Introduction 

The French Air Traffic Control is based on an automated system referred to as 

CAUTRA (Coordinateur AUtomatisé du Trafic Aérien). The CAUTRA is 

implemented on a distributed fault-tolerant computing system installed on five en-

route traffic control centers and one centralized operating center, that are connected 

through an aeronautical telecommunication network. The CAUTRA mission is to 

provide computerized means for the safe and efficient movement of aircrafts. The 

main services provided are flight plans processing, radar data processing and air 

traffic flow management.  

However, the computing system failures could temporarily prevent the system 

from performing some or all of its required functions. The impacts of failures on the 

traffic safety depend on the criticality of the affected functions and the duration of 

the service interruption. In order to analyse and evaluate these impacts, we have 

defined a global approach that can be decomposed into two parts. The first part is 

aimed at a preliminary Failure Modes Effects and Criticality Analysis of the global 

CAUTRA: this study led us to identify the main subsystems that have a significant 

impact on the traffic safety. The second part of the approach focuses on the 

dependability modeling and evaluation of each subsystem and the combination of 

the dependability measures evaluated for each subsystem to obtain global measures 

characterizing the impact of the CAUTRA failures on the traffic safety. This 

approach is presented in [1]. In this paper, we focus on one subsystem of the 

CAUTRA centralized operating center, referred to as “STIP”, which performs the 

centralized acquisition, processing and distribution of the flight plan information to 

the en-route traffic control centers. 

This paper is decomposed into seven sections. Section 2 presents the STIP 

architecture. Section 3 outlines the failure and repair assumptions considered. 

Section 4 discusses the classification of the STIP failures according to their impact 

on the traffic safety. Section 5 summarizes the modeling approach used to describe 

the STIP behaviour and evaluate dependability measures. Section 6 comments some 

quantitative results. Finally, Section 7 concludes and outlines some directions for 

the future work. 

2 The STIP Architecture 
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The STIP is implemented on a duplex architecture (Figure 1) composed of two 

redundant computers (Co the operational one and Cs the spare one), two redundant 

disks (Do and Ds where each one is composed of a couple of mirrored disks), two 

replicas of the application software (So and Ss), and an I/O board (B) for the 

connection of the communication lines and peripherals to the STIP operational 

configuration. So periodically sends a copy of its current state to Ss through a local 

data link. Do and Ds can be accessed by either Co or Cs. Two configuration modes 

are possible: “local disk association” when Co is connected to Do, and “remote disk 

association” when Co is connected to Ds. The computers — disks interconnections 

are implemented with coupler devices. The couplers and the dedicated data link are 

supposed to be failure-free since their failure rates are significantly small compared 

to the failure rates of the rest of components. 

3 Failure-Repair Assumptions 

So & Ss. Two parameters are relevant to identify software failures and their impact 

on the air traffic control: the amount of dynamic data lost and the duration of service 

interruption. The dynamic data correspond to information about the flight plans 

processed by the system that are vital for the air traffic control services. 

Most of the So failures can be recovered without a significant loss of data either 

by restarting the software, or by rebooting Co. However, some So failures may lead 

to the partial or total loss of the dynamic data. In this case, several recovery actions 

are attempted by the operators: 1) the reconfiguration of Ss from the spare mode to 

the operational mode and the switching of I/O links; 2) the reboot of Co and its 

association to the remote disk followed by the restart of So (this sequence of 

recovery actions is denoted as “asso”); 3) the restart of So after partial elimination 

of some dynamic data (denoted as “rpl”) ; 4) the restart of So after total elimination 

of the dynamic data (denoted as “rtl”). It is noteworthy that the data lost has to be 

manually recreated by the controllers after the service restoration. 

Three failure modes of the So replica have been identified: 

• “So and Ss common mode failures” which are due to some erroneous dynamic 
data processed by both replicas; they are immediately diagnosed by the operators 
as they lead to the simultaneous failure of both replicas; these failures may be 
recovered by an “rpl”, followed by an “rpt” if the first recovery action fails; 

• “local failures - immediately diagnosed”; these failures affect the dynamic data 
processed by So without affecting those processed by Ss and they are immediately 
diagnosed by the operators. The reconfiguration of Ss (from the spare to the 

 

 

 

 

 

 

 

Figure 1 - Overview of the STIP Architecture 
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operational mode) and the switching of the I/O links are first attempted followed, 
in case of failure, by an “asso” recovery action; 

• “local failures - not immediately diagnosed”: other software failures whose origin 
is not immediately identified by the operators. The four recovery procedures 
mentioned above are consecutively applied until the service restoration. 

With regards to the Ss replica, it is assumed that any failure of Ss leads to the loss 

of the dynamic data processed by this replica. Moreover, Ss can be restarted only if 

So is operational. 

Co and Cs. A computer failure leads to the stop of the software replica hosted. 

Moreover, when Co fails, Cs becomes the operational computer after the 

reconfiguration of the system. 

Do and Ds. The failure of Do or Ds results from the unavailability of the associated 

couple of mirrored disks. The failure of a disk causes the associated software replica 

to stop and leads to the total loss of the dynamic data processed by that replica. 

When Do fails, the reconfiguration of Ss into So and the switching of the I/O links 

are first attempted followed, in case of failure, by an “asso” recovery action. 

B. Two failure modes may affect the I/O board: 1) “a switching failure” when a 

system reconfiguration is attempted; this failure mode precludes the use of Cs, 

however Ds may still be accessed via a remote disk association; 2) “the interruption 

of I/O links” that may occur at any time and leads to the global system 

unavailability .  

Repair resources. We assume the availability of two repairmen for hardware 

failures: one for the I/O board and another one for the disks and the computers. 

4 Impact of the STIP Failures on the Traffic Safety 

The STIP failures impact on the traffic safety is measured through the assessment 

of the degradation of the controllers capability in performing safe control. During 

the global CAUTRA analysis, we have identified five classes of service degradation 

that are summarized in Table 1. The level of degradation is dependent on the 

amount of data lost, the duration of service interruption and the availability of 

alternative facilities to continue the air traffic control service in the degraded 

operation mode (control services provided by systems outside the air traffic control 

computing system). Levels IS1 and IS5 correspond respectively to the most and the 

least critical failures. 

Table 2 gives a classification of the STIP failures and their correspondence with 

the safety levels defined in Table 1. This classification, which has been validated by 

experts involved in the system design and operation, takes into account the 

criticality of the services provided by the STIP. It is noteworthy that the “swl” 

failures are not critical when the rest of the CAUTRA subsystems are not failed. 

However, their impact becomes more significant when some of these subsystems 

are in a degraded mode (See [2] for more details). 

 



Proc. of the 15th International Conference on Computer Safety, Reliability and Security 

(SAFECOMP96), Vienna, Austria,, Springer-Verlag, pp. 219-229,  October 1996 

4 

Safety levels Definition 

IS1 Failure conditions which lead to a long interruption of the service and which 
prevent continued safe control 

IS2 Failure conditions which lead to a highly degraded service until the application 
of alternative recovery means and the service continues in a full degraded 
mode with these means 

IS3 Failure conditions which lead to a degraded service; the service can be 
continued in a degraded mode with the alternative means 

IS4 Failure conditions which have minor effects on the service 

IS5 No impact 

Table 1 - Failures classification according to their impact on the air traffic safety 

Notation Definition  IS 

swl short interruption (!15 min), without loss of data 5 

lwl long interruption (> 15 min), without loss of data 4 

pl interruption (independent of the duration), with partial loss of the data 3 

tl interruption (independent of the duration), with total loss of data 2 

Table 2 - Classification of the STIP failures and corresponding IS levels 

Table 2 leads to the partitioning of the STIP states into five state classes. Several 

paths between these classes may be observed. The transition from one class to 

another one corresponding to a more degraded service are due to the failure of 

recovery actions or the occurrence of additional hardware or software failures. To 

evaluate quantitative measures characterizing the impact of the STIP failures on the 

traffic safety, we have further considered the following grouping of states:  

E2 = {tl} ; E3 = {tl, pl} ; E4 = {tl, pl, lwl}. Therefore, when the STIP occupies Ei, 

the minimum level of degradation is equal to ISi. Two measures can be evaluated: 

• MTFFi (Mean Time to First Failure): mean time to the first visit to Ei (i = 2, 3, 4); 

• UAi (Unavailability): Ei sojourn probability in steady-state (i = 2, 3, 4). 

To evaluate these measures, we model the system behaviour resulting from the 

failure-repair assumptions presented in Section 3. 

5 Modeling Approach 

5.1 Principles 

The STIP and the other CAUTRA sub-systems have complex hardware and 

software fault-tolerant architectures, characterised by a large number of components 

with complex behaviour and multiple interactions. Over the years, several model 

types such as combinatorial models (reliability block diagrams, fault trees, etc.), and 

state-space models (homogeneous Markov chains and their extensions) have been 

used to model systems and to evaluate various dependability measures [3]. Because 

they are able to capture various functional and stochastic dependencies among 

components (such as shared repair facilities), state-space models, in particular 

homogeneous Markov chains, are commonly used to model the dependability of 

fault-tolerant systems [4]. To alleviate the problem of specification and generation 

of complex models, higher level model types such as stochastic Petri nets [5] are 

generally used since they a) allow the definition of a more compact representation 

of a model (closer to the real system behaviour), b) provide some model structural 
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verification facilities, and c) can be automatically converted to Markov models. In 

our study we use the SURF-2 dependability modeling software tool, developed at 

LAAS-CNRS [6] which allows the construction and processing of Generalized 

Stochastic Petri Nets (GSPN). Nevertheless, the specification and the construction 

of complex GSPN models is a fastidious and an error-prone task. To master the 

models complexity, we have defined a modular and an incremental modeling 

approach based on: 

• a specification formalism allowing the structured high-level description of each 
component behaviour, accounting for its interactions with the other components; 

• a set of transformation rules allowing the specification formalism to be directly 
converted to a GSPN model; 

The model is specified, built and validated in an incremental manner. At the initial 

step, the behaviour of the system is described taking into account the failures of 

only one selected component, assuming that the rest of the components are in an 

operational nominal state. The failures of the other components are integrated 

progressively. At each integration step, the GSPN model is derived and validated. 

The validation is carried out at the GSPN level (structural verifications) and also at 

the Markov level in order to check the different scenario represented by the model. 

When the Markov chain size increases, the exhaustive analysis of the Markov chain 

is impractical. In this case, sensitivity analyses are used to check the validity of the 

model assumptions. 

To our knowledge, most of the studies that addressed the direct generation of 

dependability models from the translation of a specification formalism focus on the 

construction of Markov models without considering the intermediate step of GSPN 

generation. This latter step offers some model verification facilities allowing the 

user to gain confidence in the models on which judgements about the system 

dependability will be based (see for instance [7-10]). 

Because of the lack of space, this paper is restricted to a brief presentation of the 

specification formalism through an example taken from the STIP; only the elements 

necessary for understanding the example are outlined. The transformation rules for 

the conversion of the specification formalism to a GSPN model are not presented. 

5.2 Presentation of the Specification Formalism 

The aim of the specification formalism is to provide a structured description of the 

system behaviour allowing an optimal GSPN model to be directly derived from the 

specification by the automatic translation of the formalism elements. The optimality 

criteria we have considered are: 1) conciseness and ease of model specification to 

enhance readability, 2) flexibility allowing, for instance, an easy modification of the 

model when new assumptions are to be considered, and 3) reusability of some parts 

of the formalism to facilitate the validation of the model and the specification and 

modeling of alternative fault-tolerant architectures based on similar assumptions. 

5.2.1 Main Concepts 

Our formalism, called an evolution diagram, provides a high-level description of 

each system component behaviour. It is composed of a graphical representation with 

textual definitions of some elements of the graph. An evolution diagram describing 

the behaviour of a given component is a directed graph made up of two types of 
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vertices: phases (represented by circles) and evolution functions (represented by 

rectangles), which are connected by edges. An unique evolution function is 

associated to each phase. A phase designates a state or a class of states of the 

component having some common features, while the associated evolution function 

describes the possible state changes from that phase. The evolution of a given 

component state may be due to the occurrence of local events (generated by the 

component itself) or external events (generated by other components). It is 

noteworthy that some local events may be common to several components (e.g. a 

common-mode failure affecting two software replicas). An evolution function 

defines on one hand, the local events that may occur during the sojourn of the 

component in one of the states of the associated phase (activation of faults, local 

repair actions, etc.), the enabling conditions associated to these events and the 

stochastic parameters characterizing each event. On the other hand, it describes, in a 

decision diagram-like form, each event occurrence consequences on the component 

itself and on its environment (various consequences are possible depending on the 

state of the component environment).  

Different states from which the same kinds of events may occur can be identified 

in a component behaviour. Because the graphical representation of these different 

states increases the number of vertices of the evolution diagram which, therefore, 

becomes more difficult to understand, we chose to represent such a state class using 

one phase and defined Boolean variables to distinguish a particular state in the class 

when needed. These Boolean variables are not graphically represented but they are 

defined in the textual description of the evolution functions. 

Moreover, to enhance the readability of the evolution diagrams associated to each 

component, only phase evolutions due to the occurrence of local events are 

represented graphically. Component state changes resulting from interactions 

between components are described in the textual definition of the evolution 

functions. Bold characters are used to identify these interactions. 

Figure 2 gives an example of an evolution diagram. The example describes the 

behaviour of the STIP So software replica that results from the failure-repair 

assumptions presented in Section 3. Only the evolution function associated to phase 

“So_ok” is presented and commented in the following. 

5.2.2 Evolution Function Structuring 

An evolution function attached to a phase P is denoted by OUT_P. Four levels can 

be distinguished in the specification of an evolution function. 

! level 1, identified by the symbol “"”, defines the local events that may occur 
from the states of P and the associated enabling conditions (if any). If an event is 
common to OUT_P and OUT_Q (Q being a phase of another component), it is 
identified by the symbol: “" (OUT_Q)”.  

 Example: three events may occur from the phase S_ok corresponding to the three failure 

modes identified in Section 3. The first event is shared by phases So_ok and Ss_ok.  
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Notation Phases and variables semantics 

So_ok So is in the “Up” state 

So_rst So is being restarted 

So_rb So while rebooting 

So_rec So while reconfiguration of Ss from spare to operational mode 

So_wait_switch So waiting for I/O switching 

So_asso So involved in a remote disk association 

So_rpl So is being restarted after partial dynamic data elimination 

So_rtl So is being restarted after total dynamic data elimination 

So_stop So is stopped (waiting for repair) 

Ss_ok Ss in the “Up” state 

Ss_d Ss is down (either stopped or under restart) 

Cs_ok Cs is in the “Up” state 

B_ok B is in the “Up” state 

So_M_der So variable characterizing the state of the data processed by So 

So_M_sw So variable used to memorise the need for an I/O switching 

So_M_swl So variable identifying an “swl” type service degradation 

So_M_pl So variable identifying a “pl” type service degradation 

Ss_M_der Ss variable characterizing the state of the data processed by Ss 

Figure 2 - So evolution diagram and one of its evolution functions 
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 The consequences of each event are defined at levels 2 and 3; 

! level 2, identified by the symbol “•”, describes the impact of each event on the 
component phase. The event occurrence may lead the component to move to 
another phase or keep it in the same phase. In the latter case, the event occurrence 
leads to the value modification of some internal variables. The phase change is 
either timed (represented by the symbol “»”) or instantaneous (represented by the 
symbol “›”), depending on the corresponding event type. Several evolutions are 
possible from a given phase depending on the current state of the component 
environment. The test conditions are described as follows: IF (conditions) DO 
(consequences) ELSEIF DO() ELSE DO (). 

 The sets of conditions are obtained by combining elementary conditions using 
AND, OR and “/” (for negation) logical operators. An elementary condition 
indicates the presence (or absence) of a component in one of its phases, or the 
logical value of a variable. It is required that the entire set of conditions of a 
decision diagram forms a complete and exclusive system in order to ensure that all 
the possible cases are considered in the specification. 

 Example: the occurrence of a “local failure - immediately diagnosed” failure mode leads to 

three possible phase evolution depending on the state of the dynamic data processed by Ss 

(given by the value of the Ss_M_der variable) and the states of Cs and B. If the spare data 

are damaged, then So is restarted after the partial elimination of some dynamic data  

(So_ok » So_rpl); 

! level 3, identified by the symbol “[ ]”, describes the consequences of each event 
on the internal variables and on the states of the other components (i.e. on their 
internal variables and phases). Several groups of consequences are possible, 
depending on the current state of the system; 

 Example: the failure mode “So local failure - immediately diagnosed” occurrence affects the 

dynamic data processed by So (+So_M_der) and leads the STIP to a “pl” degradation class 

(+So_M_pl). The “+” operator is used to set the value of a logical variable to “True”; 

! level 4, identified by the symbol “[ ] x [ ]T”, specifies in a matrix format the 
stochastic parameters associated to each event. The first array defines the 
probabilities associated to each event (1 is the default value) while the second one 
gives the occurrence rates for the timed events only (the symbol “#” is used for 
the instantaneous events). 

 Example: the parameters associated to the three So failure modes are specified as follows: 

[p1.m(Ss_ok), p2.(m(Ss_ok)+(1-m(Ss_ok) /(1- p1)), (1-p1-p2).(m(Ss_ok)+(1-m(Ss_ok)/(1-p1))]  

 x [$_so, $_so, $_so]  

 $_so is the failure rate of So. p1 and p2 are the probabilities of occurrence of a common 

mode failure and of a “ local failure - immediately diagnosed” respectively when Ss is in the 

“ok” state. If Ss is in the “down” state, then the probabilities associated to the second and the 

third failure modes have to be updated. Function “m(Ss_ok)” returns the value 1 if Ss_ok is 

true and 0 if not. This function allows state dependent parameters to be specified. Therefore 

stochastic dependencies between component behaviours can also be specified in the 

evolution functions definition. 

In addition to the concepts introduced above, the user can define procedures 

which can be reused by several evolution functions allowing the optimisation of the 

evolution functions description. The procedures are specified with a decision 

diagram-like format. The only condition imposed is that the associated set of 
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conditions should be complete and exclusive. For instance, Stp_Ss and Chg_D are 

two procedures used in the STIP specification. Stp_Ss is invoked when the 

occurrence of an event (for instance, the failure of Cs or Ds) causes the Ss replica to 

be stopped. Chg_D describes the switching of the disks roles (switch Do to Ds and 

vice-versa). Stp_Ss is defined as follows: 

Stp_Ss: IF Ss_ok DO Ss_ok › Ss_d ELSE DO NIL 

The NIL operator is introduced to satisfy the completeness property. It denotes 

that for the remaining set of conditions no action is performed. 

6 Application to STIP and Evaluation Results 

We have applied the incremental modeling approach presented in Section 5 in  

order to build a GSPN model describing the behavior of the STIP and evaluate 

quantitative measures characterizing the impact of the STIP failures on the traffic 

safety. Due to the complexity of the STIP, it is not possible to present the 

corresponding GSPN models. Table 3 outlines the different steps considered and the 

size of the corresponding Markov chains. Each step led to the validation of the 

model and the evaluation of MTTF and UA measures (see Section 4). At each step, 

we check that the assumptions considered at the previous step are also satisfied. 

Model construction and processing have been carried out with the tool SURF2. 
 

Modeling steps # Markov chain states 

So 5 

So - Ss 12 

So - Ss - B 38 

So - Ss - B - Co - Cs 104 

So - Ss - B - Co - Cs - Do - Ds 212 

So - Ss - B - Co - Cs - Do - Ds - Rep 256 

Tableau 3 - The STIP modeling steps and size of the corresponding Markov chains 

Two kinds of quantitative analyses have been carried out. Firstly we conducted 

sensitivity studies in order to identify the model parameters that have the most 

impact on the quantitative measures. These studies revealed the major impact of the 

software failure rates, compared to the rest of the parameters. Secondly, we 

analysed several operating configurations of the STIP in order to evaluate their 

impact on the air traffic safety. These configurations are obtained from the 

“reference” model corresponding to the assumptions presented in Section 3 by 

modifying some recovery scenarios or some model assumptions. The configurations 

studied are listed hereafter: 

• “cold” spare instead of a “warm” spare; 

• “hot” spare instead of a “warm” spare; 

• try a “remote disk association” before the reconfiguration of the software replicas, 
whenever this is possible (“Rec->Asso”); 

• try a reconfiguration of the software replicas or a “remote disk association” 
instead of a reboot, each time the spare dynamic data are not damaged 
(“Shunt_Reboot”) ; 

• consider three repairmen instead of two: one for the I/O board and two for the 
computers and the disks. 
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Thanks to the specification and model construction method, the modification of 

the reference model to account for these alternative configurations was relatively 

easy. The MTFFi and UAi values corresponding to each configuration are listed in 

Table 4.  
 

 MTFF

4 

MTFF3 MTFF2 UA4 UA3 UA2 

    Pr. (E
-6

) min/an Pr. (E
-6

) min/an Pr. (E
-

6
) 

min/an 

Reference 1324.9  3985.2  38422.1  165.9  87  41.5 21  4.0   2 

Cold spare  743.0  1235.2  1885.1  304.4  159  159.5 83  112.9  59 

Hot spare 1324.8  3985.1  38422.1  165.8  87   41.5 21  4.0   2 

Rec->Asso  641.7  3986.7  38482.6  392.3  206  41.5 21  4.0   2 

Shunt_Reboot 1324.9  3984.6  38332.6  108.1  56  41.6 21  4.0   2 

3 Repairmen 1324.9  3985.2  38421.9  165.9  87  41.5 21  4.0   2 

Table 4 - MTFF and UA for different STIP configurations 

It can be noticed that the use of a warm spare instead of a cold one improves the 

safety measures: MTFF4, MTFF3 and MTFF2 increase by a factor of respectively 2, 

3 and 20, while UA4, UA3 and UA2 decrease by a factor of respectively 2, 4 and 

30. The improvement is more significant for class 2 which includes the most critical 

failures with respect to the traffic safety. It is noteworthy that the difference between 

these configurations decreases with the improvement of the disks reliability. 

Moreover, similar results are obtained for the “hot spare” and the “cold spare” 

configurations and also for the three and two repairmen cases. The configuration 

“Rec->Asso” leads to a small degradation of class 4 safety measures which concern 

the least critical failures. Finally, the configuration Shunt_Reboot leads to a 

significant improvement of UA4 (35%) against a weak decrease of MTFF2 (0.2%). 

To conclude, the results given in Table 4 show the benefit of using a “warm 

spare” instead of a “cold spare”. The other alternatives do not have a significant 

impact on safety. It is noteworthy that the STIP configuration that is currently 

operational is based on a cold spare. It is expected that the warm spare configuration 

will be introduced in the next release. 

7 Conclusion and Future Work 

In this paper, we analysed the failure impact of one subsystem of the French air 

traffic control computing system on the traffic safety. To master the complexity of 

this system, we presented a modeling approach that is based on a specification 

formalism allowing the structured description of the system behaviour and the 

automatic generation of a GSPN model from the specification. The aim of the 

formalism is to assist the modellers in the construction of dependability models. 

Moreover, we analysed several system operating configurations and evaluated the 

impact of each of them on the traffic safety. The results show the benefit of using a 

“warm spare” configuration instead of the “cold spare” configuration that is 

currently used. These results will be used to support the definition of the future 

architecture of the system. In the future, we will focus on the modeling and analysis 

of the CAUTRA subsystems implemented in the five en-route traffic control centers 

and the combination of the results obtained with those presented in this paper.  
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