
HAL Id: hal-00851765
https://hal.archives-ouvertes.fr/hal-00851765

Submitted on 23 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safety Analysis and Evaluation of an Air Traffic Control
Computing System

Nicolae Fota, Mohamed Kaâniche, Karama Kanoun, Alain Peytavin

To cite this version:
Nicolae Fota, Mohamed Kaâniche, Karama Kanoun, Alain Peytavin. Safety Analysis and Evaluation
of an Air Traffic Control Computing System. The 15th International Conference on Computer Safety,
Reliability and Security (SAFECOMP-1996), Oct 1996, Vienne, Austria. pp.219-229. �hal-00851765�

https://hal.archives-ouvertes.fr/hal-00851765
https://hal.archives-ouvertes.fr

Proc. of the 15th International Conference on Computer Safety, Reliability and Security

(SAFECOMP96), Vienna, Austria,, Springer-Verlag, pp. 219-229, October 1996

1

Safety Analysis and Evaluation of an Air Traffic

Control Computing System

Nicolae Fota!*, Mohamed Kaâniche!, Karama Kanoun! and Alain Peytavin!!

!LAAS-CNRS !!CENA *SOFREAVIA

7, Av. du Colonel Roche 7 Av. Edouard Belin, BP. 4005 3 Carrefour de Weiden

31077 Toulouse—France 31055 Toulouse—France 92441 Issy les Moulineaux—France

fota@laas.fr {kaaniche;kanoun}@laas.fr peytavin@cena.dgac.fr

1 Introduction

The French Air Traffic Control is based on an automated system referred to as

CAUTRA (Coordinateur AUtomatisé du Trafic Aérien). The CAUTRA is

implemented on a distributed fault-tolerant computing system installed on five en-

route traffic control centers and one centralized operating center, that are connected

through an aeronautical telecommunication network. The CAUTRA mission is to

provide computerized means for the safe and efficient movement of aircrafts. The

main services provided are flight plans processing, radar data processing and air

traffic flow management.

However, the computing system failures could temporarily prevent the system

from performing some or all of its required functions. The impacts of failures on the

traffic safety depend on the criticality of the affected functions and the duration of

the service interruption. In order to analyse and evaluate these impacts, we have

defined a global approach that can be decomposed into two parts. The first part is

aimed at a preliminary Failure Modes Effects and Criticality Analysis of the global

CAUTRA: this study led us to identify the main subsystems that have a significant

impact on the traffic safety. The second part of the approach focuses on the

dependability modeling and evaluation of each subsystem and the combination of

the dependability measures evaluated for each subsystem to obtain global measures

characterizing the impact of the CAUTRA failures on the traffic safety. This

approach is presented in [1]. In this paper, we focus on one subsystem of the

CAUTRA centralized operating center, referred to as “STIP”, which performs the

centralized acquisition, processing and distribution of the flight plan information to

the en-route traffic control centers.

This paper is decomposed into seven sections. Section 2 presents the STIP

architecture. Section 3 outlines the failure and repair assumptions considered.

Section 4 discusses the classification of the STIP failures according to their impact

on the traffic safety. Section 5 summarizes the modeling approach used to describe

the STIP behaviour and evaluate dependability measures. Section 6 comments some

quantitative results. Finally, Section 7 concludes and outlines some directions for

the future work.

2 The STIP Architecture

Proc. of the 15th International Conference on Computer Safety, Reliability and Security

(SAFECOMP96), Vienna, Austria,, Springer-Verlag, pp. 219-229, October 1996

2

The STIP is implemented on a duplex architecture (Figure 1) composed of two

redundant computers (Co the operational one and Cs the spare one), two redundant

disks (Do and Ds where each one is composed of a couple of mirrored disks), two

replicas of the application software (So and Ss), and an I/O board (B) for the

connection of the communication lines and peripherals to the STIP operational

configuration. So periodically sends a copy of its current state to Ss through a local

data link. Do and Ds can be accessed by either Co or Cs. Two configuration modes

are possible: “local disk association” when Co is connected to Do, and “remote disk

association” when Co is connected to Ds. The computers — disks interconnections

are implemented with coupler devices. The couplers and the dedicated data link are

supposed to be failure-free since their failure rates are significantly small compared

to the failure rates of the rest of components.

3 Failure-Repair Assumptions

So & Ss. Two parameters are relevant to identify software failures and their impact

on the air traffic control: the amount of dynamic data lost and the duration of service

interruption. The dynamic data correspond to information about the flight plans

processed by the system that are vital for the air traffic control services.

Most of the So failures can be recovered without a significant loss of data either

by restarting the software, or by rebooting Co. However, some So failures may lead

to the partial or total loss of the dynamic data. In this case, several recovery actions

are attempted by the operators: 1) the reconfiguration of Ss from the spare mode to

the operational mode and the switching of I/O links; 2) the reboot of Co and its

association to the remote disk followed by the restart of So (this sequence of

recovery actions is denoted as “asso”); 3) the restart of So after partial elimination

of some dynamic data (denoted as “rpl”) ; 4) the restart of So after total elimination

of the dynamic data (denoted as “rtl”). It is noteworthy that the data lost has to be

manually recreated by the controllers after the service restoration.

Three failure modes of the So replica have been identified:

• “So and Ss common mode failures” which are due to some erroneous dynamic
data processed by both replicas; they are immediately diagnosed by the operators
as they lead to the simultaneous failure of both replicas; these failures may be
recovered by an “rpl”, followed by an “rpt” if the first recovery action fails;

• “local failures - immediately diagnosed”; these failures affect the dynamic data
processed by So without affecting those processed by Ss and they are immediately
diagnosed by the operators. The reconfiguration of Ss (from the spare to the

Figure 1 - Overview of the STIP Architecture

Ss
Data flow in
absence of

failures

Do

Ds

communication lines and
peripherals

B

Cs

Co

So

Co Cs

Proc. of the 15th International Conference on Computer Safety, Reliability and Security

(SAFECOMP96), Vienna, Austria,, Springer-Verlag, pp. 219-229, October 1996

3

operational mode) and the switching of the I/O links are first attempted followed,
in case of failure, by an “asso” recovery action;

• “local failures - not immediately diagnosed”: other software failures whose origin
is not immediately identified by the operators. The four recovery procedures
mentioned above are consecutively applied until the service restoration.

With regards to the Ss replica, it is assumed that any failure of Ss leads to the loss

of the dynamic data processed by this replica. Moreover, Ss can be restarted only if

So is operational.

Co and Cs. A computer failure leads to the stop of the software replica hosted.

Moreover, when Co fails, Cs becomes the operational computer after the

reconfiguration of the system.

Do and Ds. The failure of Do or Ds results from the unavailability of the associated

couple of mirrored disks. The failure of a disk causes the associated software replica

to stop and leads to the total loss of the dynamic data processed by that replica.

When Do fails, the reconfiguration of Ss into So and the switching of the I/O links

are first attempted followed, in case of failure, by an “asso” recovery action.

B. Two failure modes may affect the I/O board: 1) “a switching failure” when a

system reconfiguration is attempted; this failure mode precludes the use of Cs,

however Ds may still be accessed via a remote disk association; 2) “the interruption

of I/O links” that may occur at any time and leads to the global system

unavailability .

Repair resources. We assume the availability of two repairmen for hardware

failures: one for the I/O board and another one for the disks and the computers.

4 Impact of the STIP Failures on the Traffic Safety

The STIP failures impact on the traffic safety is measured through the assessment

of the degradation of the controllers capability in performing safe control. During

the global CAUTRA analysis, we have identified five classes of service degradation

that are summarized in Table 1. The level of degradation is dependent on the

amount of data lost, the duration of service interruption and the availability of

alternative facilities to continue the air traffic control service in the degraded

operation mode (control services provided by systems outside the air traffic control

computing system). Levels IS1 and IS5 correspond respectively to the most and the

least critical failures.

Table 2 gives a classification of the STIP failures and their correspondence with

the safety levels defined in Table 1. This classification, which has been validated by

experts involved in the system design and operation, takes into account the

criticality of the services provided by the STIP. It is noteworthy that the “swl”

failures are not critical when the rest of the CAUTRA subsystems are not failed.

However, their impact becomes more significant when some of these subsystems

are in a degraded mode (See [2] for more details).

Proc. of the 15th International Conference on Computer Safety, Reliability and Security

(SAFECOMP96), Vienna, Austria,, Springer-Verlag, pp. 219-229, October 1996

4

Safety levels Definition

IS1 Failure conditions which lead to a long interruption of the service and which
prevent continued safe control

IS2 Failure conditions which lead to a highly degraded service until the application
of alternative recovery means and the service continues in a full degraded
mode with these means

IS3 Failure conditions which lead to a degraded service; the service can be
continued in a degraded mode with the alternative means

IS4 Failure conditions which have minor effects on the service

IS5 No impact

Table 1 - Failures classification according to their impact on the air traffic safety

Notation Definition IS

swl short interruption (!15 min), without loss of data 5

lwl long interruption (> 15 min), without loss of data 4

pl interruption (independent of the duration), with partial loss of the data 3

tl interruption (independent of the duration), with total loss of data 2

Table 2 - Classification of the STIP failures and corresponding IS levels

Table 2 leads to the partitioning of the STIP states into five state classes. Several

paths between these classes may be observed. The transition from one class to

another one corresponding to a more degraded service are due to the failure of

recovery actions or the occurrence of additional hardware or software failures. To

evaluate quantitative measures characterizing the impact of the STIP failures on the

traffic safety, we have further considered the following grouping of states:

E2 = {tl} ; E3 = {tl, pl} ; E4 = {tl, pl, lwl}. Therefore, when the STIP occupies Ei,

the minimum level of degradation is equal to ISi. Two measures can be evaluated:

• MTFFi (Mean Time to First Failure): mean time to the first visit to Ei (i = 2, 3, 4);

• UAi (Unavailability): Ei sojourn probability in steady-state (i = 2, 3, 4).

To evaluate these measures, we model the system behaviour resulting from the

failure-repair assumptions presented in Section 3.

5 Modeling Approach

5.1 Principles

The STIP and the other CAUTRA sub-systems have complex hardware and

software fault-tolerant architectures, characterised by a large number of components

with complex behaviour and multiple interactions. Over the years, several model

types such as combinatorial models (reliability block diagrams, fault trees, etc.), and

state-space models (homogeneous Markov chains and their extensions) have been

used to model systems and to evaluate various dependability measures [3]. Because

they are able to capture various functional and stochastic dependencies among

components (such as shared repair facilities), state-space models, in particular

homogeneous Markov chains, are commonly used to model the dependability of

fault-tolerant systems [4]. To alleviate the problem of specification and generation

of complex models, higher level model types such as stochastic Petri nets [5] are

generally used since they a) allow the definition of a more compact representation

of a model (closer to the real system behaviour), b) provide some model structural

Proc. of the 15th International Conference on Computer Safety, Reliability and Security

(SAFECOMP96), Vienna, Austria,, Springer-Verlag, pp. 219-229, October 1996

5

verification facilities, and c) can be automatically converted to Markov models. In

our study we use the SURF-2 dependability modeling software tool, developed at

LAAS-CNRS [6] which allows the construction and processing of Generalized

Stochastic Petri Nets (GSPN). Nevertheless, the specification and the construction

of complex GSPN models is a fastidious and an error-prone task. To master the

models complexity, we have defined a modular and an incremental modeling

approach based on:

• a specification formalism allowing the structured high-level description of each
component behaviour, accounting for its interactions with the other components;

• a set of transformation rules allowing the specification formalism to be directly
converted to a GSPN model;

The model is specified, built and validated in an incremental manner. At the initial

step, the behaviour of the system is described taking into account the failures of

only one selected component, assuming that the rest of the components are in an

operational nominal state. The failures of the other components are integrated

progressively. At each integration step, the GSPN model is derived and validated.

The validation is carried out at the GSPN level (structural verifications) and also at

the Markov level in order to check the different scenario represented by the model.

When the Markov chain size increases, the exhaustive analysis of the Markov chain

is impractical. In this case, sensitivity analyses are used to check the validity of the

model assumptions.

To our knowledge, most of the studies that addressed the direct generation of

dependability models from the translation of a specification formalism focus on the

construction of Markov models without considering the intermediate step of GSPN

generation. This latter step offers some model verification facilities allowing the

user to gain confidence in the models on which judgements about the system

dependability will be based (see for instance [7-10]).

Because of the lack of space, this paper is restricted to a brief presentation of the

specification formalism through an example taken from the STIP; only the elements

necessary for understanding the example are outlined. The transformation rules for

the conversion of the specification formalism to a GSPN model are not presented.

5.2 Presentation of the Specification Formalism

The aim of the specification formalism is to provide a structured description of the

system behaviour allowing an optimal GSPN model to be directly derived from the

specification by the automatic translation of the formalism elements. The optimality

criteria we have considered are: 1) conciseness and ease of model specification to

enhance readability, 2) flexibility allowing, for instance, an easy modification of the

model when new assumptions are to be considered, and 3) reusability of some parts

of the formalism to facilitate the validation of the model and the specification and

modeling of alternative fault-tolerant architectures based on similar assumptions.

5.2.1 Main Concepts

Our formalism, called an evolution diagram, provides a high-level description of

each system component behaviour. It is composed of a graphical representation with

textual definitions of some elements of the graph. An evolution diagram describing

the behaviour of a given component is a directed graph made up of two types of

Proc. of the 15th International Conference on Computer Safety, Reliability and Security

(SAFECOMP96), Vienna, Austria,, Springer-Verlag, pp. 219-229, October 1996

6

vertices: phases (represented by circles) and evolution functions (represented by

rectangles), which are connected by edges. An unique evolution function is

associated to each phase. A phase designates a state or a class of states of the

component having some common features, while the associated evolution function

describes the possible state changes from that phase. The evolution of a given

component state may be due to the occurrence of local events (generated by the

component itself) or external events (generated by other components). It is

noteworthy that some local events may be common to several components (e.g. a

common-mode failure affecting two software replicas). An evolution function

defines on one hand, the local events that may occur during the sojourn of the

component in one of the states of the associated phase (activation of faults, local

repair actions, etc.), the enabling conditions associated to these events and the

stochastic parameters characterizing each event. On the other hand, it describes, in a

decision diagram-like form, each event occurrence consequences on the component

itself and on its environment (various consequences are possible depending on the

state of the component environment).

Different states from which the same kinds of events may occur can be identified

in a component behaviour. Because the graphical representation of these different

states increases the number of vertices of the evolution diagram which, therefore,

becomes more difficult to understand, we chose to represent such a state class using

one phase and defined Boolean variables to distinguish a particular state in the class

when needed. These Boolean variables are not graphically represented but they are

defined in the textual description of the evolution functions.

Moreover, to enhance the readability of the evolution diagrams associated to each

component, only phase evolutions due to the occurrence of local events are

represented graphically. Component state changes resulting from interactions

between components are described in the textual definition of the evolution

functions. Bold characters are used to identify these interactions.

Figure 2 gives an example of an evolution diagram. The example describes the

behaviour of the STIP So software replica that results from the failure-repair

assumptions presented in Section 3. Only the evolution function associated to phase

“So_ok” is presented and commented in the following.

5.2.2 Evolution Function Structuring

An evolution function attached to a phase P is denoted by OUT_P. Four levels can

be distinguished in the specification of an evolution function.

! level 1, identified by the symbol “"”, defines the local events that may occur
from the states of P and the associated enabling conditions (if any). If an event is
common to OUT_P and OUT_Q (Q being a phase of another component), it is
identified by the symbol: “" (OUT_Q)”.

 Example: three events may occur from the phase S_ok corresponding to the three failure

modes identified in Section 3. The first event is shared by phases So_ok and Ss_ok.

Proc. of the 15th International Conference on Computer Safety, Reliability and Security

(SAFECOMP96), Vienna, Austria,, Springer-Verlag, pp. 219-229, October 1996

7

Notation Phases and variables semantics

So_ok So is in the “Up” state

So_rst So is being restarted

So_rb So while rebooting

So_rec So while reconfiguration of Ss from spare to operational mode

So_wait_switch So waiting for I/O switching

So_asso So involved in a remote disk association

So_rpl So is being restarted after partial dynamic data elimination

So_rtl So is being restarted after total dynamic data elimination

So_stop So is stopped (waiting for repair)

Ss_ok Ss in the “Up” state

Ss_d Ss is down (either stopped or under restart)

Cs_ok Cs is in the “Up” state

B_ok B is in the “Up” state

So_M_der So variable characterizing the state of the data processed by So

So_M_sw So variable used to memorise the need for an I/O switching

So_M_swl So variable identifying an “swl” type service degradation

So_M_pl So variable identifying a “pl” type service degradation

Ss_M_der Ss variable characterizing the state of the data processed by Ss

Figure 2 - So evolution diagram and one of its evolution functions

So_rtl

So_rst

OUT_So_rst

So_rb

So_rec

OUT_So_rtl

So_wait_switchw

So_asso
So_stop

So

So_rpl

OUT_So_rec

OUT_So_stop

So_ok OUT_So_ok
" (OUT_Ss_ok) Common mode failure of

both replicas:
• DO (So_ok » So_rpl AND Ss_ok »

Ss_d)
[DO (+Ss_M_der AND
+So_M_der AND +So_M_pl)]

" So local failure - immediately
diagnosed:
• IF Ss_M_der DO So_ok » Sp_rpl

[DO (+So_M_der AND
+So_M_pl]

• ELSEIF (/Ss_M_der AND Cs_ok

AND B_ok) DO So_ok » So_rec
[DO (*So_M_sw AND
+Ss_M_der AND +So_M_der
AND +So_M_swl AND Stp_Ss

AND Chg_D]
• ELSE DO So_ok » So_asso

[DO (+So_M_der AND Stp_Ss

AND Chg_D)]
" So local failure - not immediately

diagnosed:
• DO So_ok » So_rst

[DO +So_M_swl]

[p 1.m(Ss_ok),

p 2.(m(Ss_ok) +(1-m(Ss_ok)/(1-p 1)),

(1- p 2 -p 1). (m(Ss_ok)+(1-m(Ss_ok)/(1-

p))]

OUT_So_rb

OUT_So_ok

OUT_So_rpl

OUT_So_asso

Proc. of the 15th International Conference on Computer Safety, Reliability and Security

(SAFECOMP96), Vienna, Austria,, Springer-Verlag, pp. 219-229, October 1996

8

 The consequences of each event are defined at levels 2 and 3;

! level 2, identified by the symbol “•”, describes the impact of each event on the
component phase. The event occurrence may lead the component to move to
another phase or keep it in the same phase. In the latter case, the event occurrence
leads to the value modification of some internal variables. The phase change is
either timed (represented by the symbol “»”) or instantaneous (represented by the
symbol “›”), depending on the corresponding event type. Several evolutions are
possible from a given phase depending on the current state of the component
environment. The test conditions are described as follows: IF (conditions) DO
(consequences) ELSEIF DO() ELSE DO ().

 The sets of conditions are obtained by combining elementary conditions using
AND, OR and “/” (for negation) logical operators. An elementary condition
indicates the presence (or absence) of a component in one of its phases, or the
logical value of a variable. It is required that the entire set of conditions of a
decision diagram forms a complete and exclusive system in order to ensure that all
the possible cases are considered in the specification.

 Example: the occurrence of a “local failure - immediately diagnosed” failure mode leads to

three possible phase evolution depending on the state of the dynamic data processed by Ss

(given by the value of the Ss_M_der variable) and the states of Cs and B. If the spare data

are damaged, then So is restarted after the partial elimination of some dynamic data

(So_ok » So_rpl);

! level 3, identified by the symbol “[]”, describes the consequences of each event
on the internal variables and on the states of the other components (i.e. on their
internal variables and phases). Several groups of consequences are possible,
depending on the current state of the system;

 Example: the failure mode “So local failure - immediately diagnosed” occurrence affects the

dynamic data processed by So (+So_M_der) and leads the STIP to a “pl” degradation class

(+So_M_pl). The “+” operator is used to set the value of a logical variable to “True”;

! level 4, identified by the symbol “[] x []T”, specifies in a matrix format the
stochastic parameters associated to each event. The first array defines the
probabilities associated to each event (1 is the default value) while the second one
gives the occurrence rates for the timed events only (the symbol “#” is used for
the instantaneous events).

 Example: the parameters associated to the three So failure modes are specified as follows:

[p1.m(Ss_ok), p2.(m(Ss_ok)+(1-m(Ss_ok) /(1- p1)), (1-p1-p2).(m(Ss_ok)+(1-m(Ss_ok)/(1-p1))]

 x [$_so, $_so, $_so]

 $_so is the failure rate of So. p1 and p2 are the probabilities of occurrence of a common

mode failure and of a “ local failure - immediately diagnosed” respectively when Ss is in the

“ok” state. If Ss is in the “down” state, then the probabilities associated to the second and the

third failure modes have to be updated. Function “m(Ss_ok)” returns the value 1 if Ss_ok is

true and 0 if not. This function allows state dependent parameters to be specified. Therefore

stochastic dependencies between component behaviours can also be specified in the

evolution functions definition.

In addition to the concepts introduced above, the user can define procedures

which can be reused by several evolution functions allowing the optimisation of the

evolution functions description. The procedures are specified with a decision

diagram-like format. The only condition imposed is that the associated set of

Proc. of the 15th International Conference on Computer Safety, Reliability and Security

(SAFECOMP96), Vienna, Austria,, Springer-Verlag, pp. 219-229, October 1996

9

conditions should be complete and exclusive. For instance, Stp_Ss and Chg_D are

two procedures used in the STIP specification. Stp_Ss is invoked when the

occurrence of an event (for instance, the failure of Cs or Ds) causes the Ss replica to

be stopped. Chg_D describes the switching of the disks roles (switch Do to Ds and

vice-versa). Stp_Ss is defined as follows:

Stp_Ss: IF Ss_ok DO Ss_ok › Ss_d ELSE DO NIL

The NIL operator is introduced to satisfy the completeness property. It denotes

that for the remaining set of conditions no action is performed.

6 Application to STIP and Evaluation Results

We have applied the incremental modeling approach presented in Section 5 in

order to build a GSPN model describing the behavior of the STIP and evaluate

quantitative measures characterizing the impact of the STIP failures on the traffic

safety. Due to the complexity of the STIP, it is not possible to present the

corresponding GSPN models. Table 3 outlines the different steps considered and the

size of the corresponding Markov chains. Each step led to the validation of the

model and the evaluation of MTTF and UA measures (see Section 4). At each step,

we check that the assumptions considered at the previous step are also satisfied.

Model construction and processing have been carried out with the tool SURF2.

Modeling steps # Markov chain states

So 5

So - Ss 12

So - Ss - B 38

So - Ss - B - Co - Cs 104

So - Ss - B - Co - Cs - Do - Ds 212

So - Ss - B - Co - Cs - Do - Ds - Rep 256

Tableau 3 - The STIP modeling steps and size of the corresponding Markov chains

Two kinds of quantitative analyses have been carried out. Firstly we conducted

sensitivity studies in order to identify the model parameters that have the most

impact on the quantitative measures. These studies revealed the major impact of the

software failure rates, compared to the rest of the parameters. Secondly, we

analysed several operating configurations of the STIP in order to evaluate their

impact on the air traffic safety. These configurations are obtained from the

“reference” model corresponding to the assumptions presented in Section 3 by

modifying some recovery scenarios or some model assumptions. The configurations

studied are listed hereafter:

• “cold” spare instead of a “warm” spare;

• “hot” spare instead of a “warm” spare;

• try a “remote disk association” before the reconfiguration of the software replicas,
whenever this is possible (“Rec->Asso”);

• try a reconfiguration of the software replicas or a “remote disk association”
instead of a reboot, each time the spare dynamic data are not damaged
(“Shunt_Reboot”) ;

• consider three repairmen instead of two: one for the I/O board and two for the
computers and the disks.

Proc. of the 15th International Conference on Computer Safety, Reliability and Security

(SAFECOMP96), Vienna, Austria,, Springer-Verlag, pp. 219-229, October 1996

10

Thanks to the specification and model construction method, the modification of

the reference model to account for these alternative configurations was relatively

easy. The MTFFi and UAi values corresponding to each configuration are listed in

Table 4.

 MTFF

4

MTFF3 MTFF2 UA4 UA3 UA2

 Pr. (E
-6

) min/an Pr. (E
-6

) min/an Pr. (E
-

6
)

min/an

Reference 1324.9 3985.2 38422.1 165.9 87 41.5 21 4.0 2

Cold spare 743.0 1235.2 1885.1 304.4 159 159.5 83 112.9 59

Hot spare 1324.8 3985.1 38422.1 165.8 87 41.5 21 4.0 2

Rec->Asso 641.7 3986.7 38482.6 392.3 206 41.5 21 4.0 2

Shunt_Reboot 1324.9 3984.6 38332.6 108.1 56 41.6 21 4.0 2

3 Repairmen 1324.9 3985.2 38421.9 165.9 87 41.5 21 4.0 2

Table 4 - MTFF and UA for different STIP configurations

It can be noticed that the use of a warm spare instead of a cold one improves the

safety measures: MTFF4, MTFF3 and MTFF2 increase by a factor of respectively 2,

3 and 20, while UA4, UA3 and UA2 decrease by a factor of respectively 2, 4 and

30. The improvement is more significant for class 2 which includes the most critical

failures with respect to the traffic safety. It is noteworthy that the difference between

these configurations decreases with the improvement of the disks reliability.

Moreover, similar results are obtained for the “hot spare” and the “cold spare”

configurations and also for the three and two repairmen cases. The configuration

“Rec->Asso” leads to a small degradation of class 4 safety measures which concern

the least critical failures. Finally, the configuration Shunt_Reboot leads to a

significant improvement of UA4 (35%) against a weak decrease of MTFF2 (0.2%).

To conclude, the results given in Table 4 show the benefit of using a “warm

spare” instead of a “cold spare”. The other alternatives do not have a significant

impact on safety. It is noteworthy that the STIP configuration that is currently

operational is based on a cold spare. It is expected that the warm spare configuration

will be introduced in the next release.

7 Conclusion and Future Work

In this paper, we analysed the failure impact of one subsystem of the French air

traffic control computing system on the traffic safety. To master the complexity of

this system, we presented a modeling approach that is based on a specification

formalism allowing the structured description of the system behaviour and the

automatic generation of a GSPN model from the specification. The aim of the

formalism is to assist the modellers in the construction of dependability models.

Moreover, we analysed several system operating configurations and evaluated the

impact of each of them on the traffic safety. The results show the benefit of using a

“warm spare” configuration instead of the “cold spare” configuration that is

currently used. These results will be used to support the definition of the future

architecture of the system. In the future, we will focus on the modeling and analysis

of the CAUTRA subsystems implemented in the five en-route traffic control centers

and the combination of the results obtained with those presented in this paper.

Proc. of the 15th International Conference on Computer Safety, Reliability and Security

(SAFECOMP96), Vienna, Austria,, Springer-Verlag, pp. 219-229, October 1996

11

References

1. N. Fota, M. Kaâniche, K. Kanoun, and A. Peytavin, “The Air Traffic En route Control

Computing System Dependability: Analysis and Modeling,” Proc.10ème Colloque

national de Fiabilité & Maintenabilité, Saint-Malo, France, 1996 (in French).

2. N. Fota, M. Kaâniche, K. Kanoun, and A. Peytavin, “Analysis of the Global Air Traffic

en-route Control Computing System for Dependability Evaluation,” LAAS-CNRS,

LAAS Report n° 95280, june 1995 (in French).

3. A. L. Reibman and M. Veeraraghavan, “Reliability Modeling: An Overview for System

Designers,” IEEE Computer, vol. 24, pp. 49-57, 1991.

4. M. Malhotra and K. S. Trivedi, “Power-Hierarchy of Dependability-Model Types,”

IEEE Transactions on Reliability, vol. 43, pp. 493-502, 1994.

5. M. A. Marsan, G. Balbo, G. Franceschinis, and S. Donatelli, Modelling with

Generalized Stochastic Petri Nets: John Wiley & Sons, 1995.

6. C. Béounes, M. Aguéra, J. Arlat et al. “SURF-2: A Program for Dependability

Evaluation of Complex Hardware and Software Systems,” Proc. 23rd Int. Symp. on

Fault-Tolerant Computing (FTCS-23), Toulouse, France, 1993.

7. S. Berson, E. de Souza e Silva, and R. R. Muntz, “A Methodology for the Specification

and Generation of Markov Models,” in Numerical Solution of Markov Chains,

W. .Stewart, Ed.: Marcel Dekker, 1991, pp. 11-36.

8. M. Bouissou, H. Bouhadana, M. Bannelier, and N. Villatte, “Knowledge Modelling and

Reliability Processing: Presentation of the FIGARO Language and Associated Tools,”

Proc. 10th Int. Conf. on Computer Safety, Reliability and Security (SAFECOMP'91),

Trondheim, Norway, 1991, pp. 69-75.

9. A. Goyal and S. S. Lavenberg, “Modeling and Analysis of Computer System

Availability,” IBM Journal of Research and Development, vol. 31, pp. 651-664, 1987.

10. J. A. Carrasco and J. Figueras, “METFAC: Design and Implementation of a Software

Tool for Modeling and Evaluation of Complex Fault-Tolerant Computing Systems,”

Proc. 19th Int Symp. Fault-Tolerant Computing (FTCS-19), Vienna, Austria, 1986,

pp. 424-429.

