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Abstract. Mathematical models allow researchers to understand, analyze, and predict the 

behavior of systems of physical, biological, and technological interest, and are required for 

many techniques from dynamical systems and control theory to be used. Unfortunately, it is 

often impossible to derive mathematical models from first principles, and in such cases system 

identification is a powerful tool which can be used to deduce models from observed data. Many 

existing system identification techniques require pre-specification of a dictionary of possible 

terms in a mathematical model, limiting their ability to give models with the nonlinearities 

which can arise for biological and other complex systems. We present a methodology which 

overcomes this limitation by dynamically generating the terms in a model with the necessary 

complexity and nonlinearity to accurately describe a system’s dynamics.  This uses a 

multilayered, operation-based symbolic regression approach, with the capacity to learn 

combinations and compositions of operations by training artificial neural networks. Our 

approach provides a powerful alternative to genetic programming strategies for symbolic 

regression, and can exploit many of the attractive features of artificial neural networks such as 

a straightforward learning strategy.  
 

 

1 INTRODUCTION 

The importance of mathematical models for systems of physical, biological, and 

technological interest cannot be overstated [1]. Such models are sets of equations describing 

some number of variables or observables, and are often given in terms of ordinary or partial 

differential equations. Mathematical models allow us to understand, analyze, and predict the 

behavior of systems, and are required for many powerful techniques from dynamical systems 
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and control theory to be used.  Ideally, mathematical models are derived from first principles 

such as Newton’s laws or Maxwell’s equations, giving models which respect relevant physical 

constraints and conservation laws. Much of the historical development of physics, chemistry, 

and engineering has been based on such “white box” models.  Unfortunately, it is often 

impossible to derive mathematical models from first principles. 

With this in mind, there has been much recent interest in developing an automated 

procedure which is able to deduce complex evolution equations from data. This is a problem 

in system identification - the development of mathematical models from observed data [2]. 

Models obtained from system identification often rely on fixed dictionary methods, which have 

pre-specified terms of particular forms, with corresponding coefficient values learned from 

data.  Mathematically, fixed dictionary approaches find a model 

 
𝑑𝑥

𝑑𝑡
= ∑𝑎𝑖𝜙𝑖(𝑥)      (1) 

 

where {𝜙𝑖(𝑥)} is a pre-specified set of functions, and the 𝑎𝑖’s are determined from the data. 

Another approach to system identification is symbolic regression, which we view as a 

generative dictionary method.  Here one only pre-specifies a set of primitive operations and 

functions, and a dictionary of possible model terms is generated from combinations and 

compositions of these primitives.  In particular, letting 𝑆𝑘(𝑥) be a k-dependent subset of all 

possible functions of x generated by the primitive operations and functions, we seek to find a 

model 

 
𝑑𝑥

𝑑𝑡
= 𝐹(𝑆𝐾 ∘ ⋯ ∘ 𝑆2 ∘ 𝑆1)    (2) 

 

Here the composition ∘  is interpreted in an element-wise manner.  Historically, such methods 

learn models from observed data by randomly combining various terms and operations, and 

using genetic programming to “mutate” the candidate solutions according to a fitness-

weighted selection mechanism [3-5]. 

As an alternative, we have recently developed a novel neural network framework for 

symbolic regression [6], in which the generative dictionary is built up from linear 

combinations, polynomial combinations, simple products, and common operators such as 

𝑠𝑖𝑛 (⋅) , 𝑠𝑔𝑛(⋅), and  𝑒(⋅).  The breadth of the network determines the number of allowable 

coefficients in the generated functions, and the depth determines the levels of allowed 

compositions.  To obtain models with a manageable number of terms, we use a combination 

of novel sparsity-inducing regularization terms and the Akaike Information Criterion (AIC) 

[7] for model selection.  The structure of our network is shown in Figure 1, which illustrates 

the stacks which correspond to subsequent levels of function composition.  Each stack contains 

operational layers as shown in Figure 2, which shows the primitives which are used to generate 

terms for the model.  A powerful feature of our approach is that, unlike fixed dictionary 

methods, it does not require pre-specification of the exact terms which describe the system’s 

dynamics.  We call our method SymANNTEx (pronounced as “semantics”), for Symbolic, 

Artificial Neural Network-Trained Expressions.  More detail on the SymANNTEx network 
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architecture, operational layers, regularization terms, and hyperparameters is available in [3]. 

 

Figure 1: SymANNTEx network architecture: K stacks, with L operational layers within each stack.  

The stack structure allows compositions of primitive functions to build up more complicated expressions.  

More detail is available in [6]. 

 
Figure 2: SymANNTEx operational layer showing (from the bottom) simple products, polynomial 

combinations, linear combinations, and common operators.  More detail is available in [6]. 
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. 

2 EXAMPLES 

In [6], we show that SymANNTEx can identify good models for a variety of dynamical 

systems from noisy data.  Here we illustrate this for several examples. 

 

2.1 Lorenz Equations 

 

A prototypical dynamical system with chaotic dynamics is the Lorenz equations with standard 

parameters, originally used to model two-dimensional atmospheric convection [8]: 

 
𝑑𝑥

𝑑𝑡
= 10 (𝑦 − 𝑥)      (3) 

 
𝑑𝑦

𝑑𝑡
= 𝑥 (28 − 𝑧) − 𝑦      (4)  

 
𝑑𝑧

𝑑𝑡
= 𝑥 𝑦 −

8

3
𝑧      (5)  

 

As input to SymANNTEx, we use 1000 data points consisting of the states and the vector field 

evaluated at the data points from a single randomly initialized trajectory, equally spaced in 

time on the time interval [0, 25].  Small noise is added to both the state and the vector field 

data.  Using K=1 stack and L=10 layers, corresponding to 322 trainable parameters, our 

approach is able to learn the exact model for this system. The time series for this system is 

shown in Figure 3.  

 

 
 

Figure 3: Time series showing x and z for the Lorenz equations (3)-(5).  1000 data points over this 

interval, equally spaced in time, were used to exactly identify the model using SymANNTEx. 
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2.2 Chemical Kinetics with Arrhenius Rate Dependence 

We next consider the exponential approximation to Arrhenius rate law in chemical 

kinetics for two first-order reactions [9]: 

 
𝑑𝛼

𝑑𝑡
=  −𝜅𝛼𝑒𝜃 + 𝜇      (6)  

 
𝑑𝜃

𝑑𝑡
= 𝛼𝑒𝜃 − 𝜃       (7)  

 

In these equations, α is the intermediate chemical concentration, and θ represents temperature 

rise. For the parameters μ = 0.1 and κ = 0.07, this system has a stable limit cycle with a large 

separation of timescales.   

As input to SymANNTEx, we use state and vector field data for a collection of short 

trajectories starting at random initial conditions (100 trajectories, each with 160 data points 

corresponding to time integration of 0.001 time units).   Small noise is added to both the state 

and the vector field data.  Using K=2 stacks and L=1 layer, corresponding to 68 trainable 

parameters, our approach is able to learn a model for this system which shows good agreement 

with the exact model; see Figure 4.        

 

 
 

Figure 4: Time series showing 𝛼 and 𝜃 for the (solid) exact model and the (dashed) approximate 

model learned by SymANNTEx for the chemical kinetics model (6)-(7).  Although SymANNTEx does not 

learn the exact model, it gives a model which shows a very good approximation to the exact dynamics. 

 

2.3 Tent Map 

 In addition to ordinary differential equation models, SymANNTEx can also be used to 

learn a map from data.  Here we consider the tent map in a regime where it has chaotic 

dynamics: 
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𝑥𝑛+1 = 0.9 (1 − |1 − 2𝑥𝑛|)      (8) 

 

As shown in Figure 5, SymANNTEx identifies an analytic single-humped function with a 

dynamic range which is similar to the tent map from 1000 data points using L = 10 layers and 

K = 1 stack: 

 

𝑥𝑛+1 =  −1.429 𝑠𝑖𝑛 (2.25 𝑥𝑛 − 2.667) − 0.667     (9)  

 

   
 

Figure 5: Identified map (9) (dashed magenta) compared to the tent map (8) (solid green). 

 

However, the long-term dynamics for this map (9) are not a good match to the exact dynamics 

(8).  But when we also include abs(·) as a primitive operation in the common operator portion 

of our operational layer, our approach identifies the exact model for the tent map. 

 

3 CONCLUSIONS 

SymANNTEx is a novel symbolic regression / generative dictionary method for 

identifying interpretable, closed-form models for a dynamical system from noisy time series 

and vector field data.  Unlike fixed dictionary methods, it does not require pre-specification of 

the exact terms which form the right-hand side of the model.  Rather, candidate terms are 

generated by combinations and compositions of the following primitive operations: linear 

combinations, polynomial combinations, simple products, and common operators such as 

𝑠𝑖𝑛 (⋅) , 𝑠𝑔𝑛(⋅), and  𝑒(⋅).  The depth of the network, given by the number of stacks, determines 

the level of complexity obtained by composing functions.  The breadth of the network, given 

by the number of operational layers within each stack, allows multiple occurrences of a given 

function with the possibility of different coefficients.  The effectiveness of SymANNTEx was 

shown here for the Lorenz equations, a chemical kinetics model, and the tent map.  Additional 
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examples of the application of SymANNTEx are shown in [6]. 

We are currently considering a version of SymANNTEx which leverages ideas from 

neural ODEs [10] to identify models from times series data alone, without the need for vector 

field data.  We are also exploring how SymANNTEx can be modified to learn models which 

obey desired symmetry properties.   

 

Acknowledgment 

This work was supported by National Science Foundation Grant No. NSF-2016004. 

 

REFERENCES – TO BE FILLED IN 

[1] Fowler, A. C. Mathematical Models in the Applied Sciences. Cambridge University 

Press, Cambridge, (1997). 

[2] L. Ljung. System Identification: Theory for the User. Prentice Hall, Upper Saddle River, 

NJ, 1999. Second Edition. 

[3] Bongard, J. and Lipson, H.  Automated reverse engineering of nonlinear dynamical 

systems.  Proc. Natl. Acad. Sci. U.S.A. (2007) 104: 9943-9948. 

[4] Quade, M., Abel, M., Shafi, K., Niven, R. K. and Noack, B. R.  Prediction of dynamical 

systems by symbolic regression.  Phys. Rev. E (2016) 94: 012214. 

[5] Quade, M. and Gout, J. and Abel, M. Glyph: Symbolic regression tools.  J. Open Res. 

Softw. (2019) 7: 19.  

[6] Boddupalli, N., Matchen, T., and Moehlis, J. Symbolic regression via neural networks. 

Chaos (2023) 33:083150. 

[7] Akaike, H.  A new look at the statistical model identification. IEEE Trans. Autom. 

Control (1974) 19:716–723. 

[8] Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. (1963) 20:130–141. 

[9] Gray, P. and Scott, S. K.  Chemical Oscillations and Instabilities.  Oxford University 

Press, Oxford, (1990). 

[10] Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. Neural ordinary 

differential equations. Advances in Neural Information Processing Systems, (2018) 

31:6571-6583.  

 


