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While the finite element isogeometric analysis (FE IGA) has received most of the attention of the scientific community,
only few results are available for boundary element methods (BEM) and boundary integral equations (BIE) in general. In
2D, there are some works on potential flows, such as [36,44], and on elastostatic analysis [40]. Three dimensional appli
cations are of great interest in the maritime community, and there are some works on NURBS based panel methods to
study, for example, marine propellers [25] or the wavemaking resistance problem [10]. Three dimensional IGA BEM linear
elasticity has recently been studied in [20] while some work on shape optimization has been presented in [29]. Boundary
element isogeometric analysis (IGA BEM) is very attractive for the solution of homogeneous elliptic PDEs, both in the
interior and in the exterior cases, since it requires the solution of integral equations only on the boundary of the enclos
ing (or enclosed) domain, which is typically the only information that is generated by standard CAGD tools. In contrast,
FE IGA requires the extension of the computational domain inside (or outside) the enclosing CAGD surface, an outstand
ing problem in IGA.

While the dimensional reduction of the domain diminishes significantly both the number of degrees of freedom and the
computational cost associated with the handling of the geometry, there are two main drawbacks which require special
attention, and are common to all boundary integral discretizations: (i) the system matrices that are produced with a bound
ary integral method are full, and (ii) the integrands contain ð1=rÞ singularities or worse (in three dimensions) around the
source point, arising from the fundamental solutions in formulating the boundary integrals. Both issues have perhaps con
tributed in keeping the IGA community away from boundary integral formulations.

In the literature, the first issue is usually tackled by acceleration techniques such as the fast multipole method [39] (see
[31] for a survey of this technique applied to BEM), which allow one to solve the system without assembling the full matri
ces, and at the same time reduce the cost of the matrix vector multiplication from Oðn2Þ to OðnÞ (this technique has already
been applied to Laplace problems in two dimensional IGA BEM in [44]). The second issue is more delicate and its solution
depends highly on the degree of the discrete functional spaces and of the geometry description, remaining one of the most
difficult aspects of the implementation of BEM. Different approaches are possible, (see, for example, [23]) but high order
methods and curved geometries still remain challenging.

Popular approaches to tackle singular integration involve a local change of variables for the quadrature rules, following
the principle that the Jacobian of the transformation can be used to eliminate locally the kernel singularities. Examples of
these methods are given by Lachat and Watson [28] and by Telles [45]. Both methods are elegant and produce accurate re
sults, but they require a great number of basis functions evaluations, which need to be evaluated on different quadrature
points whenever the element being integrated approaches a singularity.

Recently, Klaseboer et al. [26] proposed an analytical method that removes the singularities of the boundary integrals, by
exploiting carefully chosen known solutions of the PDEs. These ideas, presented also in earlier theoretical works by Liu et al.
[32,30], were recently implemented for various elliptic PDEs in [26,27,43], and produce well conditioned boundary integrals,
which can be integrated with standard quadrature rules.

In this paper we extend these ideas to isogeometric collocation boundary integral approximations of three dimensional
Stokes flow, and show once again the superior approximation properties of the isogeometric approach with respect to stan
dard BEM implementations. The computational cost of this nonsingular method is much smaller when compared to tradi
tional approximation procedures, and its accuracy is two to three orders of magnitude better than in the traditional
isoparametric BEM when compared with the results presented in [43] for the same number of degrees of freedom. The im
proved performance obtained thanks to isogeometric analysis makes IGA BEM a very promising tool for the solution of com
plex fluid structure interaction problems arising in biophysics and bio medical applications [15,12]. In fact, our choice of
Stokes flows as a model problem is motivated by our interest in modeling the flows induced by swimming bacteria and uni
cellular organisms [1,4,3,2,6] and lipid bilayer membranes [5,38].

The rest of this paper is organized as follows. In Section 2 we present a brief overview of isogeometric NURBS spaces. The
continuous problem that we want to takle by IGA BEM is introduced in Section 3, while its boundary integral formulation is
presented in Section 4. Section 5 is dedicated to the implementation details of the isogeometric collocation boundary ele
ment discretization of Stokes flow, and in Section 6 we present the generalization of the work by Klaseboerb et al.
[26,27,43]. Section 7 is dedicated to the numerical validation of the method presented in this paper and we draw some
conclusions in Section 8.

2. Overview of isogeometric NURBS spaces

Given a nondecreasing knot vector H fk0; k1; . . . ; knþpg, the n basis splines of degree p are defined by the recurrence
relation
Bði;0ÞðsÞ
1; if ki 6 u < kiþ1

0; otherwise

�
ð1Þ
for p 0, while for p > 0 we have
Bði;pÞðsÞ sði;pÞðsÞBði;p 1ÞðsÞ sðiþ1;pÞðsÞBðiþ1;p 1ÞðsÞ ð2Þ
for i 0; . . . ;n 1, where
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sði;pÞðsÞ :
s ki

kiþp ki if kiþp – ki

0; otherwise

(
ð3Þ
The above recurrence relation can be evaluated in a numerically stable way by the de Boor algorithm (see, for example,
[35]). It is possible to generate a B Spline curve cðsÞ � Rd by using a set of n coordinates Pi 2 Rd, referred to as control points,
as
cðsÞ
Xn 1

i 0

PiBði;pÞðsÞ: ð4Þ
The properties of the curve cðsÞ depend highly on the properties of the knot vector H: if a knot is repeated q times, the
curve cðsÞ at the location of the repeated knot is of class Cp q, and whenever a curve is only of class C0 at a knot location, then
it is interpolatory at that location. Discontinuities (C 1 curves) are also allowed and are obtained when a knot is repeated
q pþ 1 times. Repeating a knot more than pþ 1 times is not allowed.

NURBS basis functions are readily obtained from B Splines by assigning a positive weight wi to each basis spline function
and defining the corresponding NURBS basis function as
NiðsÞ :
wiBði;pÞðsÞPn 1
j 0 wjBðj;pÞðsÞ

: ð5Þ
Notice that also the NURBS basis have the partition of unity property, and B Splines can be considered a special case of
NURBS by taking all weights to be identical.

Taking m knot vectors Hi, with i 0; . . . ;m 1, one can generalize the NURBS basis functions to m dimensions by tensor
products. Indicating with s : ½s0; . . . ; sm 1� 2 Rm a point in Rm and i : ði0; . . . ; im 1Þ a multi index belonging to the set
J : fj ðj1; . . . ; jmÞ; 0 6 jk < nk; k 1; . . . ;mg; ð6Þ
the m variate B Splines and NURBS basis functions are given by
Bi;pðsÞ :
Ym 1

k 0

Bðik ;pkÞðskÞ; NiðsÞ :
wiB

ði;pÞðsÞP
j2J wjBðj;pÞðsÞ

; ð7Þ
where i;p and j are all multi indices. The multi index p ðp0; . . . ; pm 1Þ is used to keep track of the degrees of the B Splines
in each direction, while n ðn0; . . . ;nk 1Þ is used to keep track of the number of basis functions in each direction. Notice that
in Eqs. (5) and (7) we dropped the superscripts p and p from the definition of the NURBS basis functions Ni, to ease the nota
tion in the rest of the paper.

As a generalization of the one dimensional case, if we take a collection of n :
Qm 1

k 0 nk control points in Rd, with d P m,
we can represent a m dimensional manifold in a d dimensional space as the image of the map
Rd � xðsÞ :
X
i2J

PiNiðsÞ s 2 Rm: ð8Þ
When m is equal to one two or three, the set of control points Pi with i 2 J is referred to as control polygon, control net or
control lattice respectively. The domain of the map xðsÞ is the set
Bm : ½k0
0; k

0
n1þp1
� � � � � � ½km 1

0 ; km 1
nm 1þpm 1

� � Rm; ð9Þ
where ki
j is the jth knot in the ith knot vector Hi. The first fundamental form associated to the map xðsÞis given by
gðsÞ : ðDxðsÞÞT DxðsÞ 2 Rm�m; ð10Þ
where DxðsÞ is the Jacobian of the mapping xðsÞ:
ðDxðsÞÞab :
@xa

@sb
ðsÞ

X
k2J
ðPk � eaÞ

@Nk

@sb
ðsÞ; a 0; . . . ; d 1 b 0; . . . ;m 1; ð11Þ
ea is a unit vector in the ath spatial direction, and k is a multi index.
Integrals on the m dimensional manifold xðBmÞ can be pulled back to the domain Bm using the standard transformation

rule
 Z
xðBmÞ

f ðxÞdcm
Z

Bm
f ðxðsÞÞJðsÞds; ð12Þ
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where we indicated with JðsÞ the square root of the determinant of the first fundamental form:
1 For
IND2SU
JðsÞ : detðgðsÞÞ
q

: ð13Þ
The geometry X � xðBdÞ of the domain or of its boundary C can then be represented via the NURBS basis above, by choos
ing appropriately the knot spans, the weights and the control points that define the mapping xðsÞ. A geometry based on the
map defined above is referred to as CAGD patch. The full domain X may be constructed by gluing together several patches.
For the sake of simplicity, however, we expose the theory and the numerical approximation only considering single patch
geometries, referring to [14] for treatments of multi patch domains, with different level of regularity across different patches,
as well as for indications on how to treat different refinements on each patch.

A standard (scalar) isogeometric finite dimensional space is readily obtained by considering the span of the functions
/i : Ni 	 x 1:
Vh : spanf/iðyÞgi2J ; y 2 xðBmÞ � Rd; ð14Þ
where /i are such that
/iðxðsÞÞ NiðsÞ; 8s 2 Bm: ð15Þ
The dimension of the space Vh is n
Qm

k 1nk and it is equal to the number of control points that define the geometry of the
problem. A finite dimensional space for vector fields of q components is obtained by considering
Vq
h : spanfsiðyÞgqn

i 1 y 2 xðBmÞ � Rd; ð16Þ
where the basis functions si are such that
siðyÞ : ea/
jðyÞ; n 1 : 1; i q

Xm 1

w 0

jw

Yw 1

k 0

nk 1

 ! !
þ a: ð17Þ
The global index i varies continuously from one to qn q
Qm

k 1nk, and it is meant to transform the multi index j 2 J plus
the component index a into a unique global identifier for the ith basis function. Conversely, given a global index j, it is pos
sible to infer to which component the basis function refers to, and what is the multi index which identifies the underlying
NURBS basis by inverting the rightmost expression in Eq. (17).1

In what follows, we use upper latin indices starting from i to indicate the global numbering of the basis functions defining
the space Vq

h and lower latin indices starting from a to label spacial coordinates. For spatial coordinates, we use Einstein sum
mation convention. A vector function of q components f ðxÞ in the space Vq

h is identified by its coefficient vector f such that
Vq
h 3 f ðxÞ :

Xnq 1

i 0

f isiðxÞ; ð18Þ
where, with a slight abuse of notation, we denote the vector of coefficients f with the same symbol as the function f ðxÞ but
without the argument ‘‘ðxÞ’’.

Finite element isogeometric analysis (FE IGA) is based on functional spaces Vh in which the dimension m of the reference
manifold Bm and of embedding space Rd are equal, i.e., m d.

Boundary integral equations, on the other hand, rely on the convolution with fundamental solutions to study the problem
only on the boundary C of the domain X, requiring a discretization of functional spaces defined on manifolds of co dimension
one, i.e., m d 1.

3. Hydrodynamic equations

We are interested in solving Stokes equations in a domain X # Rd, with a given Dirichlet boundary condition ug on
C : @X, and d is either two or three. Neumann or mixed problems can be treated in a similar way (see, for example,
[22]), and we use this model system simply to fix the ideas.

In both the finite and infinite domain cases, we will study problems for which it is possible to identify a closed domain X,
that is used to generate the domain of the fluid X and its boundary C. In the exterior case, we have that X : Rd nX, while in
the interior case, X � X.

With this convention, the interior and the exterior Stokes problems can both be expressed by the following set of
equations:
example, in Matlab the local to global conversion is obtained with the function SUB2IND, while the global to local conversion is obtained by the function
B.
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gDuþrp r � r 0 in ~X ð19aÞ
$ � u 0 in ~X ð19bÞ
u ug on ~C ð19cÞ
where u and p are the velocity and hydrodynamic pressure fields in the domain X (either finite or infinite), g is the viscosity
of the fluid, ug is the (given) fluid velocity at the boundary of the domain and r is the Cauchy stress tensor for an incompress
ible Newtonian fluid:
r : pI þ gð$uþ $uTÞ: ð20Þ
Eqs. (19a) and (19b) describe the conservation of linear momentum and mass in the Stokes fluid, while (19c) is a Dirichlet
boundary condition. The pressure p can be regarded as the Lagrange multiplier associated with the conservation of volume
(19b), and it is uniquely determined by u up to an additive constant.

When the domain is infinite, i.e., when we are treating the exterior Stokes problem, then the boundary C is split into two
parts: the boundary C of the finite domain X, and the boundary at infinity, C1, defined as
C1 : lim
R!1

@BRð0Þ; ð21Þ
where BRð0Þ is the ball of radius R centered at the origin.
In the infinite domain case, System (19) has a unique solution in the Sobolev spaces H1ðXÞ for the velocity and L2

0ðXÞ for
the pressure (here the subscript zero stands for zero mean average), provided that the Dirichlet boundary data ug goes to
zero sufficiently fast on C1, that its portion on C is in the space H

1
2ðCÞ, and provided that C is regular enough. A boundary

C of class C1 guarantees existence and uniqueness of the exterior solution u, see, for example Ref. [17].
For the finite domain case to have a solution, the Dirichlet data ug needs to be compatible with the mass conservation

equation, i.e.,
ðug ;nÞ :

Z
C

ug � n dC 0; ð22Þ
where n is the outer normal to the domain X, and the notation ð ; Þ is used for the L2ðCÞd inner product. Also in the interior
case, a boundary C of class C1 and boundary data ug 2 H

1
2ðCÞ, satisfying (22), guarantee existence and uniqueness of a

solution.

4. Boundary integral representation

Our boundary integral formulation follows closely Ref. [37] and Ref [42]: if we consider Stokes equation in free space
associated with a forcing term due to a Dirac mass centered in y and weighted with the force vector k, i.e.,
gDuðxÞ þ $pðxÞ $ � r kdðx yÞ in Rd

$ � uðxÞ 0 in Rd

lim
jxj!1
juðxÞj 0

lim
jxj!1
jpðxÞj 0;

ð23Þ
we can express the solution u and r using the free space Green’s functions S and T :
uaðxÞ
1

4ðd 1Þpg
Sabðx yÞkb

racðxÞ
1

4ðd 1ÞpT abcðx yÞkb;

ð24Þ
where
SabðrÞ
rarb

jrjd
þ

dab logðjrjÞ if d 2
dab
jrj if d 3

(

T abcðrÞ 2d
rarbrc

jrjdþ2 :

ð25Þ
When C is Lipschitz regular, we can define the single and double layer potentials:
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~D : H
1
2ðCÞd !H1ðRd n CÞd

ð ~Df ÞaðxÞ :
1

4ðd 1Þpg

Z
C
Sabðx yÞfbðyÞdCðyÞ

ð26Þ

~N : H
1
2ðCÞd !H1ðRd n CÞd

ð ~NuÞaðxÞ :
1

4ðd 1Þp

Z PV

C
T abcðx yÞubðyÞncðyÞdCðyÞ:

ð27Þ
Although the integral in Eq. (27) is well defined for each x in Rd n C, we retain the PV symbol to indicate an integral in the
Cauchy principal value sense, to maintain the same definition of N when taking its trace on C, later in this section. Indeed,
given the solution u 2 H1ðXÞ

d
of System (19), and its associated stress tensor r 2 L2ðXÞ

d�d
, we have a boundary integral rep

resentation of the solution u in arbitrary points x 2 X in terms of the traces of u and rn on C (see, for example, [37] or [42]).
Calling cint

0 : HsðCÞd ! Hs 1
2ðCÞd and cext

0 : HsðCÞd ! Hs 1
2ðCÞd the interior and exterior trace operators (when C is a Lipschitz

boundary we can choose s in R [17]), and defining uint=ext : cint=ext
0 u, and rint=extn : cint=ext

0 rn we have
uðxÞ þ ð ~NuintÞðxÞ þ ~DðrintnÞ
� �

ðxÞ; x 2 X ð28Þ

uðxÞ ð ~NuextÞðxÞ ~DðrextnÞ
� �

ðxÞ; x 2 Rd nX: ð29Þ
Eq. (28) is the boundary integral representation for an interior Stokes flow, where the trace uint of u on C has to satisfy
condition (22), while Eq. (29) is the boundary integral representation for an exterior Stokes flow, where the trace uext on C is
allowed to be arbitrary, as long as it belongs to the space H

1
2ðCÞ.

Notice that in the infinite domain case, both integrals on C1 disappear due to boundary conditions, and the distinction
between the interior and the exterior case in Eqs. (28) and (29) is only given by the signs in front of the single and double
layer potentials, which take into account the fact that the normal n is pointing outwards with respect to the domain X;
therefore, it is inward with respect to the domain of integration in the exterior case.

Since both the single and the double layer operators have their range in H1ðRd n CÞ, we can take the interior trace on C in
Eq. (28) and the exterior trace on C in Eq. (29) to obtain boundary integral equations defined on C only. When taking the
traces of the single layer potential, the integral in Eq. (26) becomes weakly singular but remains integrable, and it is contin
uous across C. On the contrary the integration of the double layer potential only converges in the Cauchy principal value
sense, and it jumps across C. We define the single and double layer operators respectively as:
D : cint
0

~D cext
0

~D : H
1
2ðCÞd ! H

1
2ðCÞd ð30Þ

N : ð1 cÞI þ cint
0

~N cI þ cext
0

~N : H
1
2ðCÞd ! H

1
2ðCÞd; ð31Þ
where I is the identity and the scalar function cðxÞ is defined as
cðxÞ : lim
e!0

R
X\@BeðxÞ dC

2ðd 1Þpe2

1 if x 2 X
1
2 if x 2 C of class C1

0 if x 2 Rd nX

8><
>: ð32Þ
and it is there to take into account the Cauchy limiting value of the double layer integral (see, for example, [42]). In general
cðxÞ is the fraction of angle (d 2) or solid angle (d 3) from which the domain X is seen by x 2 C and it is almost every
where equal to 1=2 for a Lipschitz boundary.

Although in the Sobolev space H
1
2ðCÞd we could drop the function c and use directly the value 1=2 (as it is often done in the

literature), we retain the function c itself in view of the numerical discretization by collocation boundary element methods,
in which a correct evaluation of c at corners and edges of the integration domain C is essential for accurate numerical results.
The interior and exterior Stokes problems satisfy the boundary integral equations
cuint þNuint Df int in H
1
2ðCÞ ð33Þ

ð1 cÞuext Nuext Df ext in H
1
2ðCÞ; ð34Þ
where f int : rintn and f ext : rextnext rextn are the interior and exterior normal tractions on C.
Solving Stokes problem for both the interior and the exterior case simultaneously, and summing Eqs. (33) and (34) one

obtains the following compact representation integral, also known as Stokes transmission problem:
ffuggc þN sut Dsrtn ð35Þ
where ff ggc and s t are the c weighted average and jump operators, defined as
6



2 Wh
ffaggc : caint þ ð1 cÞaext
� �

sat : aint aext
� �

:

Boundedness of the single and double layer operators can be shown when C is the boundary of a Lipschitz domain X:
D : H
1
2þsðCÞd ! H

1
2þsðCÞd

N : H
1
2þsðCÞd ! H

1
2þsðCÞd

ð36Þ
for all jsj 6 1
2 (see, for example, [42]).

Some properties of the single layer operator can be inferred from the consideration that u 0; p 1 is a solution to
Problem (19), both in the interior and the exterior case. Plugging this solution into Eq. (33) or (34) we obtain
Dn 0 ð37Þ
and it is possible to show (see, for example, [17]) that the single layer potential D is elliptic in the subspace H
1
2

 ðCÞ

d defined
as
H
1
2

 ðCÞ

d : w 2 H
1
2ðCÞd s:t: hw;ni :

Z
C

w � n 0
� �

; ð38Þ
where the notation h ; i is used to indicate the duality between H
1
2ðCÞd and H

1
2ðCÞd, in contrast with ð ; Þwhich is used for the

L2ðCÞd inner product.
If we consider the interior problem only, then the homogeneous Neumann problem (f int 0) has non trivial solutions

corresponding to the the 3ðd 1Þ dimensional space of rigid body velocities R.2 Plugging these solutions into Eq. (33), we get
NuR cuR 8uR 2R ð39Þ
and one can show ellipticity of the operator cI þN in the subspace H
1
2
RðCÞ

d, defined as
H
1
2
RðCÞ

d : v 2 H
1
2ðCÞd s:t: ðv ;uRÞ 0; 8uR 2R

n o
: ð40Þ
Since the operator D has a nonempty kernel, we can incorporate the eigenspace to obtain uniquely solvable boundary
integral integrations (see, for example, [22]). At the discrete level this is necessary to make the inversion of the discrete ver
sion of operator D well conditioned.

We introduce the extended operator D defined as
< Df ;u >: < Df ;u > þc < f ;n > ðu;nÞ 8u 2 H
1
2ðCÞd; 8f 2 H

1
2ðCÞd; c P 0; ð41Þ
which, by definition, coincides with D in the space H
1
2

 ðCÞ

d. In the operator D, the zeroth eigenvalue of D (corresponding to
the eigenvector n) is substituted with c=ðn;nÞ. A positive c ensures invertibility of the Dirichlet matrix in the finite dimen
sional spaces approximating H

1
2ðCÞd and H

1
2ðCÞd.

The extended operator D can be used to define two Dirichlet to Neumann maps, DNint and DNext , where the Dirichlet data
ug is given, and we want to find out the tractions f : rn DNug on C. In both cases we obtain Fredholm integral equations
of the first kind given by
DNint : D 1ðcI þN Þ
DNext : D 1 ð1 cÞI Nð Þ:

ð42Þ
We remark here that in the Dirichlet to Neumann maps of Eq. (42), the extended operator D will provide specific uniquely
determined solutions of the integral equations, whereas the original Stokes Dirichlet problem still has the null space spanðnÞ
(see, for example, [22]).

Among all possible Neumann solutions (which are not unique, since the pressure is known up to a constant), the ones
which are selected by the Dirichlet to Neumann maps (42) are those for which the normal traction f is in the space H

1
2ðCÞd
 .

An effective way to discretize the boundary integral Eqs. (33) and (34) and the resulting maps given in Eq. (42) is given by
the boundary element method, in which u and f are sought for in a finite dimensional space defined on C, and the Dirichlet to
Neumann maps become matrices.

Here we exploit the isogeometric NURBS spaces defined in Section 2 to define the finite dimensional spaces, as well as the
discrete versions of the boundary integral Eqs. (33) and (34) and of the Dirichlet to Neumann maps (42). The integration in
both operators is desingularized extending the techniques introduced in [27,26,43] for standard boundary element methods
to the isogeometric approximation introduced here.
en d 2;R : span 1
0

� �
;

0
1

� �
;
�y
x

� �� �
, while when d 3 we have that R : span

1
0
0

0
@

1
A; 0

1
0

0
@

1
A; 0

0
1

0
@

1
A; �y

x
0

0
@

1
A; 0

�z
y

0
@

1
A; z

0
�x

0
@

1
A

8<
:

9=
;.
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5. Isogeometric collocation BEM for Stokes flows

We assume the boundary C of the domain X to be a closed curve if d 2 or a closed surface if d 3. Once a CAGD descrip
tion of C is available, we can readily define the isogeometric vector space Vd

hðCÞ of finite dimensional functions of d compo
nents defined on C using the tools introduced in Section 2.

When the boundary C is piecewise smooth (and therefore also the finite dimensional space Vd
hðCÞ is piecewise smooth),

we can exploit the higher regularity for the velocity fields and for the normal traction fields and the boundedness of the sin
gle and double layer operators expressed in Eq. (36) to give sense to point wise evaluation of the single and double layer
operators defined in Eqs. (30) and (31).

This process allows one to obtain square matrices that approximate the single and double layer operators, by collocating
the boundary integral Eqs. (33) or (34) at n distinct collocation points fxagn

a 1, and restricting both uðxÞ and f ðxÞ to live in the
finite dimensional space Vd

hðCÞ � H
1
2ðCÞd � H

1
2ðCÞd:
cðxaÞuint; jsjðxaÞ þ Nuint; jsj
� �

ðxaÞ Df int; jsj
� �

ðxaÞ ð43Þ
1 cðxaÞð Þuext; jsjðxaÞ Nuext; jsj

� �
ðxaÞ Df ext; jsj

� �
ðxaÞ ð44Þ
where summation is implied over j. In what follow we use greek upper indices to indicate an index running from zero to
n 1, identifying a specific collocation point xa. For each collocation point xa, Eqs. (43) and (44) are systems of d equations
in 2dn unknowns (the dn coefficients of u and the dn coefficients of f ), which can be compactly rewritten as
CMuint þ Nuint Df int ð45Þ
ðI CÞMuext Nuext Df ext; ð46Þ
where the (square) matrices M;N;D and C are given by
MðadþaÞ ðjÞ : dabsj
bðx

aÞ ð47Þ

NðadþaÞ ðjÞ :
1

4ðd 1Þp

Z
C
T abcðxa yÞsj

bðyÞncðyÞdCy ð48Þ

DðadþaÞ ðjÞ :
1

4ðd 1Þpg

Z
C
Sabðxa yÞsj

bðyÞdCy ð49Þ

Cij : dij

Pdn 1
k 0 N ikPdn 1
k 0 Mik

dij

Xdn 1

k 0

N ik ð50Þ
and the index a runs from zero to n 1; a; b; c run from zero to d 1 and j runs from zero to dn 1. Summation is im
plied over the spatial coordinate indices a; b; c and dij is the Kronecker delta, which is one if i is equal to j, and zero
otherwise.

Eq. (50) is a numerical way to compute the fraction of solid angle by which the collocation points xa see the domain. This
technique is usually known as the Rigid Body Mode (RBM) or rigid mode technique (see, for example, [16]), and it exploits
the boundary integral identity (39) for rigid modes to compute exactly the coefficients cðxaÞ.

A common approach for the choice of the collocation points is given by the Greville abscissæ (see, for example, [19], or
[8]), which are defined as
xa : xðsaÞ; sai :

Pp
j 1ki

aiþj

p
; ð51Þ
where a is the multi index associated with the linear global index a and ki
aiþj are the knots of the knot vector Hi. Care should

be taken in order to avoid collapsing collocation points, which would result in matrices with identical lines being produced.

6. Desingularization of the boundary integral equations

If we consider the interior problem defined in Eq. (33), which we denote here for convenience after dropping the int
superscript,
cuþNu Df in H
1
2ðCÞ; ð52Þ
we observe that the operators N and D are defined through a Cauchy principal value integral, and a weakly singular integral,
which arise from using Green’s theorem and the fundamental solutions to formulate the boundary integrals.

In three dimensions these are integrals that contain a ð1=rÞ or stronger singularity around the source points. Numerical
integration of such singularities is a delicate and ill conditioned problem, which requires a careful treatment (see, for exam
ple, [23] or [45] for an overview of the available techniques).

In [30,32] it was shown how these singularities can be safely considered artifacts of the convolution with the fundamental
solutions. They are not essential to boundary integral formulations, because they can be removed by exploiting the funda
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mental identities coming from the physical interpretation of the problem. The idea behind these techniques stems from the
fact that we know the exact solutions to Eq. (52) for all pairs uR; f R which represent pure translations and rotations, and
clever choices of these solutions can be superimposed on the unknown pair u; f to remove the singularities of both kernels.

In [26,27,43] this idea was implemented in a standard BEM code, where the authors show that standard quadrature rules
can be used in the resulting boundary integral equations, which become nonsingular.

We adapt these techniques to the collocation isogeometric approximation of three dimensional boundary integral equa
tions for Stokes flow, taking into account the non interpolatory nature of the isogeometric basis, and compare our results
with analytical results for simple geometries.

Given a solution u and f of the interior problem (52), and a point y on a smooth portion of C, if u and f are continuous on
y, we can consider the linear velocity
3 Thi
defined
wðx; u; f ; yÞ : uðyÞ þ Qðf ðyÞ;nðyÞÞðx yÞ; ð53Þ
where the (constant) matrix Qðf ;nÞ is defined as
Qðf ;nÞ : f � n
1
4
ðf � nÞ I þ n� nð Þ: ð54Þ
The divergence of w vanishes everywhere, the pressure is identically zero, and we can express the associated normal
stress g as
gðx; u; f ; yÞ : g Qðf ðyÞ;nðyÞÞ þ Qðf ðyÞ;nðyÞÞT
	 


nðxÞ: ð55Þ
For any point y on a smooth portion of the boundary, the pair w and g satisfies the boundary integral Eq. (52), and it is
such that the values of w and g computed in x y are equal to uðyÞ and f ðyÞ. In particular we have (see the Appendix in [27]
for the details of the proof):
lim
x!y

wðx; u; f ; yÞ uðyÞð Þ Oðjx yj2Þ

lim
x!y

gðx; u; f ; yÞ f ðyÞð Þ Oðjx yjÞ;
ð56Þ
which is exactly what is needed to cancel the singularities of the operators N and D when evaluated at the point y in Eq. (52).
If we repeat this construction for each collocation point xa, and define
waðxÞ : wðx; u; f ; xaÞ
gaðxÞ : gðx; u; f ; xaÞ

ð57Þ
we can subtract from the boundary integral equation for u and f evaluated at the collocation points xa the corresponding
boundary integral equation for waðxÞ and gaðxÞ, to obtain a non singular formulation of the boundary integral equation
(thanks to properties (56)) given by
N ðu waÞ Dðf gaÞ in H
1
2ðCÞ; ð58Þ
where the term cðuðxaÞ waðxaÞÞ vanishes, because the two velocities coincide in xa. If we evaluate the boundary integral Eq.
(58) at the collocation point xa, then the singularities in the integrals which define N and D are compensated by
ðuðxÞ waðxÞÞ and ðf ðxÞ gaðxÞÞ which go to zero when x! xa with the right powers, leaving us with a formulation which
does not require any singular integration.

In Eq. (58), the functions wa and ga depend linearly on the solution u; f . In particular we can define the following three
operators:
MðyÞ : C0ðBeðyÞ \ CÞ# Rd

MðyÞuð ÞðxÞ uðyÞ

WðyÞ : C0ðBeðyÞ \ CÞ# H
1
2ðCÞ

WðyÞfð ÞðxÞ Qðx; f ðyÞ;nðyÞÞðx yÞ

GðyÞ : C0ðBeðyÞ \ CÞ# H
1
2ðCÞ

GðyÞfð ÞðxÞ g Qðx; f ðyÞ;nðyÞÞ þ Qðx; f ðyÞ;nðyÞÞT
	 


ð59Þ
where BeðyÞ is the ball of radius e centered in y, and e is arbitrarily small, such that its intersection with C remains smooth.3

Using these operators we can rewrite w and g as
s assumption implies, in particular, that collocation points should not be positioned on corners, since in that case the normal would not be uniquely
, and the present technique would not be applicable.
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wa MðxaÞuþWðxaÞf
ga GðxaÞf :

ð60Þ
If we leave the term of wa that depends on u on the left hand side in Eq. (58), and move the term that depends on f on the
right hand side, we obtain
N ðu uðxaÞÞ Dðf gaÞ þNQaðx xaÞ in H
1
2ðCÞ; ð61Þ
which can be rewritten using the operators in Eq. (60) as
N I MðxaÞð Þu D I GðxaÞð Þ þNWðxaÞð Þf in H
1
2ðCÞ: ð62Þ
If we discretize directly Eq. (62) instead of Eq. (52), we obtain a non singular formulation of the boundary integral equa
tions that can be expressed in the form
Hu Lf ; ð63Þ
where the entries of the matrices H and L are given by
HðdaþaÞðjÞ ea � N ðI MðxaÞÞsj
� �

ðxaÞ
LðdaþaÞðjÞ ea � DðI GðxaÞÞ þNWðxaÞð Þsj

� �
ðxaÞ:

ð64Þ
In the definition (64), we observe that all operators are linear, and allow us to rewrite the system as
Hu : ðN þ CMÞu ðDþ BMÞf : Lf ; ð65Þ
where the matrices H and L can be constructed a posteriori with elementary linear algebra operations starting from the
matrices M;N and D defined in Eqs. (47) (49), where the integrations are computed using standard quadrature formulas,
ignoring the inaccuracies that will be accumulated around the diagonals of N and D.

In particular, we have
ðCMÞðdaþaÞðjÞ ea � NMðxaÞsj
� �

ðxaÞ

ðBMÞðdaþaÞðjÞ ea � DGðxaÞ þNWðxaÞð Þsj
� �

ðxaÞ;
ð66Þ
where the matrix C is diagonal and the matrix B is composed of n blocks of dimension d� d on the diagonal.
In a way that is very similar to the rigid body mode or rigid mode technique [16], we exploit the fact that, by construction,

the final system has to solve exactly the dn pairs of solutions wa and ga associated with the basis functions of Vh.
For a given basis function si, its associated pair wa and ga will be different from zero only if xa belongs to its support,

therefore the only entries of the matrices D and N that will be corrected are those around the diagonal. Explicit calculations
of B and C will be given below.

This process is easily implemented when the finite dimensional space is of Lagrangian type, i.e., when /bðxaÞ dba. In this
case the singular diagonal blocks of the matrices N and D can be expressed in terms of the remaining parts of the same matri
ces, exploiting the formulation (58), as shown in [43].

In the isogeometric case, however, the basis functions are not of interpolatory type, and the a posteriori implementation
requires a little more attention, hence the corrections in the forms CM and BM. Notice that on the left hand side we obtain
the same kind of indirect regularization that was used in Eq. (50).

In order to compute the B matrix, we start with the consideration that the value of the ath coefficient of the NURBS func
tion uðxÞ in the point xa is obtained by reading the daþ a column of the matrix vector multiplication between M and the
vector u of coefficients defining uðxÞ:
ðMuÞðdaþaÞ uaðxaÞ: ð67Þ
In the case of Lagrange finite dimensional spaces, the collocation matrix M is the identity matrix, and the procedure out
lined in [43] can be applied directly. For an isogeometric collocation boundary element discretization, the matrices N;D and
M should be multiplied with vectors of coefficients, not nodal values. We exploit the well known property of NURBS func
tions, by which interpolation of the control polygon commutes with affine transformations to express the coefficients defin
ing the dn pairs of functions wa and ga as
WðdbþaÞðdaþbÞ
Xd 1

c 0

Q b;a
ac ðcdbþc xa

c Þ

GðdbþaÞðdaþbÞ Xd 1

c 0

gðQb;a
ac þ Q b;a

ca Þndbþc;

ð68Þ
10



where �n is the L2 projection of the normal in the NURBS space, c is the control polygon that defines the geometry, s are the
basis functions of Vh and the matrices Qa;a are given by
Qa;a : ea � nðxaÞ 1
4

naðxaÞ I þ nðxaÞ � nðxaÞð Þ: ð69Þ
The isogeometric regularization of the matrices N and D through the matrices C and B can then be computed as
Cij : dij

Xdn 1

k 0

N ik

BðdaþiÞðdaþjÞ Xdn 1

a 0

DðdaþiÞðaÞGðaÞðdaþjÞ þ NðdaþiÞðaÞWðaÞðdaþjÞ
	 


:

ð70Þ
The correction applied to the system by the matrices C and B takes into account the knowledge of the exact solutions wa

and ga in the point xa to correct the singular entries in N and D, similarly in spirit to what is done in the rigid body technique.
For this technique to be accurate and efficient, quadrature formulas that guarantee an accurate integration of the non sin

gular portion of C should be used.
7. Numerical verification

One of the advantages of using NURBS basis functions for the geometry description, is the possibility to represent exactly
conic curves. In this section we compare several numerical experiments with known analytical results for spheroids in uni
form flows, using both standard integrations (based on the works by Lachat and Watson [28] and by Telles [45]) as well as
the techniques exposed in Section 6.

A prolate spheroid of eccentricity e : 1 ða=bÞ2
q

is defined as the surface of revolution around the z axis of an ellipse
with semi minor and semi major axes a and b, implicitly defined by the equation
x2 þ y2

a2 þ z2

b2 1; a 6 b: ð71Þ
We indicate with k the ratio b=a P 1, and we fix the volume of the spheroid to be equal to that of a sphere with unit ra
dius, corresponding to the choice k 1; a b 1.

In [7] it is argued that Gaussian quadrature rules may not be efficient in isogeometric analysis, since they do not exploit
the interelement regularity which is typical of B Splines and NURBS. Efficient rules are devised in [7] for the integration of
mass and stiffness matrices in isogeometric analysis.

In the case of boundary integral operators, however, the integrands contain non linear terms depending on different pow
ers of the distance between the quadrature point and the evaluation point, and the quadrature rules which have been de
vised there might not be optimal in this case.

In our first set of experiments, we show how in non singular boundary integral equations, i.e., where the singularity is far
away from the integration surface, in some cases standard Gaussian quadrature rules fail to deliver a convergence rate which
is independent on the geometry. On surfaces with high curvatures this is even more evident than in standard IGA analysis,
and the authors are currently working on devising alternative quadrature methods that will provide optimal convergence
results for standard integrals independently on the curvature.

This consideration is common to all IGA BEM methods, not only to the one presented in this paper, since Gauss quadra
ture rules are still the de facto standard integration tool for boundary element methods in all cases where the singularity is
far away from the singularity.

When implementing a boundary element approximation, the following crucial points should be taken in consideration,
both in standard BEM as well as in IGA BEM:

1. An efficient and accurate integration method should be used, capable of integrating to a good degree of accuracy polyno
mial or rational functions on curved geometries, weighted with ð1=rÞ or ð1=rÞ2, when r > 0.

2. A strategy should be chosen to integrate in regions which contain a singularity of type ð1=rÞ or ð1=r2Þ, such as the one
presented in this paper, or one based on special quadrature techniques, such as those presented in [45] or [28], or any
other technique to approximate Cauchy Principal value integrals (see, for example, [23]).

In the tests that follow, we asses the quality of standard Gaussian quadrature rules to address Point 1 in Section 7.1, and
we show some critical points which have to be taken under consideration also when using isogeometric approximations. In
Section 7.2 we make some considerations on the approximation capabilities of the iso geometric space Vh when it comes to
approximating the normal vector field, discussing some of the consequences on the convergence of numerical methods. We
11



compare the computational cost between the technique introduced in Section 6 and standard singular integration tech
niques in Section 7.3, while Point 2 above is explored in detail in Section 7.4, where we asses the accuracy of the method
introduced in this paper and we compare it to other integration methods introduced in [28] and in [45].

The validation and the test cases we present here were implemented in Matlab [33], using the NURBS toolbox [41]. Sim
ilar functionalities, which are tailored mostly for FE IGA applications, are available in the GeoPDEs package [18], an open
source library for isogeometric analysis.
7.1. Geometry discretization and quadrature rules for non singular integration

The nonsingular integration method we presented in Section 6 hinges upon the assumption that it is possible to integrate
effectively and accurately the non singular parts of the boundary integral equations.

In this section we present a set of tests on simple geometries with different curvatures aimed at selecting reasonable
quadrature rules for the integration of the non singular parts of the boundary integral equations, which are crucial for the
accuracy of the non singular method presented in Section 6, and we quantify the influence of the geometry on the integra
tion strategies.

We construct our prolate spheroids starting from a circular arc which is deformed to an ellipse and revolved around the z
axis. Fig. 1 shows an example of the coarsest control net used for our simulations, for the case k 1:5. An exact represen
tation of these conic curves can be obtained with quadratic NURBS for both the z direction, and the revolution direction.
In the z direction the knot span used to generate the surface of revolution is given by f0;0;0;1=2;1=2;1;1;1g, with control
points and weights given in Table 1.

The revolution around the z axis generates a NURBS surface with 45 control points (5 in the z direction, and 9 in the rev
olution direction). The knot spans have respectively 3 and 5 non zero segments, which are split at the abscissae of the col
location points, and then filled with Gauss quadrature points.
Fig. 1. Control net and NURBS surface of a prolate spheroid with ratio k 1:5.

Table 1
Control points for half ellipse with k 1:5. Last line contains the weights of the NURBS basis.

c0 c1 c2 c3 c4

x 0.0000 0.6177 0.8736 0.6177 0.0000
y 0 0 0 0 0
z �1.3104 �0.9266 0 0.9266 1.3104

w 1.0000 0.7071 1.0000 0.7071 1.0000
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Whenever the evaluation point for the boundary integral representation given in Eqs. (28) and (29) is not on the boundary
C of the domain X, then the integrands defined in Eqs. (30) and (31) are regular, and their integration is possible with stan
dard quadrature rules.

We construct quadrature rules based on tensor product repetitions of standard Gaussian quadrature rules on each non
zero interval of the union between the knot spans and the abscissas of the collocation points. This choice is driven by the
consideration that, while the desingularization technique introduced in Section 6 produces integrands which are non singu
lar, in general they are only continuous at the collocation points. Although Gauss quadrature rules converge also for func
tions which are only continuous, their convergence speed would suffer from the limited regularity. On the other hand,
splitting the elements at collocation abscissae removes these limitations and allows us to use standard Gauss quadrature
rules with the nonsingular technique introduced in Section 6 in a very effective way.

In order to select a sufficiently accurate quadrature rules for non singular integrals, we test some boundary integral iden
tities on different prolate spheroids, with k ranging from one to two, where the singularity is placed inside or outside of the
domain. For comparison purposes only, we also test these identities in the singular case, i.e., when the evaluation point lyes
on the boundary itself. In this case we expect standard quadrature rules not to converge, and we show in these examples
how they actually fail.

We measure the norms of EiðxÞ, defined as
E0
aðxÞ :

1
8p

Z
C
Sabðx yÞnbðyÞdCðyÞ 0 8x 2 Rd ð72Þ

E1
abðxÞ :

1
8p

Z
C
T abcðx yÞncðyÞdCðyÞ 0 8x 2 Rd nX ð73Þ

E2
abðxÞ :

1
8p

Z
C
T abcðx yÞncðyÞdCðyÞ dab 0 8x 2 X ð74Þ

E3
abðxÞ :

1
8p

Z
C
T abcðx yÞncðyÞdCðyÞ 1

2
dab 0 8x 2 C; ð75Þ
in three points, respectively x0 ð1;2;3ÞT 2 Rd nX; x1 ð:1; :3; :2ÞT 2 X and x2 ða; 0;0ÞT 2 C, using different number of
quadrature points in each interval.

The results are summarised in Figs. 2 4. A close inspection reveals that the computed quantities in the exterior part of the
domain (i.e., for x x0) converge at the same rate almost independently of the spheroid geometry.

In the interior case (i.e., when x x1) the geometry seems to play a more important role, and the convergence rates dete
riorate when the curvature is higher, even though we observe a uniform behaviour with respect to the number of quadrature
points in each fixed geometry.

In the singular case (i.e., when x x2) the deterioration of the accuracy of the integrals is expected and it is the main rea
son for devising alternative integration techniques, such as, for example, those presented in [45] or [28], or the ones intro
duced in Section 6.

Somewhat surprising are the results which emerge from Fig. 3, since they show a quite drastic dependency on the geom
etry of standard Gauss quadrature rules when applied to non singular boundary integrals. This problem is present also in
standard IGA analysis, but it seems more important in boundary integral equations, probably due to the presence of the
1=rp terms in the integrands. In IGA analysis, Gauss quadrature rules are sub optimal, as is shown, for example, in [7]. This
Fig. 2. Norm of E0ðx0Þ (left) and E1ðx0Þ for different numbers of quadrature points.
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Fig. 3. Norm of E0ðx1Þ (left) and E2ðx1Þ for different numbers of quadrature points.

Fig. 4. Norm of E0ðx2Þ (left) and E3ðx2Þ for different numbers of quadrature points.
is not to say that they do not converge to the correct solution (as Fig. 2 and 3 show) when raising the number of quadrature
points, but simply that some care should be taken when high order quadrature rules are required (for example when per
forming p refinements), since merely increasing the number of quadrature points may not the best strategy to tackle IGA
problems in general.

The results in Figs. 2 4 are obtained with the coarse knot span produced by the NURBS toolbox. If we fix the number of
quadrature points to five and eight and raise the number of control points by k refinement, i.e., by inserting equally spaced
knots in the knot span, for the worst case scenario of E2ðx1Þ, we obtain the results presented in Fig. 5, which shows how also
when using relatively cheap Gauss quadrature rules, we can obtain very good convergence properties (up to machine pre
cision) for the non singular boundary integral identities, even though the underline quadrature formulas are not optimal nor
independent on the geometry.

The singular case, shown in Fig. 6, is very sensitive with respect to the position of the singularity (which here coincides
with the image of a collocation point), and deteriorates very quickly when the singular points get closer and closer to the
quadrature points.

A deeper investigation is required, maybe following [7], to exploit the additional interelement regularity of NURBS basis
functions in selecting optimal quadrature rules for nonsingular boundary element method formulations such as the one pre
sented in this paper. Following the results presented in these tests, we fixed the number of quadrature points to six and eight
and performed the following tests using k refinement, for both quadratic and cubic NURBS.

In the authors’ experience, raising the number of Gauss quadrature points over eight points per direction does not im
prove significantly the accuracy of any of the considered methods (at least in the quadratic and cubic cases), while it in
creases significantly their computational costs. A possible explanation for this behaviour is presented in the next section.
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Fig. 5. Norm of E2ðx1Þ for 5 quadrature points (left) and for 8 quadrature points (right) for different numbers of control points.

Fig. 6. Norm of E3ðx2Þ for 5 quadrature points (left) and for 8 quadrature points (right) for different numbers of control points.
7.2. Representation of the normal vector field

A key and delicate aspect of all boundary integral discretizations is the accurate representation of the normal vector field
n in the finite dimensional space Vh.

For iso geometric spaces defined on non trivial geometries, the normal vector n does not belong to Vh. While this may
seem like a non issue, it impacts negatively on both the convergence properties of the method, and on the possibility to rep
resent exactly trivial solutions.

Take, for example, a given linear velocity field of the kind
ug Qðx xoÞ; ð76Þ
where Q is a constant 3� 3 matrix with zero trace and x0 is an arbitrary point. An exact representation of u on C is possible in
the finite dimensional space Vh because the space is iso geometric, and therefore it can represent exactly affine transforma
tions of points x on the boundary. The velocity ug is constructed precisely as an affine transformation of the vector x.

In the interior problem, this velocity admits the zero pressure solution
rg gðQ þ Q TÞ; ð77Þ
where rg is the Cauchy stress solution associated to ug , and it is a constant symmetric tensor. Since n, in general, does not
belong to Vh, the normal stress f g : rgn cannot belong to Vh either, since it is an affine transformation of n, and therefore it
is not possible to represent exactly the solution to ug .
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A general consequence of this lack of representability of the normal n is that the L2 error of the solution will in general be
dominated by the error in the approximation of the normal n (an error which is purely geometric), that is:
Fig. 7.
on stan
kf h f exactk � knh nexactk; ð78Þ
independently on the technique that was used to compute the singular integrals.
To give a sense of what is the influence of this error, we report in Fig. 7 the error in the representation of the normal, when

nh is computed as the L2 projection of n, for the geometries that were introduced in the previous section. The geometry
where k 1:00 has not been plotted, since that is the only case in which the normal is exact, and the error remains at the
machine level for all numbers of control points.

Independently on the accuracy of the integration techniques, the L2 error between the computed solution and the exact
solution (in which also the normal is computed exactly) will be bounded by the values in Fig. 7. For the range of numbers of
degrees of freedom we have chosen, the minimum of these values go between 10 3 for quadratic NURBS and 10 4 for cubic
NURBS, with significant differences between large curvature geometries (k � 2:00) and small curvature ones (k � 1).
7.3. Cost comparison with standard singular quadrature techniques

In this section we compare the computational cost of the desingularization technique presented in Section 6 when com
pared to two classical integration methods. The first one is based on the work by Lachat and Watson [28], while the second
exploits Telles transformations [45]. Both methods are based on singularity removal by local change of variables.

The principle behind these classical integration techniques is that every collocation point can be isolated into well sep
arated square boxes, where it occupies the position �n. An appropriate change of variables can then be introduced, such that
B : ½0;1�d; g : B # B; J :
@g
@n

gð@BÞ � @B; det J > 0 8n–n; det Jjn 0:
ð79Þ
When using this transformation combined with appropriate integration formulas for the evaluation of singular integrals,
the zeroth Jacobian compensates for the singularity of the kernels.

In the method proposed by Lachat and Watson in [28], each box B is split into triangles which have one vertex in �n. At the
edges of the domain the collocation point �n may be on a vertex or on a edge, in which cases two or three triangles are enough.
In general four triangles are needed around each collocation point.

A standard quadrature formula on the reference square is chosen and mapped to each of the triangles, by collapsing two
vertices of the square on the vertex coinciding with �n. The final quadrature formula is obtained by glueing together all the
patches, it preserves the accuracy of the original one, and has the characteristic that its Jacobian is zero at �n.

A similar procedure is presented by Telles in [45], but there the transformation is obtained by tensor product from one
dimensional quadratic or cubic transformations which have zero derivatives in �n. The resulting quadrature formulas are
L2 error in the representation of the normal n for different number of control points, with quadratic NURBS (left) and with cubic NURBS (right), based
dard 8 points Gauss quadrature rules. Increasing the number of quadrature ponts does not improve the graph any further.
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cheaper to evaluate with respect to the Lachat Watson ones, and when they are based on cubic transformations they can also
have zero second order derivatives at �n, which contributes in improving their effectiveness in singular integrations.

Examples of such constructions are outlined in Fig. 8, where we pick three possible locations of the singularities, and we
construct both a simple Lachat Watson quadrature formula and a Telles quadrature formula starting from the tensor prod
uct of a 21 equi spaced points quadrature rules (only for illustrational purposes in the Figures).

By construction, the Lachat Watson technique is well suited for weakly singular integrals, and its effectiveness is usually
increased by raising the number of quadrature points in the angle direction, or by combining it with a Telles transformation
along the radial direction, which would allow to have also second order derivatives at �n equal to zero.

Moreover, in the Lachat Watson case the singularity is constrained to be inside the reference square, while in the Telles
quadrature it can be at arbitrary locations, which makes it also usable for quasi singular integrals, i.e., for those integrals in
which the singularity is close to, but outside, the panel where the integration is occurring. In the examples depicted in Fig. 8,
the quadrature rules based on Telles transformation are respectively two, three and four times cheaper than the Lachat Wat
son ones.
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Fig. 8. Singular quadrature formulas based on Lachat-Watson (top) and Telles transformations (bottom) for singularities on the points ð1;1Þ (left), ð:7;0Þ
(center), and ð:2; :3Þ (right), based on equi-spaced quadrature rules with 21� 21 points.

Fig. 9. Average cost between standard IGA-BEM and non-singular IGA-BEM for 8 quadrature points.
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Fig. 10. Streamlines of the solution with h h8 and k 1:5.

Table 2
Spheroid ratio k = 1:00. Ei

F for different angles hi across the vertical directions, and for different numbers of control points across the horizontal direction, using
non-singular integration method, based on 8 points Gauss quadrature.

18h/p n = 91 (%) n = 231 (%) n = 325 (%) n = 435 (%) n = 561 (%)

1 1:66�10 2 1:35�10 4 9:54�10 5 6:16�10 4 3:88�10 5

2 1:64�10 2 1:64�10 4 9:40�10 5 6:12�10 4 4:15�10 5

3 1:59�10 2 2:28�10 4 8:97�10 5 5:97�10 4 4:83�10 5

4 1:51�10 2 3:01�10 4 8:28�10 5 5:74�10 4 5:73�10 5

5 1:41�10 2 3:71�10 4 7:34�10 5 5:45�10 4 6:67�10 5

6 1:29�10 2 4:33�10 4 6:19�10 5 5:12�10 4 7:54�10 5

7 1:17�10 2 4:84�10 4 4:86�10 5 4:79�10 4 8:27�10 5

8 1:05�10 2 5:22�10 4 3:42�10 5 4:50�10 4 8:82�10 5

9 9:76�10–3 5:46�10 4 1:97�10 5 4:30�10 4 9:17�10 5

10 9:47�10–3 5:54�10 4 1:09�10 5 4:23�10 4 9:28�10 5

Table 3
Spheroid ratio k = 1:50. EiF for different angles hi across the vertical directions, and for different numbers of control points across the horizontal direction, using
non-singular integration method, based on 8 points Gauss quadrature.

18h/p n = 91 (%) n = 231 (%) n = 325 (%) n = 435 (%) n = 561 (%)

1 2:16�10 2 3:49�10 3 1:49�10 3 6:42�10 4 1:76�10 4

2 2:19�10 2 3:45�10 3 1:48�10 3 6:42�10 4 1:74�10 4

3 2:27�10 2 3:33�10 3 1:44�10 3 6:42�10 4 1:67�10 4

4 2:39�10 2 3:13�10 3 1:38�10 3 6:42�10 4 1:55�10 4

5 2:54�10 2 2:85�10 3 1:29�10 3 6:42�10 4 1:39�10 4

6 2:69�10 2 2:50�10 3 1:19�10 3 6:42�10 4 1:19�10 4

7 2:84�10 2 2:09�10 3 1:08�10 3 6:42�10 4 9:38�10 5

8 2:96�10 2 1:67�10 3 9:77�10 4 6:42�10 4 6:54�10 5

9 3:03�10 2 1:30�10 3 8:99�10 4 6:42�10 4 3:48�10 5

10 3:06�10 2 1:15�10 3 8:70�10 4 6:42�10 4 1:13�10 5
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Table 4
Spheroid ratio k = 2:00. EiF for different angles hi across the vertical directions, and for different numbers of control points across the horizontal direction, using
non-singular integration method, based on 8 points Gauss quadrature.

18h/p n = 91 (%) n = 231 (%) n = 325 (%) n = 435 (%) n = 561 (%)

1 1:75�10 2 2:45�10 4 3:41�10 4 1:70�10 4 7:31�10 4

2 1:73�10 2 7:91�10 4 3:39�10 4 1:79�10 4 7:24�10 4

3 1:68�10 2 1:52�10 3 3:34�10 4 2:04�10 4 7:00�10 4

4 1:60�10 2 2:24�10 3 3:24�10 4 2:40�10 4 6:61�10 4

5 1:47�10 2 2:93�10 3 3:12�10 4 2:80�10 4 6:05�10 4

6 1:32�10 2 3:57�10 3 2:96�10 4 3:20�10 4 5:33�10 4

7 1:13�10 2 4:13�10 3 2:79�10 4 3:57�10 4 4:47�10 4

8 9:36�10 3 4:57�10 3 2:63�10 4 3:87�10 4 3:52�10 4

9 7:72�10 3 4:85�10 3 2:52�10 4 4:06�10 4 2:68�10 4

10 7:04�10 3 4:95�10 3 2:47�10 4 4:13�10 4 2:30�10 4

Fig. 11. Maximum error Ei
F across all angles hi , for different number of control points, with quadratic NURBS (left) and with cubic NURBS (right), using

Lachat Watson quadrature rules based on 8 points Gauss quadrature.

Fig. 12. Maximum error Ei
F across all angles hi , for different number of control points, with quadratic NURBS (left) and with cubic NURBS (right), using Telles

quadrature rules based on 8 points Gauss quadrature.
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Fig. 13. Maximum error Ei
F across all angles hi , for different number of control points, with quadratic NURBS (left) and with cubic NURBS (right), using non-

singular quadrature rules based on 8 points Gauss quadrature.
In Fig. 9 we present a comparison of the cost associated to the various phases of the numerical integration procedure
using Lachat Watson integration, Telles integration and non singular integration. These phases can be summarised as
follows.

phase 1: Pre caching of all basis function values and gradients in each of the quadrature points and in each of the collocation
points;

phase 2: Integration of the boundary integral equations into system matrices;
phase 3: Linear system solution.

Only phase one and phase two are plotted, since there are no significant differences in phase 3 (the linear system is of the
same size in all cases). All methods have been implemented without any special optimization. In particular, we observe that
a much greater effort is required in the evaluation of the basis functions if singular quadrature rules are used, since there
have to be a specialisation of the quadrature rule for each panel of integration, resulting in a much higher number of basis
function evaluations. The difference in total execution time is in the order of one order of magnitude faster when using stan
dard integration and the desingularization technique introduced in Section 6.

These results are the average of five simulations, on a Intel Xeon quad core machine with 8 GB of memory, running Linux
operating system, where we maintained the comparisons as fair as possible, i.e., we maintained the number of quadrature
points for the generating Gauss quadrature rules equal to eight in all cases, even though it is well known for the Lachat Wat
son regularization technique that more integration points should be chosen in the angle direction than in the radial direction.

7.4. Accuracy comparison on translating prolate spheroids

Prolate spheroids are a suitable test case for the validation of boundary integral methods, since their traction is known
analytically (see, for example, [13]), and the characteristics of the solution allow one to test the behavior of the numerical
scheme for high curvatures near the axis of symmetry as well as away from it, by simply modifying the spheroid eccentricity.

When such an object moves uniformly in a quiescent Stokes flow with constant velocity U uxex þ uzez, and no slip
boundary conditions on the surface of the body, the total drag it experiences can be expressed as
F 6pmbðuxcxex þ uzczezÞ; ð80Þ
where
cx :
16
3

e3 2eþ ð3e2 1Þ ln 1þ e
1 e

� � 1

;

cz :
8
3

e3 2eþ ð1þ e2Þ ln 1þ e
1 e

� � 1

:

ð81Þ
In this section we show the results for the three different three dimensional solver, testing both different geometries as
well as different angles of translation. In particular we report the error in the drag experienced by the sphere, and by spher
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Fig. 14. L2 error for different number of control points, with quadratic NURBS (left) and with cubic NURBS (right), using Lachat Watson integration method,
based on 8 points Gauss quadrature.

Fig. 15. L2 error for different number of control points, with quadratic NURBS (left) and with cubic NURBS (right), using Telles integration method, based on
8 points Gauss quadrature.
oids with ratios ranging from k 1 to k 2, for different refinement levels and fixing the number of quadrature points per
segment to be equal to eight.

The velocities are selected to be
U i cosðhiÞex þ sinðhiÞez; hi :
p
2

i
9
; i 0; . . . ;9 ð82Þ
and we measure the relative errors in percentage, defined as
Ei
F : 100

jFh FðhiÞj
jFðhiÞj

: ð83Þ
An example solution is presented in Fig. 10, where we show in color the magnitude of the velocity field for a prolate
spheroid in uniform flow, together with the projection on three orthogonal planes of the streamlines in the case h h8,
and k 1:5. Detailed error results are presented in Table 2 for k 1, Table 3 for k 1:5 and Table 4 for k 2 when using
quadratic NURBS, and integrating with the non singular approach.
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Fig. 16. L2 error for different number of control points, with quadratic NURBS (left) and with cubic NURBS (right), using non-singular integration method,
based on 8 points Gauss quadrature.

Fig. 17. Maximum error Ei
F across all angles hi , for different number of control points, with quadratic NURBS (left) and with cubic NURBS (right), using

LachatWatson + non-singular quadrature rules based on 8 points Gauss quadrature.
We observe that, with respect to the results presented in [26,27,43], we obtain much smaller errors in all cases. A sum
mary of the worst case scenario using Lachat Watson integration, Telles integration and the non singular method is shown in
Figs. 11 13 where the behaviour of the maximum error under k refinement in the quadratic and cubic cases is shown.

We observe that the results obtained with the Lachat Watson quadrature technique (Fig. 11) is very robust in terms of
dependency on the geometry, but it is also the one that attains the highest errors, when compared both with the Telles meth
od (Fig. 12) and and with the non singular method (Fig. 13).

In the non singular method, the error maxijEi
F j does not seem to have a clear convergence rate, although it is consistently

lower than both Lachat Watson method and Telles method. In view of the considerations made in Section 7.2, this is not sur
prising, since both the Telles method and the nonsingular one reach a level of accuracy which is lower than the error in the
representation of the normal, and further improvement cannot be achieved.

For all considered geometries and combination of collocation points, the computed error with the non singular method is
between 10 2% and 10 4% for the quadratic case and between 10 3% and 10 4% for the cubic case at a fraction of the com
putational cost (see Fig. 9). The error obtained with the Lachat Watson technique is about two orders of magnitude worse of
both the Telles and the non singular case, at a much higher computational cost.

Fig. 11 seems to suggest that the simplistic implementation we made of the Lachat Watson technique is not a suitable
choice for IGA BEM implementations of stokes flows. As kindly suggested by one of the reviewers, it seems that eight quad
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Fig. 18. Maximum error Ei
F across all angles hi , for different number of control points, with quadratic NURBS (left) and with cubic NURBS (right), using

Telles + non-singular quadrature rules based on 8 points Gauss quadrature.

Fig. 19. L2 error for different number of control points, with quadratic NURBS (left) and with cubic NURBS (right), using Lachat Watson + non-singular
integration method, based on 8 points Gauss quadrature.
rature points on both the radial and angle direction are not enough to reach satisfactory convergence results with this tech
nique, and a higher number of quadrature points should be used in the angle direction. The additional computational cost
associated with this choice, however, makes it a less appealing solution if compared with Telles transformation or with the
nonsingular technique introduced in Section 6.

Figs. 12 and 13 show that both Telles and the non singular method presented in this paper are suitable choices for accu
rate IGA BEM approximations of Stokes flow, since both methods reach a level of accuracy which is comparable with the
error in the approximation of the normal vector field n, presented in Fig. 7.

Comparing the behaviour of the quadratic approximations versus the cubic ones in Figs. 11 13 seems to suggest that
using p refinement would lead to much lower values of the error while keeping the same number of control points (see,
for example [9]). This, however, requires a careful treatment of the quadrature rules to ensure that the higher polynomial
degree in both the geometry and finite dimensional space is matched by higher regularity in the integration formulas in or
der to fully benefit from higher order convergences.

For the case h 0, we asses the convergence of all methods in the L2 norm using the analytical solution. Given a unit
velocity field directed along the axis of symmetry, the analytical solution for the normal stress density rn f fzez is direc
ted along the z axis and is given by:
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Fig. 20. L2 error for different number of control points, with quadratic NURBS (left) and with cubic NURBS (right), using Telles + non-singular integration
method, based on 8 points Gauss quadrature.
fz 2
e3

ð1 e2Þ1=6 1þe2

2 ln 1þe
1 e

� �
e

� � 1

1 e2z2=b2
q : ð84Þ
In Figs. 14 16 we present the plot of the error in the L2 norm of the normal stress density f during k refinement for qua
dratic and cubic NURBS for all considered methods.

The technique introduced in Section 6 is independent on the quadrature rules which are used to integrate the boundary
integral equations, and can be used also with standard integration techniques.

In Figs. 17 and 18 we plot the error maxijEi
F j when using a combination of the non singular integration technique of Sec

tion 6 with the Lachat Watson and Telles quadrature techniques. Comparing the results with Figs. 11, and 12 we observe a
drastic improvement on the error, with a negligible additional computational cost.

In Fig. 19 and 20 we plot the error in the L2 norm when combining our technique with the classical ones.
When used as a standalone method, the desingularization technique (Figs. 13 and 16) follows very closely the error in the

representation of the normal (Fig. 7), which was argued to be an intrinsic limit of the finite dimensional space Vh (Sec
tion 7.2). Telles method (Figs. 12 and 15), on the other hand, seems to reach the limit of the geometrical error slightly faster
with respect to the nonsingular technique. The higher accuracy, however, is reached at a much higher computational cost
(Fig. 9), which is one order of magnitude higher than the cost associated to the nonsingular technique.

The best results in terms of accuracy are obtained when one combines our desingularization technique with one of the
standard quadrature techniques, as in the cases LW + NS and T + NS (17 20). The method we propose can be successfully
used to tackle IGA BEM problems, both as a standalone method with classical Gauss quadrature rules, as well as in combi
nation with integration techniques typical of BEM implementations, such as the Lachat Watson technique or the Telles one.
8. Conclusions

Isogeometric boundary element methods for Stokes flow are very promising in terms of accuracy, and produce consis
tently better results than the standard boundary element method. We find that the nonsingular IGA BEM based on quadratic
NURBS achieves an accuracy which is around 10 3% already with 231 nodes in a set of problems reported in [43], where 642
nodes were necessary for an accuracy of about :5% (more than one order higher).

The method proposed in this paper extends the ideas of Klaseboer et al. [26,27,43] to isogeometric boundary element
methods (IGA BEM). The main advantage of this approach comes from the true desingularization of the boundary integral
equations, thanks to which it is possible to use standard quadrature formulas to assemble the system matrices. A model
problem for three dimensional Stokes flows was presented, showing very good agreement with known analytical solutions.
Although the superior convergence properties of IGA BEM is evident, a deeper investigation on the quadrature formulas is
desirable, in order to fully exploit the potential of isogeometric analysis (see, for example, [7]).

The non singular technique presented in this paper delivers approximation properties which are similar both qualita
tively and quantitatively to the ones obtained with Telles algorithm, at a fraction of the computational cost. Moreover, it out
classes another classical method which is often used in standard BEM implementations (the Lachat Watson technique) but
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which fails to deliver satisfactory results in the iso geometric context, unless one is willing to pay a much higher computa
tional cost.

Although we could not observe clear L2 convergence rates in the examples we presented, we believe that these results
depend mostly on the approximation properties of the iso geometric finite dimensional spaces, which lack the capability
to represent exactly the outer normals. Despite this fact, the combination of the non singular method with standard singular
integration techniques, yields a significant increase both in accuracy and robustness of standard IGA BEM methods.

In [32,30] it is argued that this kind of regularization of the boundary integral integrations requires the boundary C to be
of class C1. We are currently investigating the convergence properties of both the regularization presented in Section 6 and of
standard IGA BEM techniques when applied to geometries which contain corners and edges.

We are planning applications of the method proposed in this paper to model full three dimensional flows induced by
swimming bacteria and unicellular organisms, extending [1,4,3,2,6] and to model the relaxation dynamics and the flow
around three dimensional lipid bilayer membranes, extending [5,38]. The flexibility and the accuracy of the nonsingular
IGA BEM makes it also a good candidate to replace or complement more complex fluid structure interaction methods, such
as the ones presented in [34,21,11].
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