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Abstract. The stochastic method for homogenization analysis of diffusion problems consider-
ing uncertainties of inclusion shape is developed using a microscopic spectral stochastic BEM
and a macroscopic FEM. The spatial variation of inclusion shape is modeled using Karhunen-
Loeve expansion with exponential-type covariance kernels. The characteristic function on a 2-D
unit cell and the homogenized diffusion tensor are calculated using the spectral stochastic BEM.
The macroscale diffusion problems are solved using the stochastic FEM with the polynomial
chaos (PC) expansion. Through numerical tests, the expected value and the standard deviation
of the concentration in macroscale problems and their distribution are investigated.

1 INTRODUCTION

In order to investigate the material diffusion behavior within heterogeneous media, we at-
tempt to estimate the effective diffusion properties and concentration fields through homog-
enized material diffusion models. The homogenization method is one of powerful tools for
predicting the micro- and macroscopic diffusion behaviour. In the formulation, we assume the
periodic microstructure represented by a unit cell, and realize scale separation of the material
diffusion problems by considering an infinitesimal-size unit cell [1, 2].

In homogenization analysis, a simple geometrical shape and deterministic simulation tend to
be adopted because of the simple concepts of infinitesimal periodic microstructure embedded
in macroscopic homogenized media. The actual heterogeneous media have several uncertainty
on inclusion geometry, arrangement and material properties. The authors [3, 4] has proposed
the simulation method in which the homogenized duffusion tensor on the unit cell with spaial
variation of inclusion shape is estimated by the spectral stochastic boundary element method
(SSBEM) and the macroscopic behavior in homogenized media is simulated using the stochas-
tic finite element method (SFEM). The spatial variation of inclusion shape is modeled by the
Karhunen-Loève expansion [5]. The SSBEM analysis is based on the discretization using the
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Figure 2: Unit cell.

polynomial chaos (PC) [5], which requires to deal with large degree of freedom of the linear al-
gebraic equations: it is difficult to utilize the higher order function of PC. In [3, 4], we consider
only the spatial variation of inclusion shape. The variations of inclusion shape and material
parameters have never been considered simultaneously in BE-based homogenization analysis
for microscopic heterogeneous media.

In the present paper, we develop the novel simulation method for homogenizaion analysis
of 2-D duffision problems considering spatial variarion of inclusion shape. The deterministic
BEM is used for evaluating the homogenized diffusion tensor components corresponding to
many patterns of 2-D unit cell. The estimated diffusion tensor is defined as a form of the PC
expansion, and is used as the input data of macroscopic diffusion analysis. The PC expan-
sion coefficients of the homogenized diffusion tensor is evaluated by the least squares method
in the stochastic collocation method (SCM) [6]. The main advantage of the SCM is to use
the conventional deterministic BEM for predicting the homogenized tensor components. The
macroscopic concentration field is simulated using the stochastic FEM. The response of the
macroscopic concentration in a probability space is approximated with the polynomial chaos.
The statistical characteristic values, e.g. the expected value and the standard deviation, is eas-
ily evaluated the PC expansion coefficients of the concentration field. The minor expansion
of the present method thus enables us to consider the spatial variation of inclusion shape and
variation of material parameters simultaneously. Through the numerical tests on a simple 2-D
two-scale diffusion problem, we invesigate the performance of the present simulation method
for homogenized 2-D diffusion problems.

2 HOMOGENIZATION METHOD FOR 2-D DIFFUSION PROBLEMS

We now consider a 2-D diffusion problem with a heterogeneous media Ωε and a boundary
Γε, as shown in Figure 1. The concentration Cε in the domain Ωε is governed by the following
equation [1]:

∂Cε

∂t
(x, t)− ∂

∂xi

[
Kε

ij

∂Cε

∂xj

(x, t)

]
= f(x, t), (1)

where Kε
ij is the diffusion tensor.
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In the homogenization method [1, 2], we now assume that the heterogeneous media Ωε have
the periodic microstructure as represented in Figure 2. The scale factor ε is the ratio between
the size of the unit cell Y and the size of Ωε: y = x/ε. Introducing the asymptotic expansion
of Cε in Eq.(1) on small ε and imposing the convergence conditions at each order terms, we can
derive the governing equations at micro- and macro-scale. The macroscale problems are then
described as follows:

∂C0

∂t
(x, t)− ∂

∂xi

[
K∗

ij

∂C0

∂xj

(x, t)

]
= f(x, t), (2)

where C0 is the 0th order term of the asymptotic expansion Cε. The homogenized diffusion
tensor K∗

ij is calculated with

K∗
ij =

1

|Y |

∫
Y

Kik

(
δkj +

∂ωj

∂yk
(y)

)
dY (3)

In Eq.(3), the characteristic function ωj(y) (j = 1, 2) is governed by the following PDEs and
boundary conditions:

κ(1)∂
2ωj

∂y2i
= 0, (in Y1) κ(2)∂

2ωj

∂y2i
= 0, (in Y2) (4)

κ(1) ∂ωj

∂n(1)
+ κ(2) ∂ωj

∂n(2)
= −κ(1)n

(1)
j − κ(2)n

(2)
j , (on S) (5)

periodic condition, (on Sp) (6)

where Y1 and Y2 are the subdomain on the inclusion and the matrix in the unit cell Y shown in
Figure 2, respectively. The diffusion tensor in Ym is homogeneous as K(m)

ij = κ(m)δij . S is the
interface between Y1 and Y2 and Sp is the outer boundary of the cell Y , on which the pereiodic
condition is imposed.

3 BE-BASED HOMOGENIZATION ANALYSIS

In the homogenization analysis, we use the boundary element method (BEM) to approxi-
mately solve the periodic boundary value problems Eq.(4)-Eq.(6). The boundary integral equa-
tion corresponding to Eq.(4) is expressed as

1

2
ω
(m)
j +

∫
∂Ym

q∗(m)ω
(m)
j d(∂Ym) =

∫
∂Ym

u∗(m)q
(m)
j d(∂Ym) (7)

where the subscript “(m)” denotes the solution in the inclusion (m = 1) and the matrix (m =

2). The flux is q
(m)
j = κ(m)∂ω

(m)
j /∂n(m). The boudary is defined as ∂Y1 = S and ∂Y2 =

S ∪ Sp. Discretizing Eq.(7) using boundary elements and collocation method, we obtain the
linear algebraic equations on the inclusion Y1 and the matrix Y2, respectively. The conditions
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Eqs. (5) and (6) are imposed into the algebraic equations. Solving the equations, we then obtain
the approximations of the characteristic function ωj on S and Sp and the flux q

(m)
j on S.

The homogenized diffusion tensor K∗
ij is evaluated using the following equation which is

obtained by integrating Eq.(3) by parts:

K∗
ij =

1

|Y |

[
1

d

{∫
S

κ(1)ymn
(1)
m dS +

∫
S∪Sp

κ(2)ymn
(2)
m

}
δij

+

∫
S

κ(1)n
(1)
i ω

(1)
j dS +

∫
S∪Sp

κ(2)n
(2)
i ω

(2)
j dS

] (8)

where d denotes the space dimensions of the problem: d = 2.

4 STOCHASTIC MODELING OF SPATIAL VARIATION OF INCLUSION SHAPE

We next consider the stochastic model on spatial variation of inclusion shape. In the present
paper, the spatial variation is described using the Karhunen-Loève expansion [5]. The variation
of the simulated homogenized diffusion coefficients is evaluated by the stochastic collocation
method[6].

We now define the coordinate s along the mean shape of the interface boundary S. The
fluctuation of the boundary shape is regarded as a stochastic process on the s coordinate. The
covariance kernel of the fluctuation at two points s1 and s2 on s is denoted by C(s1, s2). Using
the eigenvalues λi and the corresponding eigenfunctions fi(s) of the covariance kernel, we now
represent the uncertain boundary shape by the following truncated Karhunen-Loève expansion
with NKL:

S(s) = S0 +

NKL∑
i=1

ξi
√
λifi(s), (9)

where ξi are the independent normal random variables, and S0 is the mean boundary shape of
the interface boundary S. The homogenized diffusion tensor is then regarded as the function of
the random variables ξi (i = 1, 2, . . . , NKL).

In the stochastic collocation method, the fluctuated interface boudaries Sβ are generated
using Eq.(9) and normal random variables ξ

(β)
i (β = 1, 2, . . . , Ns). We then evaluate the ho-

mogenized diffusion tensor K∗
ij,β by the deterministic BE analysis on the following boundary

Sβ:

Sβ(s) = S0 +

NKL∑
i=1

ξ
(β)
i

√
λifi(s), (10)

The response of the homogenized diffusion tensor K∗
ij(ξ) in the probability space is approx-

imated by the PC expansion as

K∗
ij(ξ, ζ) =

NPC∑
γ=0

K∗
ij,γΨγ(ξ) (11)
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where K∗
ij,γ is the PC expansion coefficients of the homogenized diffusion tensor. The homog-

enized diffusion tensor K∗
ij(ξ

(β)) is the simulated results on the βth pseudo-random numbers
ξ(β), and then the following relation holds:

K∗
ij(ξ

(β)) = K
∗(β)
ij =

NPC∑
γ=0

K∗
ij,γΨγ(ξ

(β)) (12)

In the present method, the expansion coefficients K∗
ij,γ is evaluated using the least squares

method (LSM).
We now define the residual R in the LSM as

R(K∗
ij,γ) =

Ns∑
β=1

[
K

∗(β)
ij −

NPC∑
γ=0

K∗
ij,γΨγ(ξ

(β))
]2

(13)

The expansion coefficients are determined by minimizing the residual R as

∂R

∂K∗
ij,γ

=
Ns∑
β=1

[
K

∗(β)
ij −

NPC∑
m=0

K∗
ij,mΨm(ξ

(β))
]
Ψγ(ξ

(β)) = 0 (14)

where γ = 0, 1, . . . , NPC . The expansion coefficients K∗
ij,m (m = 0, 1, . . . , NPC) are thus

obtained by solving Eq.(14) which is a system of linear algebraic equation.

5 STOCHASTIC FE ANALYSIS FOR MACROSCALE DIFFUSION PROBLEMS

We now solve the macroscopic boundary value problem Eq.(2) using the stochastic finite
element method (SFEM) with the polynomial chaos (PC) expansion. The PC expansion is used
to discretize the macroscale concentration C0 in the probability space. Applying the weighted
residual method to Eq.(2) and substituting Eq.(11) into the resulting equation, we then obtain
as follows:∫

Ω

∂C0

∂t
wcdΩ +

∫
Ω

(NPC∑
l=0

K
∗(l)
ik Ψl(ξ, ζ)

)
∂C0

∂xk

∂wc

∂xi

dΩ =

∫
Γq

(ϕini)wcdΓ +

∫
Ω

fwcdΩ (15)

where ϕi = K∗
ik∂C

0/∂xk，and wc is the weighting function. The space discretization by the
finite element method (FEM) results in the following equation:

[M ]{Ċ0}+
NPC∑
l=0

Ψl(ξ)[K
(l)]{C0} = {f} (16)

We next introduce the PC expansion into the nodal value vector {C0} of the concentration C0

as

{C0} =

ÑPC∑
m=0

Ψm(σ){C0
m} (17)
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Substituting Eq.(17) into Eq.(16) and calculating the expected value with the homogeneous
chaos Ψα as weights, we have

ÑPC∑
m=0

⟨ΨmΨα⟩[M]{Ċ0}+
ÑPC∑
m=0

NPC∑
l=0

⟨ΨmΨlΨα⟩[K(l)]{C0
m} = ⟨Ψα⟩{f} (18)

where α = 0, 1, . . . , Ñpc. The concentration C0(t) at every time step can be obtained by ap-
plying the time-marching scheme into Eq.(18). The expected value ⟨{C0}⟩ and the standard
deviation σC are evaluated with

⟨{C0}⟩ = {C0
0}, σC =

[ÑPC∑
m=1

(C0
m)

2

]1/2
(19)

6 NUMERICAL RESULTS

We now evaluate the homogenized diffusion tensor of the 2-D unit cell as shown in Figure 3,
and simulate the macroscale concentration C0 using the present method. The unit cell consists
of an inclusion and a matrix. The mean shape of the inclusion have the circular shape with
the radius R̄. In the present numerical tests, we prescribe into R̄ = 0.2 and the coefficients of
variation δR = 10%. The covariance kernel C is given by

C(θ1, θ2) = (δRR̄)2 exp

[
−d(θ1, θ2)

b

]
d = min{|θ1, θ2|, 2π − |θ1, θ2|}, b = 1/2π

(20)

The number of terms on the truncated Karhunen-Loève expansion is NKL = 5, and the polyno-
mial chaos is given by 1st-order Hermite polynomials. The number of terms on the polynomial
chaos is then NPC = NKL = 5, and ˜NPC = 5.

The sample macroscale problem is described into the initial- boundary value problem as
shown in Figure 4. The macroscopic concentration C0 is approximated using the 1st-order
polynomial chaos: Φ0 = 1, Ψi = ξi (i = 1, 2, 3, 4, 5).

In the macroscale analysis, we use 3-node triangular elements for discretizing the weak form
Eq.(15), and the 4th-order Runge-Kutta scheme is adopted as the time-marching scheme.

Table 1 indicates the simulated results on the expected values and the standard deviation
of the homogenized diffusion tensor K∗

11 and K∗
12. The simulated results of the homogenized

diffusion tensor components K∗
11 and K∗

12 can be evaluated with the number of random number
pattern Ns ≤ 500. These results are comparable to those of the Monte Carlo Simulation (MCS)
simulation.

The simulated PC expansion coefficients of the homogenized diffusion tensor K∗
ij,γ for Ns =

500 are tabulated in Table 2. The FE analysis for macroscale diffusion problems shown in Figure
4 is carried out using the present PC expansion coefficients.
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Figure 3: Sample 2-D unit cell.
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Figure 4: Sample macroscale problem.

Table 1: Expected value and standard deviation of homogenized diffusion tensor components K∗
11 and K∗

12. The
spatial variation of the inclusion shape is considered.

(a) Expected value.

Ns ⟨K∗
11⟩ ⟨K∗

12⟩

100 0.23726 6.8108× 10−6

200 0.23725 2.3157× 10−6

500 0.23727 5.9626× 10−6

1000 0.23729 −7.8033× 10−6

2000 0.23728 2.8547× 10−6

(b) Standard deviation.

Ns σK∗
11

σK∗
12

100 4.3914× 10−3 1.7186× 10−3

200 4.4808× 10−3 1.7135× 10−3

500 4.4769× 10−3 1.7019× 10−3

1000 4.4315× 10−3 1.6962× 10−3

2000 4.4352× 10−3 1.6990× 10−3

Figure 5 depicts the simulated expected value ⟨C0⟩ and the standard deviation σC0 of the
macroscale concentration C0 at t = 0.08. The initial- and the boundary conditions are pre-
scribed as shown in Figure 4. The influence of the spatial variation of inclusion shape on the
simulation results realizes as the standard deviation of the simulated macroscale concentration
C0. The expected value ⟨C0⟩ depends on the distance between an observation point and the
sub-boundaries with C0 = 1. The standard deviation σC0 amplifies around the point (1.85,
1.15) with equal distance from the sub-boundaries x1 = 2 or x2 = 1.

7 CONSIDERATION OF VARIATION OF DIFFUSION COEFFICIENTS

The expansion of present method enables us to analyze the homogenization problems with
not only the spatial variation of inclusion shape but also the variation of the diffusion coefficients
of the ingredients. We now assume that the diffusion coefficients of the inclusion and the matrix
κ(1) and κ(2) have the variation subjected to the normal distribution. The diffusion coefficients
is described using the independent standard normal random variables ζ1 and ζ2 as

κ(1) = κ̄(1) + σκ(1)ζ1, κ(2) = κ̄(2) + σκ(2)ζ2 (21)

where κ̄(m) and σκ(m) (m = 1, 2) are the mean value and the standard deviation of κ(m), re-
spectively. In stochastic collocation method, we have to carry out the deterministic BE-based

7
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Table 2: The PC expansion coefficients K∗
ij,γ of the homogenized diffusion tensor K∗

ij．K21,γ = K∗
12,γ and

K∗
22,γ .

ij γ Ψγ K∗
ij,γ

11 0 1 0.23727
1 ξ1 4.0888× 10−3

2 ξ2 −3.5637× 10−5

3 ξ3 −2.0867× 10−5

4 ξ4 −2.3775× 10−4

5 ξ5 1.8071× 10−3

ij γ Ψγ K∗
ij,γ

12 0 1 3.2845× 10−6

1 ξ1 5.9626× 10−6

2 ξ2 7.9785× 10−6

3 ξ3 5.7690× 10−7

4 ξ4 −7.2237× 10−3

5 ξ5 −1.6864× 10−3

(a) ⟨C0⟩ (b) σC0

Figure 5: The expected value ⟨C0⟩ and the standard deviation σC0 of the macroscopic concentration C0 at t =
0.08. The spatial variation of the inclusion shape is considered.

homogenization analysis with the pseudo random numbers ξ
(β)
i , ζ(β)1 and ζ

(β)
2 . The diffusion

coefficients κ(β)
1 and κ

(β)
2 are described by

κ
(1)
β = κ̄(1) + σκ(1)ζ

(β)
1 , κ

(2)
β = κ̄(2) + σκ(2)ζ

(β)
2 (22)

The diffusion tensors K
(1)
ij and K

(2)
ij are then given by K

(1)
ij = κ

(β)
1 δij and K

(2)
ij = κ

(β)
2 δij ,

respectively.
The homogenized diffusion tensor K∗

ij is then regarded as the function of the random vari-
ables ξi (i = 1, 2, . . . , NKL), ζ1 and ζ2.

K∗
ij(ξ, ζ) =

NPC∑
γ=0

K∗
ij,γΨγ(ξ, ζ) (23)

where ξi is defined as Eq.(9).
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Table 3: Expected value and standard deviation of homogenized diffusion tensor components K∗
11 and K∗

12. The
spatial variation of the inclusion shape and randomness of the diffusion coefficients are simultaneously considered.

(a) Expected values of K∗
11 and K∗

12.

Ns ⟨K∗
11⟩ ⟨K∗

12⟩

100 0.23694 −6.5266× 10−6

200 0.23694 −1.7873× 10−5

500 0.23698 3.2845× 10−6

1000 0.23700 −2.6574× 10−6

2000 0.23700 −1.0235× 10−6

(b) Standard deviation of K∗
11 and K∗

12.

Ns σK∗
11

σK∗
12

100 2.2447× 10−2 1.6825× 10−3

200 2.2401× 10−2 1.7109× 10−3

500 2.2595× 10−2 1.6687× 10−3

1000 2.2486× 10−2 1.6839× 10−3

2000 2.2345× 10−2 1.6973× 10−3

The expansion coefficients K∗
ij,γ in Eq.(23) are determined by minimizing the resudual R as

R(K∗
ij,γ) =

Ns∑
β=1

[
K

∗(β)
ij −

NPC∑
γ=0

K∗
ij,γΨγ(ξ

(β), ζ(β))
]2

(24)

The macroscale problems can be solved with the FE-based method which is presented in the
section 5.

Table 3 shows the simulation results of the expected values and the standard deviation of
the homogenized diffusion tensor components K∗

11 and K∗
12 which are evaluated in the unit

cell with spatial variation of inclusion shape and randomness of diffusion coefficients. In the
present numerical tests, we prescribe ⟨κ1⟩ = 1, σκ(1) = 0.1, ⟨κ2⟩ = 0.2 and σκ(2) = 0.02.
The standard deviation of the homogenized diffusion tensor K∗

ij is about 500% of the results
for considering only spatial variation of the inclusion shape: the coefficients of variation of the
present homogenized tensor K∗

11 are approximately 10%.
Figure 6 shows the expected values ⟨C0⟩ and the standard deviation σC0 of the macroscopic

concentration C0 for the initial- baoundary value problems (Figure 4) at t = 0.08. The distribu-
tion of the expected value ⟨C0⟩ and the standard deviation σC0 are similar to the results shown
in Figure 5.

REFERENCES

[1] Matine, A., Boyard, N., Legrain, G., Jarny, Y. & Cartraud, P.: Transient heat con-
duction within periodic heterogeneous media: A space-time homogenization approach.
Int.J.Thermal Sci., Vol.92, pp.217-229, 2015.

[2] Auriault, J., Boutin, C. & Geindreau, C.: Homogenization of coupled phenomena in
heterogeneous media. J Wiley & Sons, 2010.

[3] Koro, K. and Abe, K.: Spectral stochastic BEM for estimating influence of shape uncer-
tainty of inclusion on homogenized diffusion coefficient. Proc. of 21st JSCE Appl. Mech.
Sympo., 2018 (in Japanese).

9



Kazuhiro Koro

(a) ⟨C0⟩ (b) σC0

Figure 6: The expected value ⟨C0⟩ and the standard deviation σC0 of the macroscopic concentration C0 at t =
0.08. The spatial variation of the inclusion shape and the variation of diffusion coefficients are considered.
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