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Summary. Polyurethane (PU) is an excellent thermal insulator, and incorporating Phase
Change Material (PCM) capsules into PU significantly enhances building envelope performance
by improving indoor thermal stability and reducing temperature fluctuations. We propose a
hierarchical multi-scale model using Physics-Informed Neural Networks (PINNs) to accurately
predict and analyze the thermal conductivity of PU-PCM composites at both micro and macro
scales. This approach effectively addresses complex inverse problems and multi-scale phenomena,
offering insights that optimize material design. A case study further demonstrates the model’s
potential in improving thermal comfort and reducing energy consumption in buildings. The
successful development of this PINNs-based model holds great promise for advancing PU-PCM
applications in thermal energy storage and innovative building insulation design.

1 INTRODUCTION

The increasing global energy consumption has raised concerns about potential supply short-
ages, depletion of resources, and significant environmental impacts, including ozone layer de-
pletion, global warming, and climate change[1]. The International Energy Agency warns that
greenhouse gas emissions will continue to rise, exacerbating extreme weather patterns worldwide.
In response, the European Union (EU) aims to reduce greenhouse gas emissions by at least 55%
by 2030 compared to 1990 levels, with a key strategy focused on improving energy performance
in buildings, which contribute 36% of total CO2 emissions[2]. Heating, ventilation, and air con-
ditioning (HVAC) systems alone account for 50% of the EU’s final energy consumption, making
energy efficiency in this sector a critical area of research [3, 4, 5].

Recent decades have seen growing interest in using phase change materials (PCMs) for ther-
mal energy storage to enhance building energy efficiency. PCMs, when integrated into building
materials or envelopes, can improve latent heat storage capacity, thereby enhancing indoor
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thermal comfort and overall energy efficiency[6]. However, PCMs face challenges such as subop-
timal thermal conductivity and leakage during phase transitions. These issues can be mitigated
by developing shape-stable polymer composites with PCM inclusions, particularly through mi-
croencapsulation techniques that confine PCMs within polymeric shells [7]. Among polymers,
polyurethane (PU) rigid foams are highly regarded for thermal insulation due to their low ther-
mal conductivity, mechanical stability, and ability to form sandwich structures with various facer
materials.

While most research has focused on the synthesis and experimental evaluation of PU-PCM
foams’ thermal energy storage capacity, there has been limited exploration of their thermal
properties across multiple scales, leaving a gap in the comprehensive understanding of these
materials [8, 9, 10]. To address this, our study employs a multi-scale modeling approach using
Physics-Informed Neural Networks (PINNs). PINNs integrate physics-based knowledge with
data-driven learning, making them ideal for predicting the thermal conductivity of PU-PCM
materials while handling complex multi-scale phenomena and reducing computational costs.

The primary goal of this study is to develop a PINNs-based multi-scale model to accurately
predict the thermal behavior of PU-PCM materials. By incorporating fundamental physics
and governing heat transfer equations, this model aims to capture the intricate relationship
between microstructure and thermal properties. Leveraging experimental data and simulations,
the model will learn the connection between microstructural features and resulting thermal
conductivity, providing reliable predictions even with noisy or limited data. This research has
the potential to advance the design and optimization of materials for thermal energy storage,
building insulation, and electronic cooling applications.

2 Methodology of research

This study proposes a multi-scale modeling approach to analyze the behavior of building
envelopes, integrating Physics-Informed Neural Networks (PINNs) with the Representative Vol-
ume Element - Finite Element Method (RVE-FEM). The approach bridges three length scales,
from micro to macro, using a hierarchical bottom-up method where detailed information at finer
scales informs coarser scales [11, 12, 13, 14, 15]. The process begins with micro-scale model-
ing using PINNs to capture system physics, followed by meso and macro-scale modeling with
RVE-FEM to understand larger system behavior. The multi-scale model is then applied to
evaluate the building envelope’s thermal properties and optimize its design. Additionally, the
study explores composite material design by incorporating polyurethane (PU) as the matrix and
microencapsulated paraffin phase change materials (PCMs) to enhance energy storage stability
and reduce thermal conductivity.

The framework for using Physics-Informed Neural Networks (PINNs) in micro-scale modeling
is presented through a detailed schematic that outlines the structure and process of the model.
The Multi-scale modeling scheme is shown in Figure 1

Neural Network Structure

Feed-Forward Neural Network: The network is designed as a feed-forward model, which
involves multiple layers of neurons that process input data through a series of linear transfor-
mations followed by non-linear activation functions. The mathematical representation of the
network’s operations at each layer is provided, where the activation function used is typically a
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Figure 1: Multi-scale modeling scheme

non-linear function such as tanh or sigmoid.

Components of the Model

1. Data Net:

• Purpose: This neural network approximates the temperature distribution T (x) at
specific spatial coordinates xi.

• Parameters: The network parameters are denoted as θD.

• Loss Function (Loss D): The discrepancy between the predicted temperature
T̂ (xi; θD) and the observed temperature T (xi) is calculated using the Mean Square
Error (MSE):

LossD =
n∑
i=1

∣∣∣T̂ (xi; θD)− T (xi)
∣∣∣2

• Training: The data net is trained using observed temperature data to minimize this
loss function.

2. PDEs Net:

• Purpose: This network models the unknown thermal conductivity field κ(x) by
solving the heat conduction partial differential equation (PDE) over a given domain.

• Parameters: The parameters of this network are denoted as θk.

• Loss Function (Loss PDE): The loss function incorporates the difference between
the predicted temperature and the solution to the PDE, with additional terms for
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boundary conditions:

LossPDE = λ1

n∑
i=1

∣∣∣T̂ (xi; θD)− T (xi)
∣∣∣2

+ λ2

l∑
i=1

∣∣∣∣∣dT̂ (x)

dx
− q1

∣∣∣∣∣
2

+ λ3

∣∣∣∣∣κ(x; θk)
dT̂ (x)

dx
− f(x)

∣∣∣∣∣
2

+ λ4

∣∣∣T̂ (b)− q2

∣∣∣2
• Training: The PDEs Net is optimized by minimizing this loss function, ensuring that

the neural network adheres to the underlying physical laws and boundary conditions.

Adaptive Weighting Strategy

Importance of Weights: The weights λ1, λ2, λ3, λ4 are crucial as they control the relative
importance of different terms in the loss functions for both networks. Proper adjustment of
these weights is necessary to ensure that the network balances the contributions of data fitting
and adherence to physical laws.

Adaptive Weighting Method: An adaptive weight method based on the gradient is em-
ployed to dynamically adjust these weights during training. This method is designed to give
more importance to the loss components that are more challenging to optimize, thereby ensuring
a balanced and efficient learning process:

λi = Factor×
∑l

j=1 mean (|∇θLossi|)
mean (|∇θLossi|)

Optimization Objective: The ultimate goal is to minimize both loss functions, LossD and
LossPDE , to determine the optimal network parameters θD and θk.

Special Case Consideration

Constant Conductivity Field: If the thermal conductivity field κ(x) is constant, it can be
represented by a single parameter κ, simplifying the modeling process. In such cases, a neural
network may not be required, and the optimization would focus on determining this constant
value directly to minimize the PDE loss.

Meso and macro scales

In our multi-scale modeling approach, Representative Volume Elements (RVEs) are
used at the meso-scale to represent material properties. RVEs are typically cubic and contain
spherical PCM (Phase Change Material) fillers. The distribution of these fillers is determined
by probability density functions (PDFs) to capture their statistical distribution [16, 17,
18, 19, 20].
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We assess agglomeration and dispersion of fillers using two indices:

ξ =
Vinclusion

VRV E
, ζ =

Vinclusion Graphene

VGraphene

where ξ represents the volume fraction of inclusions, and ζ indicates the dispersion within the
composite.

The RVE size is determined by ensuring the homogenized thermal conductivity converges:

〈R〉 =
1

M

M∑
k=1

R(k)

where R(k) is the thermal conductivity in the k-th RVE.
The thermal behavior at this scale is governed by the heat equation:

∇ · (κ∇θ) +Q = 0

with Fourier’s law providing the relationship for homogenized thermal conductivity:

q = −κ∇T

This meso-scale model is essential for predicting the thermal properties of composites, in-
forming larger-scale simulations and material design.

The Mori-Tanaka method is used to estimate the effective thermal conductivity of compos-
ite materials by considering the thermal conductivities of the matrix material and reinforcement,
as well as their respective volume fractions. This method assumes that the composite’s thermal
conductivity is governed by the thermal conductivity of the matrix and the enhanced conduction
pathways provided by the reinforcement.

The effective thermal conductivity (keff) of a composite with PU-PCMs is calculated using
the following equation:

keff = km +
4kpVp

(1− Vp) + km
kp

where:

• keff is the effective thermal conductivity of the composite,

• km is the thermal conductivity of the polymer matrix,

• kp is the thermal conductivity of paraffin,

• Vp is the volume fraction of PCMs in the composite.

This equation provides a means to predict the overall thermal performance of the composite
material at the macroscopic scale.

This case study evaluates the energy consumption and thermal comfort of a typical single-
family house in Ume̊a, Sweden, using Polyurethane Phase Change Materials (PU-PCMs) within
the building envelope. Ume̊a, characterized by cold winters and mild summers, requires effective
thermal management due to its subarctic climate. The study focuses on how PU-PCMs can
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reduce energy consumption and improve indoor thermal comfort by storing and releasing thermal
energy. The Building construction elements and window properties is shown in Table 1

The analysis is based on hourly temperature data from 2022 and simulates heating needs
to maintain indoor temperatures at 21◦ C in winter and 25◦C in summer. The effectiveness
of PU-PCMs is measured through annual energy consumption and thermal comfort indicators
such as Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD).

Key equations include:

• PMV Calculation:

PMV =
(
0.303 · e−0.036·M + 0.028

)
· (Ta + 0.99 · Tr)− 4.356× 10−8 · (Ta + 273)4 + . . .

• PPD Calculation:

PPD = 100− 95× exp
(
−0.03353 · PMV4 − 0.2179 · PMV2

)
The study concludes that PU-PCMs effectively reduce energy consumption and enhance

thermal comfort, with a target of keeping PPD below 20% and maintaining PMV close to 0 for
comfort.

Figure 2: The application of PU-PCMs in building envelope

Table 1: Building construction elements and window properties.

Elements Layer 1 Layer 2 Layer 3 Layer 4 Thickness U-value Width Height
(Inside) (Outside) (m) W/(m2 K) (m) (m)

External walls Concrete (0.15 m) Light insulation (0.15 m) Concrete (0.08 m) Light insulation (0.1 m) 0.73 m 0.125 - -

Internal walls Gypsum (0.026 m) Light insulation (0.03 m) Gypsum (0.026 m) / 0.296 m 0.2853 - -

Roof Render (0.013 m) Light insulation (0.02 m) Lightweight Concrete (0.25 m) Light insulation (0.16 m) 0.463 m 0.1438 - -

Type1: 90/90 Window - - - - - 1.055 1.8 1.2

Type2: 90/90 Window - - - - - 1.055 1.8 1.2

3 Numerical results and discussion

Micro scale results based on PINNs

This study evaluates the effectiveness of Physics-Informed Neural Networks (PINNs) in solv-
ing inverse problems related to thermal conductivity in PU-PCMs, focusing on both uniform
and non-uniform conductivity scenarios.
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Uniform Thermal Conductivity

The uniform thermal conductivity scenario is governed by:

k
d2T

dx2
= f(x) = −(15π)2 cos(15πx), x ∈

[
−1

2
,
1

2

]
∂T

∂x

∣∣∣∣
x=− 1

2

= q1 = −15π

k
,

∂T

∂x

∣∣∣∣
x= 1

2

= q2 =
15π

k

The analytical solution is:

T =
cos(15πx)

k

PINNs successfully predict the thermal conductivity k with high accuracy, achieving an R2 value
close to 0.99. The results are presented in Table 2.

Table 2: The Lrel
1 error of uniform thermal conductivity with noisy data. σs denotes the variance of

Gaussian distribution of noisy data. HL denotes the different number of hidden layers.

σs 0 (no noise) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

3HL 0.0288 0.0264 0.0402 0.0407 0.0523 0.0690 0.0543 0.0471 0.0512 0.0588 0.0614

4HL 0.0175 0.0353 0.0501 0.0378 0.0421 0.0527 0.0544 0.0324 0.0296 0.0494 0.0661

5HL 0.0297 0.0695 0.0345 0.0421 0.0531 0.0396 0.0579 0.0402 0.0747 0.0540 0.0683

Non-Uniform Thermal Conductivity

For the non-uniform scenario:

k(x)
d2T

dx2
= −(15π)2 cos(15πx)k(x), x ∈

[
−1

2
,
1

2

]
∂T

∂x

∣∣∣∣
x=− 1

2

= q1 = −15π,
∂T

∂x

∣∣∣∣
x= 1

2

= q2 = 15π

The solution is:
T = − cos(15πx)

PINNs accurately predict the non-uniform thermal conductivity, maintaining an L2 relative
error around 10−3, even with noisy data. Table 3 indicates the results

Table 3: The Lrel
1 error of non-uniform thermal conductivity with noisy data. σs represents the variance

of the Gaussian distribution of the noisy data, and HL denotes the different number of hidden layers.

σs 0 (no noise) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

3HL 0.0129 0.0166 0.0115 0.0155 0.0139 0.0114 0.0181 0.0176 0.0132 0.0108 0.0140

4HL 0.0193 0.0121 0.0116 0.0172 0.0187 0.0151 0.0130 0.0153 0.0155 0.0107 0.0250

5HL 0.0163 0.0135 0.00593 0.00943 0.00656 0.00716 0.0162 0.0291 0.00819 0.00821 0.0120
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2D Extension and Real Material Simulation

The 2D problem is modeled as:

k(x, y)

(
∂2T

∂x2
+
∂2T

∂y2

)
= −

[
(15πx)2 + (15πy)2

]
cos(15πxy)k(x)

The analytical solution is:
T = − cos(15πxy)

To simulate real PU-PCMs:

k(x) = 0.24 exp

(
−x

2 + y2

0.18

)
The highest thermal conductivity value in the center is 0.24, gradually decreasing towards the
surrounding, with the boundary approaching an average thermal conductivity of 0.03.

Meso and Macro Scale Results

This section summarizes the temperature distribution at the meso and macro scales, obtained
through FEM-RVE analysis. By analyzing different volume fractions within material regions,
the study calculates a final thermal conductivity of 0.2474 W/mK for a 9% overall volume
fraction. The numerical results are validated against existing experimental data, showing good
accuracy, which supports their application in further engineering studies. Table 4 presents those
results.

Table 4: The distribution of properties in material region.

Numbers Vf (%) Thermal conductivity (W/m K) Numbers Vf (%) Thermal conductivity (W/m K)

1 0.043 1.8005 9 0.071 0.6038

2 0.025 0.2914 10 0.045 1.3574

3 0.096 2.3121 11 0.019 1.2374

4 0.075 0.3314 12 0.041 1.6799

5 0.049 1.6132 13 0.048 1.2015

6 0.082 0.6339 14 0.089 1.2315

7 0.037 0.2111 15 0.088 0.8957

8 0.057 1.1216 16 0.016 1.1912

Thermal conductivity in Mori–Tanaka method: 0.2473926 (W/m K) (Volume fraction: 9%).

Case study results

In this case study, we assess the performance of PU-PCMs (Phase Change Materials) in
single-family houses by incorporating their properties into our models to evaluate their impact
on energy consumption and thermal comfort. Using engineering parameters from a multi-scale
modeling approach, we conduct a comprehensive physical simulation of a house with PINNs and
FEM-RVE. We analyze annual energy usage for 2022 and hourly indoor temperature fluctuations
using IDA-ICE, comparing scenarios with and without PU-PCMs in the building envelope. The
results demonstrate the effectiveness of PU-PCMs in reducing energy consumption, as detailed
in Table 5.

The assessment of the Fanger comfort index in Table 6, including PPD and PMV, reveals that
PU-PCMs significantly enhance occupant satisfaction and thermal comfort, particularly in the
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Figure 3: Temperature distribution of composites

Table 5: Annual energy usage without/with PU-PCMs.

Components Without PU-PCMs With PU-PCMs enhanced Improvement
Purchased energy (kWh) Energy Usage Intensity (kWh/m2) Purchased energy (kWh) Energy Usage Intensity (kWh/m2) (%)

Lighting, facility 32,199 126.1 32,199 126.1 0%

Electric cooling 16,062 62.9 16,322 64 1.74%

HVAC aux 7,258 28.4 7,258 28.4 0%

Fuel heating 15,369 60.2 14,973 58.6 2.64%

Total, Facility electric 55,519 217.4 55,809 218.5 0.52%

Total, Facility fuel 15,369 60.2 14,973 58.6 2.64%

Total 70,888 277.5 70,782 277.1 0.14%

Equipment, tenant 24,149 94.5 24,149 94.5 0%

Total, Tenant electric 24,149 94.5 24,149 94.5 0%

Grand total 95,037 372.1 94,931 371.7 0.11%

living room and 1st bedroom, by reducing dissatisfaction and improving thermal perception.
The 2nd bedroom and Toilet show minor improvements, likely due to their smaller exterior
wall areas, which limits the effectiveness of the PCM phase change. The PCM phase change,
activated by significant temperature fluctuations, primarily in the summer, plays a crucial role
in stabilizing indoor temperatures, with larger exterior wall areas contributing more to overall
comfort improvement.

Table 6: Fanger’s comfort indices without/with PU-PCMs.

Components Without PU-PCMs With PU-PCMs enhanced Improvement (PMV)
Predicted Percentage of Dissatisfied (PPD) Predicted Mean Vote (PMV) Predicted Percentage of Dissatisfied (PPD) Predicted Mean Vote (PMV) (%)

Living room 9.082% -3.739 5.523% -1.529 59.10%

Toilet 7.931% 3.615 7.829% 3.507 3.07%

2nd Bedroom 6.365% 2.405 6.354% 2.334 3.04%

1st Bedroom 6.034% 1.912 5.960% 1.634 17.01%

4 Conclusions

This study introduces a hierarchical multi-scale model for PU-PCM foam composites using
Physics-Informed Neural Networks (PINNs) to predict and analyze thermal conductivity at both
micro and macro scales. By integrating physics-based knowledge with data-driven learning, the
model effectively addresses complex multi-scale phenomena and solves inverse problems. The
RVE-finite element method is used to compute effective engineering parameters, capturing the
relationship between microstructure and thermal properties. The model’s accuracy in predicting
thermal behavior, even with noisy or limited data, is crucial for real-world applications. A case
study on building thermal comfort and energy consumption demonstrates the model’s potential
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in passive energy design and improving occupant comfort. This PINNs-based approach holds
promise for advancing PU-PCM material design and optimizing thermal energy storage systems
and building insulation.

REFERENCES

[1] Olofsson, T., and T. Mahlia. 2012. “Modeling and Simulation of the Energy Use in
an Occupied Residential Building in Cold Climate.” Appl Energy 91 (1): 432–438.
https://doi.org/10.1016/j.apenergy.2011.10.014.

[2] Olofsson, T., S. Andersson, and J.-U. Sjögren. 2009. “Building Energy Parame-
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